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Abstract: The roles of two interrelated DNA protection protein in starved cells (Dps)—putative
Dps Dgeo_0257 and Dgeo_0281—as orthologous proteins to DrDps1 for DNA binding, protection,
and metal ion sensing were characterised in a Deinococcus geothermalis strain. Dgeo_0257 exhibited
high DNA-binding affinity and formed a multimeric structure but lacked the conserved amino acid
sequence for ferroxidase activity. In contrast, the Dgeo_0281 (DgDps1) protein was abundant in
the early exponential phase, had a lower DNA-binding activity than Dgeo_0257, and was mainly
observed in its monomeric or dimeric forms. Electrophoretic mobility shift assays demonstrated
that both purified proteins bound nonspecifically to DNA, and their binding ability was affected by
certain metal ions. For example, in the presence of ferrous and ferric ions, neither Dgeo_0257 nor
Dgeo_0281 could readily bind to DNA. In contrast, both proteins exhibited more stable DNA binding
in the presence of zinc and manganese ions. Mutants in which the dps gene was disrupted exhibited
higher sensitivity to oxidative stress than the wild-type strain. Furthermore, the expression levels
of each gene showed an opposite correlation under H2O2 treatment conditions. Collectively, these
findings indicate that the putative Dps Dgeo_0257 and DgDps1 from D. geothermalis are involved in
DNA binding and protection in complementary interplay ways compared to known Dps.

Keywords: Deinococcus geothermalis; chromosome stabiliser; DNA protection protein in starved cells
(Dps); EMSA; iron sensing; oxidative stress response

1. Introduction

Members of the genus Deinococcus are extremophiles that can survive a wide range
of harsh conditions, including oxidative stress, desiccation, and extreme radioactive envi-
ronments beyond the normal bacterial environmental adaptation zone [1–3]. Deinococcus
geothermalis is 1 of more than 90 species of this highly radiation-resistant genus Deinococcus,
which also includes the well-studied mesophile D. radiodurans (https://lpsn.dsmz.de/,
accessed on 14 October 2022). D. geothermalis grows optimally at 48 ◦C and can survive
under acute and chronic exposure to ionising radiation of up to 10 kGy at 60 Gy/h, 1 kJ/m2

of ultraviolet light, and years of desiccation. Furthermore, this bacterial species can also
reduce Fe (III)-nitrilotriacetic acid, U (VI), and Cr (VI) and curtail Hg (II) in the presence of
radiation and high temperatures and is, therefore, used in bioremediation [4–9].

Dps, a ferritin- and bacterioferritin-like protein subfamily, plays multifaceted roles
in four major categories: (1) dodecameric assembly for iron storage and homeostasis,
(2) DNA protection from oxidative damage, (3) bacterial genome packaging as nucleoid
proteins, and (4) enzymatic activity [10–12]. These proteins can oxidise iron to prevent the
formation of oxidative free radicals or form a protein–DNA complex to physically protect
DNA [13]. Among the many resistance and protection mechanisms that enable Deinococcus
to survive under high-stress conditions, we sought to characterise a DNA protection protein
in starved cells (Dps) because of its crucial role in DNA damage protection, toxic metal
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ion storage and homeostasis, and reactive oxygen species (ROS) scavenging [10]. Dps has
been described as a DNA-binding protein that regulates and protects the DNA of starved
Escherichia coli [14,15]. E. coli Dps possesses nucleoid-clumping activity in Staphylococcus
aureus, resulting in H2O2 resistance and enzymatic activity [16]. Furthermore, Dps also
exhibits ferroxidase activity and can, therefore, catalyse the oxidation of ferrous iron (Fe2+)
to its ferric state (Fe3+). H2O2 is reduced during this process, and Dps acts as an H2O2
detoxifier and DNA protector. Therefore, Dps is highly induced by direct H2O2 treatment;
however, its expression can vary in a growth-phase- and species-dependent manner. The
ability of microorganisms to resist metal toxicity is often related to their ability to express
proteins capable of transforming metals into less soluble and less toxic chemical states [4].
E. coli Dps involved in copper homeostasis is a good example of this phenomenon [17]. A
previous study reported that D. geothermalis can effectively decrease the cytotoxicity of Hg
(II) and Hg (0) [4]. Similar results have been reported for Fe (III), U (VI), Tc (VII), and Cr (VI)
under anaerobic and aerobic conditions [18]. Since E. coli Dps was first reported, various
Dps have been reported in more than 10 bacterial genera (i.e., Bacillus, Campylobacter,
Lactobacillus, Helicobacter, Mycobacterium, Agrobacterium, Streptococcus, Pseudomonas, Vibrio,
and Deinococcus), as well as several archaeal Dps in Sulfolobus solfataricus, Pyrococcus furiosus,
and Halobacterium salinarum [19–23].

The metal-ion-binding properties of bacterial Dps appear to correlate with the structure
and function of iron storage proteins, such as ferritin (FtnA) and bacterioferritin (Bfr) [24,25].
Ferritin is a 24-mer protein with an inner diameter of 8 nm that can store approximately
24,000 Fe atoms in vivo [26–28]. However, the inner diameter of the 5 nm Dps provides
only enough storage space for less than 500 iron atoms [19,21]. Thus, DNA-binding Dps
can store iron in a bioavailable form and protect cells against oxidative stress. E. coli Dps
has a shell-like structure and a spherical hollow cavity in the centre. The hollow cavity acts
as an iron storage compartment, and iron sequestration is essential for iron detoxification
and homeostasis. Oxidative protection is achieved by binding Fe2+ ions and preventing the
Fenton-reaction-catalysed formation of toxic hydroxyl radicals or through DNA binding
to prevent contact with oxidative radicals [29]. Although the basic mechanisms of iron
entry and oxidation have been characterised, many essential questions regarding the
mechanisms of iron core formation and release in response to cellular requirements have not
yet been elucidated [30]. Zeth et al. recently studied the metal position of three ions (Co2+,
Zn2+, and La3+) and the translocation pathway of Listeria innocua Dps [31]. Additionally,
negatively charged residues (Asp and Glu) inside the cavity have been reported to cause a
dynamic shift in the Dps conformation, resulting in metal ion storage by an electromagnetic
force [24]. Thus, the Dps structure can be modified to specifically hold different metal
ions for bioremediation purposes. Dps expression is predominantly induced both during
starvation and in response to oxidative stress during the exponential phase [14,32,33]. In
particular, Dps expression in E. coli is heavily dependent on the growth phase [15,34,35].
During exponential growth, Dps is upregulated by the OxyR regulator, which, in turn, is
induced by H2O2 stress, and is activated by σ70-RNA polymerase. When exposed to H2O2
during the stationary period, Dps is induced by RpoS, encoded by σs, and expressed as a
dominant protein. In the absence of oxidative stress, Dps is downregulated by the nucleoid-
associated proteins Fis and H-NS, which prevents the initiation of dps transcription by
combining adjacent areas within the core dps promoter [15,36].

The VCO139 protein is strongly induced by exposure to H2O2 in Vibrio cholera [23].
This protein encodes a Dps homologous protein and is ROS-resistant. Furthermore, the
expression of Dps is regulated by OxyR and RpoS during the exponential and stationary
phases, respectively. Additionally, although this Dps can be expressed in the absence of
H2O2, it is dramatically induced in the exponential growth phase but less induced in the
stationary growth phase under H2O2. The involvement of Dps in the response to various
environmental stressors has also been reported. For example, exposing the ∆dps strain to
high iron levels during starvation decreases the number of viable ∆dps cells compared with
that in the wild type. These data suggest that Dps is vital for the survival of bacteria in
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starved cells because of its reaction to ROS and its involvement in iron toxicity tolerance.
Interestingly, Campylobacter jejuni Dps has an unusually high temperature tolerance, and its
DNA-binding activity is activated by Fe2+. However, this DNA interaction can be inhibited
by NaCl and Mg2+ [23,37]. In the case of the N2-fixing multicellular cyanobacterium Nostoc
punctiforme, its genome contains five Dps genes involved in differential stress responses.
For example, NpDps2 is the primary Dps involved in the light-induced oxidative stress
response, and NpDps5 is involved in Fe2+ homeostasis. Furthermore, different NpDps are
cooperatively activated for photosynthesis, N2 fixing, and stress response specificity [38].
In the hyperthermophilic crenarchaeon Sulfolobus solfataricus, Dps is directly induced by
H2O2 treatment and Fe2+ depletion [20].

However, the expression of dps in D. radiodurans is repressed by OxyR, which contains
one cysteine residue [39]. D. radiodurans possesses two Dps: 207 amino acid (aa)-long
DrDps1 (DR2263) and 241-aa-long DrDps2 (DRB0092). DrDps1 and DrDps2 share only 16%
amino acid sequence identity. However, both proteins have a typical dodecameric structure
that forms a hollow spherical cavity [40]. The N-terminal region of DrDps1 contains a
metal-binding site for iron and zinc, which is thought to be essential for regulating DNA–
DrDps1 binding [41–44]. The first 30 amino acid residues of DrDps2 are thought to be
signal peptides; therefore, this protein is likely located at the cell periphery and is protected
from exogenous ROS in D. radiodurans [40,42]. Stress generation and H2O2 during the
exponential cell growth phase can alter the oligomeric formation of DrDps1, which appears
to be related to manganese homeostasis and ROS detoxification. However, H2O2 causes
the accumulation of DrDps2 in its dodecameric cage form in the stationary phase, which
could be considered a typical Dps response [40,44]. Furthermore, Dps can aggregate and
remove metal ions that are known to be harmful to bacteria and humans. Therefore, the
primary goal of our research is understanding the functional behaviour of Dps and Dps-like
proteins in D. geothermalis for the industrial application of Dps.

Here, we focused on a putative Dps, Dgeo_0257, in D. geothermalis to compare the
functional roles of the typical Dps response. Both Dgeo_0257 and Dgeo_0281 (DgDps1)
were characterised using conformational analysis. Additionally, we evaluated the effect
of different metal ions on the DNA-binding capacity of these proteins, as well as on cell
growth/viability under H2O2 treatment. Furthermore, qRT-PCR analysis was conducted
to characterise the expression of the two Dps genes at different growth phases during
oxidative stress. Collectively, our findings indicate that the functions of the Dgeo_0257
protein are consistent with those of DNA-binding Dps in D. geothermalis, and its roles
likely differ somewhat from those of DgDps1. However, the regulatory role of this protein
remains speculative; therefore, additional studies are required to characterise its function
in D. geothermalis.

2. Results
2.1. Characteristics of Amino Acid Sequences of a Putative Dps Dgeo_0257 and DgDps1

D. geothermalis possesses a 222-aa-long Dps1 orthologous gene (dgeo_0281) with 76.3%
amino acid sequence identity to DrDps1 but lacks a gene equivalent to DrDps2 (Figure 1A).
The putative Dps of the 200-aa-length Dgeo_0257 shared 65.5% amino acid sequence
identity with the orthologous protein DR0582 as a hypothetical protein of D. radiodurans
(Figure 1B). Both proteins exhibited different positions of a putative HTH domain in helices
4 and 5, according to Prabi prediction (http://www.prabi.fr/, accessed on 10 August 2022).
Dgeo_0257 shared over 90% identity with a 194-aa DNA-binding protein from several
Deinococcus genomes, including D. apachensis, D. metallilatus, D. aerius, and D. phoenicis.
The D. marmoris genome contains two Dgeo_0257-like proteins that are 205 and 210 aa
long, with 71% and 69% identities, respectively. However, despite the occurrence of these
well-conserved specific proteins among the members of the genus Deinococcus, Dgeo_0257
has not yet been characterised and exhibited only 11.5% amino acid sequence identity
with Dgeo_0281, a DgDps1 with ferroxidase activity (Figure 1C). At present, we cannot
determine whether DgDps1 and Dgeo_0257 are convergent evolutionary products and
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have the same ancestor. Therefore, gene disruption and protein purification experiments
should be conducted to determine the functional roles of Dgeo_0257, a DNA-protecting
Dps lacking a conserved ferroxidase centre, compared with DgDps1.
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Figure 1. Comparison of amino acid sequences between DrDps1 and DgDps1 (Dgeo_0281) (A), a
putative Dps Dgeo_0257 of D. geothermalis and a hypothetic protein DR0582 of D. radiodurans with
65.5% identity (B) and between DgDps1 and Dgeo_0257 with 11.5% identity (C). The secondary
structure of the helix (A,B) and the ferroxidase active centre of DgDps1 with red boxes are marked
(A,C). The conserved ferroxidase active centre is missing in Dgeo_0257 (C). Red words indicate the
DNA-binding domains (HTH) predicted by Prabi (https://npsa-prabi.ibcp.fr/ accessed on 10 June
2022). The secondary structure of Dgeo_0257 was predicted by Jpred 4 (http://www.compbio.
dundee.ac.uk/jpred4/ accessed on 1 June 2022).
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2.2. Purification and Conformation of Dgeo_0257 and DgDps1 Proteins

Dgeo_0257 and DgDps1 proteins were overexpressed in E. coli by attaching C-terminal
histidine tags, after which the proteins were purified by affinity chromatography using
an Ni-NTA column. The profiles of Dgeo_0257 and DgDps1 proteins with a 6× His-tag
were obtained using SDS-PAGE. Both proteins were induced using 1 mM isopropyl β-D-
1-thiogalactopyranoside (IPTG); see Figure S1. The molecular weights of the Dgeo_0257
and DgDps1 monomers were approximately 23 kDa and 26 kDa, respectively. However,
SDS-PAGE analysis revealed that Dgeo_0281 was over 30 kDa. Dgeo_0257 and DgDps1
proteins were purified at approximately 90% purity after Ni-NTA affinity chromatography
per litre of culture in the first stage of the one-step purification process at 5 mg and 20 mg,
respectively (Figure S2).

Proteins of various sizes were collected and confirmed using gel filtration. Dgeo_0257,
a 23 kDa monomer with His-tag, was expected to form a 12-mer or 24-mer polymer or a
sphere of 240 kDa or 480 kDa, similar to DrDps1 and DrDps2 of D. radiodurans [40]. Gel
filtration analysis results indicated that the intact protein elution times of Dgeo_0257 were
20.25 and 23.34 min, which may correspond to two multimeric conformations, despite
the Superdex 75 column being limited to efficiently correlate until a 70 kDa separation
range; a 440 kDa size marker revealed a 21.39 min elution peak. However, the elution
peaks of DgDps1 were exhibited at 25.04 and 28.32 min, which suitably corresponded to
the dimer and monomer forms (Figure S2). The conformation did not affect the elution
of the Dgeo_0281 protein in the presence of 1 mM iron. However, the elution fraction of
Dgeo_0257 fully or partially moved to the posterior region when 1 mM Fe2+ or Fe3+ was
present. Therefore, Dgeo_0257 protein conformation was altered by the iron redox state in
multimeric forms but did not exhibit dimeric or monomeric forms. The conformational
changes in Dgeo_0257 need to be precisely defined by gel filtration using a Superdex
200 column and physical gradient analysis using sucrose density.

2.3. DNA-Binding and Protection Properties of Dgeo_0257 and DgDps1 Proteins

In general, bacterial Dps have nonspecific DNA-binding activity [14,15]. To confirm
this phenomenon, we performed electrophoretic mobility shift assay (EMSA) detection
using 6% native polyacrylamide gel electrophoresis with a ca. 250-nt-length promoter
and an open reading frame (ORF) region. Both Dgeo_0257 and DgDps1 showed distinct
DNA-binding affinities and DNA–protein complex positions with two different DNA
fragments of the promoter and ORF regions of randomly selected Dgeo_2112 (Figure 2).
The DNA–protein complex was in a super-shifted position in Dgeo_0257 (Figure 2A).
However, the DNA–protein complex in DgDps1 was at a lower position (Figure 2B). The
unique DNA-binding affinity of the two putative Dps was identified through half-maximal
DNA–protein complex formation. The DNA-binding activity of Dgeo_0257 was over
five-fold higher than that of DgDps1: the Dgeo_0257 protein required a concentration of
10 µM for complete shift-up migration, whereas DgDps1 required a protein concentration
of >60 µM for full DNA binding. Interestingly, the DNA-binding behaviour of Dgeo_0257
and DgDps1 differed between the promoter and ORF regions. Treatment with Fe2+ at
0.2 and 1 mM resulted in complete release of the promoter region DNA from the Dgo_0257
and DgDps1 protein–DNA complexes, respectively. However, Dgeo_0257 exhibited free
DNA and a lower position band, whereas DgDps1 showed better binding to the ORF
region DNA at a lower position (Figure 2). To compare the effects of Fe2+ and Fe3+ on
DNA–protein complex formation, the constant concentrations of Dgeo_0257 and DgDps1
protein were treated with 10 µM and 30 µM, respectively, and increasing amounts of iron
ions were applied (Figure 2C,D). Dgeo_0257–DNA complexes dissociated at 0.2 mM and
1 mM, and DgDps1–DNA complexes dissociated at 1 mM and 3 mM of Fe2+ and Fe3+,
respectively. Interestingly, although 5 mM Fe3+ completely released free DNA, increasing
the concentrations of Fe2+ affected the stability of free DNA. In DNA protection of both
Dgeo_0257 and DgDps, after free DNA was released from the DNA–protein complexes, the
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free DNA gradually disappeared at 1.0 mM and 3 mM of Fe2+ on the ORF regions (lanes
8–10 in Figure 2C).
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Figure 2. EMSA of Dgeo_0257 (A) and DgDps1 (B) on both promoter and ORF regions with increasing
protein concentration. Dgeo_0257 and DgDps1 were treated with 0.2 mM and 1.0 mM ferrous ion
concentration at lanes 6–10, respectively. Lane 1, free DNA; lanes 2–5, increased amounts of purified
Dgeo_0257 and DgDps1 proteins (2.5–10 µM and 15–60 µM, respectively). Comparison of differential
concentrations of ferrous ions (C) and ferric ions (D) on ORF and promoter regions, respectively.

To examine the DNA-protective activity of Dps, we found that free DNA was no longer
detectable in the presence of 0.5 mM of Fe2+ (Figure 3). This was because unprotected naked
DNA was damaged and degraded owing to oxidative stress through Fenton reactions,
which led to the production of hydroxyl radicals from ferrous ions or ferrous ions plus
H2O2 mixtures (lanes 2, 6, and 10 in Figure 3). However, the DNAs were well protected
from oxidative stress with the addition and increased levels of Dgeo_0257 and DgDps1
proteins (lanes 4, 5, 8, and 9 in Figure 3). Therefore, Dgeo_0257 and DgDps of D. geothermalis
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are DNA-binding proteins with nonspecific DNA sequence targets that possess distinct
patterns with Fe2+ in both the promoter and ORF regions. More importantly, these proteins
protect DNA from oxidative stress reactions induced by H2O2 treatment.
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reactions. Lane 1, free DNA; lane 2, only 0.5 mM Fe2+; lanes 3 and 7, both proteins added with
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2.4. Effect of Metal Ion Sensing on the DNA-Binding Activity of a Putative Dps Dgeo_0257
and DgDps1

Next, we sought to characterise the effects of various metal ions on Dps–DNA-binding
activity (Figure S3). With increased Fe2+ concentrations, the DNA–protein complex did not
maintain a complex form, and free DNAs were released from both Dgeo_0257 and DgDps1–
DNA complexes at Fe3+ levels exceeding 1 mM and 3 mM, respectively (Figure 2C,D).
Similar to Fe2+, Fe3+ induced similar DNA-releasing activity, albeit at more than 2–3-fold
higher concentrations (Figure 2D). Free DNA was drastically degraded by high concentra-
tions of Fe2+ (lanes 9 and 10 in Figure 2C). Interestingly, as the concentrations of manganese
and zinc ions increased to 5 mM, the DgDps1 and Dgeo_0257 proteins much better bound
to DNA, which further stabilised DNA binding (Figure 4). Interestingly, in the presence of
more than 2 mM of Mn, a novel DgDps1 protein–DNA complex was observed (Figure 4).
The reaction with manganese was consistent with previous reports from different research
groups [41,42]. However, to the best of our knowledge, this study is the first to characterise
the effect of zinc on DNA-binding stabilisation. Lead, cobalt, and copper did not affect
DNA-binding activity (Figure S3). However, DNA-binding activity varied with chromate
and caesium, depending on the metal ion concentration. The DgDps1 protein showed
fluctuating patterns, depending on the specific concentrations of caesium (Figure S3D). In
contrast, caesium did not affect the DNA-binding activity of Dgeo_0257 but chromate did in
a concentration-dependent manner. DgDps1 was released from the DNA–Dps complex by
chromate at over 0.1 mM. Therefore, although the amino acid sequence, conformation, and
DNA-binding affinity equivalence between the putative Dps Dgeo_0257 and DgDps1 were
quite different, both proteins exhibited similar DNA-binding behaviours in the presence of
metal ions, except for caesium and chromate.
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Figure 4. EMSA of Dgeo_0257 and DgDps1 maintaining a protein concentration of 10 µM and 30 µM,
respectively, while increasing the metal ion concentration of manganese (A) and zinc (B).

2.5. Physiological Properties of Dps-Gene-Disrupted Mutants

The disrupted mutant strains of a putative Dps dgeo_0257 and dgeo_0281 (∆dgeo_0257
and ∆dgeo_0281) were constructed by homologous recombination and kanamycin-resistant
selection in our previous study [45]. The ∆dgeo_0257 mutant strain adapted well to 100 mM
but did not grow at 120 mM, although the DgDps1-deficient strain (∆dgeo_0281) exhibited
higher sensitivity (Figure 5A). In the absence of oxidative stress, the two mutant strains
showed an almost identical growth pattern (Figure 5B). This means that both DgDps1
and putative Dps dgeo_0257 genes are not essential. Following direct H2O2 treatment
experiments, the WT and two Dps-gene-disrupted mutants were treated with 100 mM
H2O2 before reaching OD600 = 0.5 in direct measurements, and all strains did not grow
(Figure 5B). In the mid-exponential growth stage (OD600 = 1.47 in direct measurements),
each strain showed different levels of growth inhibition upon treatment with 100 mM
H2O2 (Figure 5C). The viability test was performed to confirm the oxidative stress response
among the wild-type and ∆dgeo_0257 and ∆dgeo_0281 mutant strains after treatment with
H2O2 at different concentrations (80, 100, and 120 mM). The WT strain grew well even
in 120 mM H2O2, whereas the ∆dgeo_0281 mutant strain showed a slight decrease in
viability at 80 mM, and cells did not grow above 100 mM H2O2. As expected, the comple-
mented strains for dps-deficient mutants overcame growth inhibitions, and the viability
assay under H2O2 treatment exhibited a rescue in the ∆dgeo_0281 complementary strain
(Figure S4). Therefore, our findings confirmed that both Dps-related proteins participate in
the antioxidation reaction.
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Figure 5. (A) Viability against H2O2 treatment at 80, 100, and 120 mM for 1 h was tested. Comparison of
growth patterns among wild-type, ∆dgeo_0257, and ∆dgeo_0281 mutant strains. Growth was completely
inhibited by 100 mM H2O2 at two different OD600 values of 0.5 (B) and 1.47 (C) in wild-type and
∆dgeo_0257 and ∆dgeo_0281 mutant strains. The OD values were determined by direct measurement.

2.6. Expression Levels of Dgeo_0257 and DgDps1 Genes through Antiparallel Influence in a
Growth-Phase-Dependent Manner

Experiments were performed to compare the expression levels of both dps genes
dgeo_0281 (DgDps1) and dgeo_0257 in the wild-type strain and ∆dgeo_0257 and ∆dgeo_0281
mutants, respectively. The expression level of dgeo_0257 at OD600 2.0 in the wild-type
strain was used as the control. In the early stages of growth of wild-type D. geothermalis,
DgDps1 was highly upregulated (over a 150-fold increase); however, DgDps1 levels de-
creased sharply as the growth phase progressed. Furthermore, H2O2 did not dramatically
affect the expression of DgDps1 during the growth phase. However, the expression of
DgDps1 was enhanced at an OD600 of 4.0 in the presence of H2O2 (Figure 6A). Moreover,
the expression level of dgeo_0257 gradually increased (2.46-fold increase) when the cells
reached the stationary phase. Dgeo_0257 expression reached its maximum (11.63-fold
increase) after treatment with 50 mM H2O2 at an OD600 of 4.0 (Figure 6B). Therefore, we
concluded that DgDps1 plays a significant role in the early exponential growth phase
without oxidative stress. Furthermore, both DgDps1 and Dgeo_0257 were highly expressed
under oxidative stress, particularly Dgeo_0257 in the late exponential growth phase, and
both were expressed with an antiparallel influence on a growth-phase-dependent manner
in the absence of oxidative stress in D. geothermalis.
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Figure 6. Expression levels of both DgDps1 (dgeo_0281) (A,C) and a putative Dps (dgeo_0257) (B,D)
in the presence or absence of 50 mM H2O2 in the wild-type strain and in ∆dgeo_0257 and ∆dgeo_0281
mutants at three different growth phases, OD600 2.0, 4.0, and 8.0, by qRT-PCR analysis, respectively.
The probability t-test was considered significant at p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), and
p < 0.0001 (****).

The ∆dgeo_0257 mutant showed a half-maximum expression level of DgDps1 (60.69-
fold increase) at the beginning of the growth phase. However, these levels gradually
decrease in the absence of oxidative stress. Moreover, the expression level of DgDps1
increased two-fold at both OD600 4.0 and 8.0 under oxidative stress conditions (Figure 6C).
Thus, DgDps1 takes over the role of Dgeo_0257 during the growth phase because of the
absence of dgeo_0257 under oxidative stress, which may be involved in DNA protection. In
contrast, the ∆dgeo_0281 mutant exhibited higher Dgeo_0257 expression (more than 10-fold)
than the wild type at OD600 2.0. Thus, we inferred that Dgeo_0257 expression increased
to compensate for the absence of dgeo_0281 until an OD600 of 4.0 was reached (Figure 6D).
The antiparallel expression of both Dps genes in each gene-deficient mutant reduced in
complementary strains under oxidative stress (Figure S5). Therefore, the expression of
DgDps1 and Dgeo_0257 appears to depend on that of other DNA-protecting and ROS-
scavenging proteins to ensure cell survival under oxidative stress conditions. In this way,
one gene compensates for the changing expression patterns of the other genes throughout
the different growth phases in D. geothermalis.

3. Discussion

Dps is a known DNA-binding protein without sequence specificity [15]. However,
Chip-seq analysis demonstrated that E. coli Dps combines with genomic DNA in a non-
random manner [46]. DgDps1 (Dgeo_0281) and Dgeo_0257 also exhibit different DNA-
binding specificities in the selected promoter and ORF regions (Figures 2 and 4). Owing to
the self-assembly and DNA-binding properties of Dps in solution, these proteins become
extensively agglomerated through co-crystallisation and general defence mechanisms [47].

Dps forms a dimer or dodecamer structure and binds to DNA [48]. The oligomeric
states of the DrDps1 protein of D. radiodurans change depending on the growth phase
and presence of DNA. This suggests that the oligomeric forms and functional roles of
DrDps1 may adapt to environmental changes [49]. In contrast, the DrDps2 oligomeric form
maintains a dodecameric structure without affecting the surrounding environment. DrDps2
is thought to be more selective towards iron, depending on the cellular environment, and is
involved in intracellular metal storage [40,42]. In this study, the protein form of Dgeo_0281
(DgDps1), the homologous protein of DrDps1, was not identified in its dodecameric form.
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Instead, this protein exhibited a dimeric structure according to gel filtration and EMSA tests
(Figure S2B and Figure 2B). The DNA-binding affinity was Kd > 40 µM, which was half the
maximum of the nonspecific DNA sequence. Interestingly, the putative Dps Dgeo_0257
showed higher DNA affinity than DgDps1, with a Kd value of <4 µM. EMSA showed
that the Dgeo_0257–DNA complex was located near the upper pocket of the gel, unlike
DgDps1 found below (Figure 2A). Furthermore, the two proteins Dgeo_0257 and DgDps1
exhibited similar electrophoretic shifts with DNA in the presence of all metal ions evaluated
herein, except for caesium and chromate, as demonstrated by EMSA (Figure S4D,E). Thus,
additional studies are required to analyse the effects of metal ions on the protein structure
and DNA binding.

Therefore, we now focused on determining whether Dgeo_0257 and DgDps1 can react
with these heavy and harmful metal ions. When manganese and zinc ions were present,
both DgDps1 and Dgeo_0257 exhibited more stabilising DNA binding for DNA protection.
This correlates well with Daly’s hypothesis that manganese acts as an antioxidant [5,6]. The
behaviour of zinc ions as inducers of gene expression of the RDR regulon was exhibited
by DdrO cleavage by an activated metalloprotease IrrE [50]. However, in the presence of
zinc ions, both Dps had enhanced DNA-binding capacity (Figure 4). Owing to their ability
to act as protein cages for iron and various other metals, Dps-like proteins have recently
garnered increasing attention in the field of nanotechnology [8,13].

We previously conducted RNA-seq to define the functional roles of the putative
Dps Dgeo_0257 (NCBI GEO accession number GSE151903) [45]. Interestingly, 36 pro-
teins/enzymes and ISDge5 transposases were upregulated, and 19 genes were downregu-
lated. Based on these results, we concluded that the putative Dps Dgeo_0257 is involved
in specific gene regulation, as well as DNA protection and stabilisation under oxidative
stress conditions.

This study was conducted under the assumption that DgDps1 shares similar char-
acteristics with existing Dps, and Dgeo_0257 has similar Dps characteristics and lacks a
ferroxidase active centre. Interestingly, both Dgeo_0257 and DgDps1 proteins showed
similar metal ion sensing. However, the putative Dps Dgeo_0257 exhibited a six-fold
higher DNA-binding affinity and higher metal ion sensitivity than DgDps1 (Figure 2).
Our findings suggest that Dgeo_0257 and DgDps1 proteins are responsible for intracel-
lular DNA protection and detoxification of harmful iron in a growth-phase-dependent
manner. The expression of DgDps1 was dominant during the early exponential growth
phase and was not induced during the stationary growth phase in the absence of H2O2. In
the presence of H2O2, DgDps1 levels in the Dgeo_0257-disrupted mutant were gradually
induced by cell growth. However, Dgeo_0257 was sensitive to H2O2-induced oxidative
stress and was induced in the early exponential growth phase when the dominantly ex-
pressed DgDps1 was absent (Figure 6). Therefore, we propose that Dgeo_0257 is a putative
Dps DNA-protecting protein in D. geothermalis and plays antiparallel protection functions
to that of DgDps1. Additional studies are required to characterise the Dps function and
conformational structure of Dgeo_0257, as well as its role in network regulation through
redox-sensing regulators and signalling molecules in D. geothermalis.

4. Materials and Methods
4.1. Bacterial Strains and Culture Condition

The D. geothermalis KACC 12208 strain derived from DSM 11300 T was obtained from
the Korean Agricultural Culture Collection (KACC, http://www.genebank.go.kr; accessed
on 21 December 2008). The Dps gene-disrupted mutants ∆dgeo_0257 and ∆dgeo_0281
were constructed in a previous study via homologous recombination of the contiguous
regions of the kanamycin resistance gene in the pKatAph3 vector to determine cell viability
and growth patterns, as well as to conduct RNA-seq analysis (Tables S3 and S4) [45,51].
Complemented strains, including a shuttle vector for gene expression, were constructed
in this study. The genes encoding Dgeo_0257 were recombined into the shuttle vector
pRadgro and transformed into each gene-deficient strain [52].

http://www.genebank.go.kr
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E. coli DH5α was routinely used for cloning and protein purification procedures.
E. coli strains containing cloned recombinant plasmids were cultivated in LB broth medium
containing 100 µg/mL of ampicillin at 37 ◦C. For protein expression at the late exponential
phase (ca. OD600 0.8, directly measured), the lac promoter of E. coli cells was induced
with 1 mM IPTG (final concentration) and continuously cultured for 4 h. After this 4 h
induction, the culture was centrifuged at 5000 rpm for 20 min and the supernatants were
discarded. The pellets were stored at −70 ◦C until required for downstream experiments.
D. geothermalis was cultured at 48 ◦C in TGY medium containing 1% tryptone, 0.5% yeast
extract, and 0.1% glucose at 48 ◦C. E. coli cells were cultured at 37 ◦C in Luria-Bertani (LB)
medium (MB Cell, Kisan Bio, Seoul, Republic of Korea) containing 1% tryptone, 0.5% yeast
extract, and 1% NaCl.

4.2. Construction of an Expression Vector for Dgeo_Dps Genes

The dgeo_0257 and dgeo_0281 genes were constructed and amplified using the PCR
products encompassing both genes with different restriction enzyme sequences, double-
digested with NcoI and BglII for dgeo_0257 and with NcoI and BamHI for dgeo_0281, and
ligated into the pCS19 vector to obtain carboxyl-terminal His-tag versions of the target
proteins (Table S1). Next, the recombinant plasmids were transformed into E. coli DH5α
competent cells using the CaCl2 chemical transformation method. The transformants
were then selected on a 100 µg/mL ampicillin-containing plate. Correct construction
was detected using colony PCR with appropriate gene-specific primer pairs and finally
determined by DNA sequence analysis using an ABI 3730xl capillary electrophoresis
sequencing system (Macrogen, Seoul, Republic of Korea).

4.3. Purification of the Putative Dps Protein (Dgeo_0257) and DgDps1 (Dgeo_0281)

Cell pellets stored in a −70 ◦C freezer were resuspended with 5 mL lysis buffer
(300 mM NaCl, 50 mM NaH2 PO4, pH 8.0, and 10 mM imidazole) per pellet obtained from
250 mL. Cell membranes were broken using a French pressure cell press (with 7000 psi;
Vision Biotech, Gimpo, Republic of Korea) or an ultra-sonicator (30% maximum potency
20 s on and 40 s off for three cycles, followed by 21% maximum potency; CV334 ultrasonic
processor; Sonics & Materials Inc., Newtown, CT, USA). Following cell lysis, the samples
were centrifuged at 5000 rpm for 20 min, and the supernatants were collected for further
testing. Over-expressed C-terminal His-tagged target proteins were purified using nickel-
nitrilotriacetic acid (Ni-NTA; Qiagen, Hilden, Germany) resin column chromatography.
After equilibrating the Ni-NTA resin column with lysis buffer, the sample solution was
loaded and the pass-through was collected. Next, 10–20 mL of washing buffer (300 mM
NaCl, 50 mM NaH2 PO4, pH 8.0, 20 mM imidazole) was added. Finally, 10 mL of elution
buffer (300 mM NaCl, 50 mM NaH2 PO4, pH 8.0, 250 mM imidazole) was poured into
the resin column to recover the target proteins. Protein production was then confirmed
using Bradford assay, after which the target protein profiles were characterised via 12%
SDS–polyacrylamide gene electrophoresis (PAGE). Electrophoresis was performed in 1×
tank buffer (25 mM Tris, pH 8.3, 192 mM glycine), after which the gel was placed in
staining buffer with 0.1% Coomassie Blue R250 in 10% acetic acid, 50% methanol, and
40% distilled water (DW) for at least 3 h (usually left overnight). Destaining (10% acetic
acid, 50% methanol, and 40% DW) was performed to visually confirm the protein bands
of interest. Protein dialysis was performed using a cellulose tubular membrane (CelluSep
H1; Membrane Filtration Products Inc., Seguin, TX, USA) with 1x dialysis solution (25 mM
Tris, pH 7.5, 150 mM NaCl). The membrane was placed in 1 L of dialysis solution and was
rotated to ensure that it was fully submerged in the buffer for 1 h. The process was repeated
three times, after which the protein concentration was determined following the VivaSpin-6
manufacturer’s guidelines (7000 rpm for 15–20 min; Sartorius, Göttingen, Germany).
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4.4. Determination of Protein Conformation by Gel Filtration

Size-exclusion chromatography (SEC) was performed using the BioLogic HR Chro-
matography system (Bio-RAD, Hercules, CA, USA) with a HiLoad 16/600 Superdex 75 prep
grade column (GE Healthcare Life Sciences, Chicago, IL, USA). The SEC column was filled
with a running buffer solution (25 mM Tris-HCl, pH 7.5, 150 mM NaCl) to separate the
molecules adhered throughout the resin loaded in the column. The buffer was then passed
through the column at a 2.0 mL/min flow rate for 2 h. Protein size markers, including
ferritin (440 kDa), conalbumin (75 kDa), ovalbumin (43 kDa), and anhydrase from erythro-
cytes (29 kDa), were loaded first, followed by the purified proteins at a 0.5 mL/min flow
rate for 1 min (Sigma-Aldrich, St. Louis, MO, USA). The running buffer was then drained
at a 2.0 mL/min flow rate for 1 h and dispersed in the fraction collector. Aliquots of critical
parts that exceeded pre-established threshold values were collected, concentrated with a
VivaSpin-6 protein concentrator column, and used in downstream experiments.

4.5. Electrophoretic Mobility Shift Assay (EMSA)

Both the promoter and open reading frame (ORF) regions of Dgeo_2112 as a hypothetic
protein were amplified from D. geothermalis genomic DNA by PCR using forward and re-
verse primer sets. For the promoter region, the forward and reverse primer sequences were
“ATCCTTCGCTCTCGTTGGAA” and “TTTTGGTGGAGACAGGCAGA”, respectively. For
the ORF region, the forward and reverse primer sequences were “TGTTAAGCCGTTCAAC-
CCGA” and “TTCAAACTGGGTCGGCAACA”, respectively. For EMSA, DNA probes
approximately 250 nucleotides in length were purified using the AccuPrep® PCR purifica-
tion kit (Bioneer, Daejeon, Republic of Korea). Specific amounts of DNA and Dgeo_0257
protein were mixed in 5× EMSA binding buffer (100 mM Hepes (pH 7.2), 160 mM KCl,
0.5 mM EDTA (pH 8.0), 50% glycerol, 350 ng/µL of BSA, 40 ng/µL of poly(dl-dC), 12.5 mM
DTT) in 10 µL volumes. The prepared metal ions included Fe (II) from ammonium iron (II)
sulphate hexahydrate, (NH4)2 Fe(SO4)2.6H2 O (Sigma-Aldrich, St. Louis, MO, USA), and
Fe (III) from ammonium iron (III) citrate, C6H8O7.Fe.NH3 (Sigma-Aldrich, St. Louis, MO,
USA), in addition to other metal ions, including Zn (II), Mn (II), Cr (VI), Co (II), Cu (II), Cs,
and Pb (II). The DNA–protein-binding reactions were performed at 37 ◦C for 30 min and
loaded onto 6% native polyacrylamide gels buffered in 0.5× Tris-borate-EDTA (TBE). After
conducting PAGE at 60 V for 120 min, the DNA in the gels was stained with SYBRTM Gold
nucleic acid gel staining solution (Life Technologies Co., Carlsbad, CA, USA). The band
positions and intensities were then detected using a Chemi-Doc imaging system (Bio-RAD,
Hercules, CA, USA).

4.6. qRT-PCR Analysis of Wild-Type and ∆dgeo_0257 and ∆dgeo_0281 Mutant Strains at
Different Growth Phases

After overnight incubation, both wild-type and dps-disrupted mutant strains were
pre-cultured. Afterwards, 5 mL of TGY broth was adjusted with differential inoculation
sizes based on the delayed growth patterns of the mutant strains (approximately 1 h). After
3 h, optical density measurements were performed at OD600, adjusted to an OD600 value of
0.06, and the main culture was started in 50 mL of TGY. Upon reaching an OD600 value of
2.0, 4.0, and 8.0, the samples were centrifuged in 5 mL, 2.5 mL, and 1.25 mL, respectively, to
match the cell numbers, after which the supernatants were discarded, and the cell pellets
resuspended in 5 mL of 0.9% NaCl and then treated with 50 mM H2O2 for 30 min. After
the H2O2 challenge, the samples were centrifuged at 10,000 rpm for 5 min and washed
once more with 0.9% NaCl. The supernatants were discarded, and the pellets were stored
at −20 ◦C. Samples without H2O2 treatment were used as a control.

The cell wall was broken using phenol to determine the gene expression level. DNA
digestion was performed using DNase I, and RNA was extracted using an RNA prep kit
for RNA cleanup (RNeasy mini purification kit; Qiagen, Germany). After measuring the
extracted RNA concentration, the concentration was normalised to 1000 ng in 8 µL volume
for all samples. cDNA synthesis was performed with a dNTP mixture and 6-mer random
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primers using the following protocol: 60 ◦C for 5 min, 4 ◦C for 3 min, 30 ◦C for 10 min,
42 ◦C for 60 min, and finally 95 ◦C for 5 min (PrimeScriptTM 1st strand cDNA Synthesis
Kit; TaKaRa, Japan). In the step at 4 ◦C for 3 min, 4 µL of 5× buffer, 4.5 µL of RNase free
water, 1 µL of RTase, and 0.5 µL of RNase inhibitor were added. Each dgeo_0257- and
dgeo_0281-specific primer pair was then added to the obtained cDNA. qRT-PCR analysis
was performed using TB Green® Premix Ex TaqTM (TaKaRa, Osaka, Japan) on a Bio-RAD RT-
PCR model CFX96 TM Optics Module (Bio-RAD, Hercules, CA, USA). The expression of the
target genes was normalised to that of GAPDH, a constitutively expressed gene throughout
all growth phases. The related expression levels of both dps genes were calculated, as
described in a previous study [41]. Differences between samples were determined via
Student’s t-test using PrismTM ver. 8.0 software. Differences were deemed statistically
significant at p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****).

5. Conclusions

Dps has a general DNA-protective role under oxidative stress conditions in various
prokaryotes. Dps forms multifaceted structural conformations for Fe3+ sequestration,
resulting in detoxification against the cellular Fenton reaction and homeostasis of Fe3+

and others (Figure 7). Here, we characterised DgDps1 (Dgeo_0281) and a putative Dps
candidate protein from the radiation-resistant bacterium D. geothermalis. The putative Dps
Dgeo_0257 has 10-fold higher DNA-binding activity than DgDps1, and the presence of
Fe3+ and Fe2+ results in DNA release, with similar behaviour to DgDps1. In the presence
of manganese and zinc ions, both DgDps1 and Dgeo_0257 exhibit more stable DNA bind-
ing for DNA protection. Both DgDps1 and Dgeo_0257 are antiparallelly expressed in a
growth-phase-dependent manner in the absence of H2O2 conditions. Notably, DgDps1 is
dominant in the early growth phase, and Dgeo_0257 is gradually induced from the early
phase to the stationary phase. However, when 50 mM H2O2 is present, their expression
ratios are enhanced in each other’s gene-deficient mutant: DgDps1 is drastically induced
at the stationary phase in the Dgeo_0257-deficient mutant, and Dgeo_0257 is strongly
induced at the exponential growth phase in the DgDps1-deficient mutant. Therefore, the
transcriptional regulation of both Dps is growth-phase-dependent and complementary to
each other.
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