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Abstract: Staphylococcus aureus is a common human commensal pathogen that causes a wide range
of infectious diseases. Due to the generation of antimicrobial resistance, the pathogen becomes
resistant to more and more antibiotics, resulting in methicillin-resistant S. aureus (MRSA) and even
multidrug-resistant S. aureus (MDRSA), namely ‘superbugs’. This situation highlights the urgent need
for novel antimicrobials. Bacterial transcription, which is responsible for bacterial RNA synthesis,
is a valid but underutilized target for developing antimicrobials. Previously, we reported a novel
class of antimicrobials, coined nusbiarylins, that inhibited bacterial transcription by interrupting
the protein–protein interaction (PPI) between two transcription factors NusB and NusE. In this
work, we developed a ligand-based workflow based on the chemical structures of nusbiarylins and
their activity against S. aureus. The ligand-based models—including the pharmacophore model, 3D
QSAR, AutoQSAR, and ADME/T calculation—were integrated and used in the following virtual
screening of the ChemDiv PPI database. As a result, four compounds, including J098-0498, 1067-0401,
M013-0558, and F186-026, were identified as potential antimicrobials against S. aureus, with predicted
pMIC values ranging from 3.8 to 4.2. The docking study showed that these molecules bound to NusB
tightly with the binding free energy ranging from −58 to −66 kcal/mol.

Keywords: Staphylococcus aureus; ligand-based drug design; pharmacophore; QSAR; virtual screening

1. Introduction

Staphylococcus aureus (S. aureus) is a common pathogen which can cause multiple
infectious diseases, such as skin and soft tissue infections, pneumonia, and sepsis [1]. It is
estimated that 20~40% of the general population possesses S. aureus in their nasal mucosa
commensally [2]. Standard treatment of staphylococcal infections relays on the use of
β-lactamase-stable penicillins such as flucloxacillin [3]. However, over the past years, there
has been an increasing rate of methicillin-resistant S. aureus (MRSA) colonization and infec-
tions that have become a severe risk to global health [4]. Since its first description in 1960s,
many countries experienced outbreaks of MRSA in hospitals (healthcare-associated MRSA,
HA-MRSA) [5]. Subsequently, community-associated MRSA, (CA-MRSA), which was
detected in individuals without previous healthcare contact, was observed in 1980s. In the
mid-2000s, livestock-associated MRSA was reported [5]. With the emergence of MRSA, the
treatment options become limited. In 2017, World Health Organization (WHO) published
a priority list of bacteria for which novel antibiotics are urgently required [6], in which
S. aureus was included as a pathogen with high priority to develop specific antimicrobials.

Besides antimicrobial resistance, lacking innovation in antibiotic discovery is also of
concern. Since 2017, only 12 antimicrobial drugs have been approved, 10 of which belong
to existing classes with known mechanisms of antimicrobial resistance [7]. Several factors
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are thought to be responsible for the undesirable situation for antibiotic discovery, for
example, unsatisfactory revenue potential from the drug market, and challenges of struc-
tural optimization as most of current antibiotics were derived from natural products with
complicated scaffolds [8]. Therefore, efficient and concerted investments in antimicrobial
research are needed to accelerate and expand antimicrobial pipeline discovery.

Bacterial transcription is a crucial biological process for bacterial survival, where DNA
segments are transformed into RNA molecules (mRNA, tRNA, and rRNA). This process
is proceeded by RNA polymerase (RNAP) and regulated by a number of transcription
factors [9]. The protein–protein interactions (PPI) between RNAP-transcription factor or
factor–factor PPIs are potential targets for antimicrobial drug discovery [10]. Amongst, the
PPI between two bacterial transcription factors NusB and NusE plays an important role in
the formation of antitermination complex with RNAP that prevents premature transcription
termination, particularly for the synthesis of rRNA [11–13]. Moreover, NusB and NusE
are highly conserved and exclusively existing in bacteria [14,15]. A close examination
of NusB-NusE PPI in the protein crystal complex revealed that the major intermolecular
hydrogen bonding interactions occurred and conserved between the interacting helix of
NusE and the binding groove of NusB [16–18]. On the structural basis of the critical contacts
identified, we constructed a structure-based pharmacophore model for in silico screening
of the mini-Maybridge compound library [19], leading to some hits, however, with no
antimicrobial activity or high cytotoxicity in the preliminary study [20,21]. After refining
the pharmacophore model, we discovered the first efficient NusB-NusE PPI inhibitor
MC4, with effective inhibitory activity to NusB-NusE PPI and a minimum inhibitory
concentration (MIC) against S. aureus at 8 µg/mL [22]. The successful development of
high-throughput screening method helped us with the optimization of MC4 [23], which
resulted in the development of a series of derivatives with improved antimicrobial activity
to MICs of 0.5 µg/mL [24–27], comparable to marketed antibiotic drugs. Furthermore, these
compounds demonstrated excellent bioactivity to inhibit the toxin release of S. aureus [28].
As the target of this series of antimicrobials is NusB and these derivatives shared the
common scaffold of biaryl moiety, they were named as “nusbiarylins” thereof (Figure 1).
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Ligand-based drug design (LBDD) refers to a drug discovery method using a set
of chemical structures of conformed ligands of a target without target structure. In the
process of LBDD, molecular similarity approaches, quantitative structure–activity rela-
tionships (QSAR), and pharmacophore models are frequently used [29]. Ligand-based
pharmacophore (LBP) model represents the important conformation required by identify-
ing the largest 3D pattern of features of the inputted ligands to a target. A critical step of
LBP is to identify a ‘bioactive’ conformation of an active molecule so that the remaining
molecules can be aligned. Upon establishment, the model can be used to screen databases
to identify possible hits. Besides LBP, QSAR is another key technique used in LBDD. Based
on the hypothesis that similar structures or substituents may have comparable impacts on
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biological activity, correlations can be given between structures and activity. Therefore, a
QSAR model can be constructed to predict the activity of new compounds from a database
containing the information of structures and bioactivity. A combination of these methods
was a very effective strategy in the discovery of novel drugs [30,31].

PPIs used to be considered undruggable due to large surface and flat binding site.
As PPI inhibitors, the discovery and optimization of nusbiarylins has faced a series of
challenges and taken a considerable time in drug design, hit identification, and lead opti-
mization, which requested the assistance of computer-assisted calculation in each step. The
similar path has been revealed in the discovery of another PPI inhibitor series, sigmacidins,
designed by targeting RNAP-σ PPI [32]. On the basis of assay development [33], we have
used a house-made library to identify hits [34], which were subjected to lead optimiza-
tion [35–39]. Using a drug-like hit compound [40], we have recently improved the lead
structures and antimicrobial activity [41–43].

With the structures of MC4 derivatives and their activity against S. aureus in hand,
we intended to conduct a ligand-based drug discovery workflow to discover novel antimi-
crobials targeting NusB-NusE PPI. Sixty-one molecules were retrieved from our previous
reports [24–26]. Their structures were provided in the supporting information (Table S1),
and their activity against S. aureus were displayed in Table 1.

Table 1. Compounds selected for modeling and their measured and predicted antimicrobial activity
against S. aureus.

Cpd.
MIC

(µg/mL) MW MIC (M) pMIC
3D QSAR AutoQSAR

Predicted pMIC ∆ d Predicted pMIC ∆ d

1 8 260.22 3.07 × 10−5 4.512 4.609 −0.096 4.780 −0.267
2 a 4 260.22 1.54 × 10−5 4.813 4.516 0.297 4.767 0.046
3 8 260.22 3.07 × 10−5 4.512 4.599 −0.086 4.705 −0.192
4 4 256.26 1.56 × 10−5 4.807 4.781 0.026 4.892 −0.086
5 4 256.26 1.56 × 10−5 4.807 4.698 0.108 4.832 −0.025

6 a 4 256.26 1.56 × 10−5 4.807 4.669 0.138 4.895 −0.088
7 4 298.34 1.34 × 10−5 4.873 4.834 0.038 4.936 −0.063
8 4 272.26 1.47 × 10−5 4.833 4.934 −0.102 4.858 −0.025
9 16 272.26 5.88 × 10−5 4.231 4.507 −0.276 4.721 −0.490

10 4 272.26 1.47 × 10−5 4.833 4.971 −0.138 4.863 −0.030
11 a 4 300.27 1.33 × 10−5 4.875 4.862 0.013 4.941 −0.066
12 b 2 300.27 6.66 × 10−6 5.176 5.203 −0.027 4.889 0.287
13 b 2 300.27 6.66 × 10−6 5.176 5.183 −0.006 4.881 0.296
14 a 8 266.25 3.00 × 10−5 4.522 4.119 0.403 4.322 0.200
15 4 272.26 1.47 × 10−5 4.833 4.841 −0.008 4.830 0.003

16 a 4 272.26 1.47 × 10−5 4.833 4.907 −0.074 4.874 −0.041
17 a 4 285.26 1.40 × 10−5 4.853 4.903 −0.050 4.932 −0.078

18 a,b 2 321.31 6.22 × 10−6 5.206 4.930 0.276 4.852 0.354
19 b 2 267.24 7.48 × 10−6 5.126 4.810 0.316 4.766 0.360
20 4 267.24 1.50 × 10−5 4.825 4.674 0.151 4.525 0.300
21 4 267.24 1.50 × 10−5 4.825 4.771 0.054 4.713 0.112
22 4 281.27 1.42 × 10−5 4.847 4.936 −0.089 4.705 0.142

23 b 2 300.27 6.66 × 10−6 5.176 5.113 0.063 4.884 0.293
24 4 349.36 1.14 × 10−5 4.941 4.930 0.011 4.874 0.067

25 b 2 340.25 5.88 × 10−6 5.231 5.195 0.035 4.865 0.366
26 4 315.28 1.27 × 10−5 4.897 5.073 −0.176 4.938 −0.042
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Table 1. Cont.

Cpd.
MIC

(µg/mL) MW MIC (M) pMIC
3D QSAR AutoQSAR

Predicted pMIC ∆ d Predicted pMIC ∆ d

27 a 4 363.35 1.10 × 10−5 4.958 5.003 −0.045 4.969 −0.011
28 4 392.39 1.02 × 10−5 4.992 4.964 0.028 4.949 0.042

29 a 8 318.33 2.51 × 10−5 4.600 5.004 −0.404 4.916 −0.316
30 8 318.33 2.51 × 10−5 4.600 4.656 −0.056 4.835 −0.235
32 8 318.33 2.51 × 10−5 4.600 4.644 −0.044 4.835 −0.235
33 8 266.25 3.00 × 10−5 4.522 4.119 0.403 4.322 0.200

34 a 4 266.25 1.50 × 10−5 4.823 4.785 0.038 4.648 0.175
35 a 4 266.25 1.50 × 10−5 4.823 4.506 0.318 4.708 0.115
36 4 242.23 1.65 × 10−5 4.782 4.647 0.136 4.893 −0.111
37 4 298.34 1.34 × 10−5 4.873 5.053 −0.181 4.937 −0.064
38 4 298.34 1.34 × 10−5 4.873 4.835 0.038 4.936 −0.063
39 4 298.34 1.34 × 10−5 4.873 4.794 0.079 4.940 −0.067
40 4 258.23 1.55 × 10−5 4.810 4.703 0.107 4.809 0.001
41 16 258.23 6.20 × 10−5 4.208 4.325 −0.117 4.471 −0.263

42 a 4 258.23 1.55 × 10−5 4.810 4.928 −0.118 4.772 0.038
43 b 2 276.68 7.23 × 10−6 5.141 4.591 0.550 4.907 0.234
44 b 2 276.68 7.23 × 10−6 5.141 4.524 0.617 4.812 0.329
45 8 276.68 2.89 × 10−5 4.539 4.558 −0.019 4.842 −0.303

46 a 8 310.23 2.58 × 10−5 4.589 4.774 −0.185 4.835 −0.246
47 16 310.23 5.16 × 10−5 4.288 4.679 −0.392 4.797 −0.509
48 8 310.23 2.58 × 10−5 4.589 4.545 0.044 4.838 −0.250
49 4 286.24 1.40 × 10−5 4.855 4.890 −0.035 4.910 −0.055
50a 4 248.28 1.61 × 10−5 4.793 4.748 0.045 4.659 0.134
51 4 292.29 1.37 × 10−5 4.864 4.826 0.037 4.923 −0.059
52 128 279.29 4.58 × 10−4 3.339 3.156 0.183 3.550 −0.212

53 a,c 256 239.24 1.07 × 10−3 2.971 3.565 −0.595 3.294 −0.323
54 32 246.26 1.30 × 10−4 3.886 3.711 0.175 3.644 0.242

55 a 256 260.29 9.84 × 10−4 3.007 3.299 −0.292 3.359 −0.352
56 c 256 221.25 1.16 × 10−3 2.937 3.502 −0.565 3.154 −0.217
57 c 256 250.25 1.02 × 10−3 2.990 3.298 −0.308 3.076 −0.086
58 a 64 266.25 2.40 × 10−4 3.619 3.685 −0.066 3.423 0.196
59 256 266.25 9.61 × 10−4 3.017 3.269 −0.252 3.156 −0.139

60 a 256 266.25 9.61 × 10−4 3.017 2.777 0.240 3.170 −0.153
61 32 345.15 9.27 × 10−5 4.033 4.136 −0.103 3.567 0.466

a Compounds taken for the test set; compounds defined as b active (pMIC ≥ 5.0) and c inactive (pMIC ≤ 3.0)
compounds selected by PHASE for pharmacophore construction; d ∆ = Experimental pMIC − Predicted pMIC.

Initially, a pharmacophore model based on MC4 derivatives and their correspond-
ing antimicrobial activity against S. aureus was constructed. Consequently, a 3D QSAR
model was built to visualize how the chemical structures influence the antimicrobial ac-
tivity. It was also used to predict potential antimicrobial activity of the hits identified by
pharmacophore-based virtual screening. Subsequently, an AutoQSAR model was built
based on machine learning methods to validate the prediction results of the 3D QSAR
model. Finally, absorption, distribution, metabolism, excretion, and toxicity (ADME/T)
calculations were performed to exclude the molecules with inappropriate properties. The
whole protocol was summarized in Figure 2.
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Figure 2. The workflow of current research.

2. Results and Discussion
2.1. Development of Ligand-Based Pharmacophore Hypothesis

Virtual screening, which is focused on the identification of novel hits against druggable
targets, is one of the cornerstones in current drug discovery [44]. Pharmacophore-based
virtual screening, including ligand-based and structure-based methods, is a highly efficient
technique [45]. Nusbiarylins were validated as inhibitors of NusB-NusE PPI. In this study,
LBP model was constructed in the absence of NusB or NusE. The model was generated
by the PHASE module of Schrödinger Maestro 10.2. pMIC thresholds of 5.0 and 3.0 were
applied to the dataset to result in eight active compounds (pMIC ≥ 5.0) and three inactive
compounds (pMIC ≤ 3.0) for pharmacophore generation. As a result, 20 pharmacophore
hypotheses with corresponding hypothesis scores were generated by the 11 compounds
(Table 2).

Table 2. Pharmacophore model generated by PHASE.

ID HypoID Scores

Select Survival Site Vector Volume BEDROC

1 AADRR_1 1.608 4.885 0.781 0.957 0.840 0.639
2 AADRR_2 1.554 4.838 0.818 0.958 0.810 0.639
3 AADRR_3 1.527 4.821 0.841 0.950 0.805 0.629
4 AAARR_1 1.496 4.778 0.786 0.958 0.840 0.639
5 AAARR_2 1.476 4.774 0.819 0.927 0.853 0.639
6 AADRR_4 1.492 4.771 0.800 0.948 0.831 0.634
7 AADRR_5 1.584 4.769 0.674 0.985 0.827 0.615
8 AADRR_6 1.587 4.749 0.676 0.971 0.816 0.644
9 AAARR_3 1.495 4.659 0.678 0.971 0.817 0.644
10 AAARR_4 1.478 4.644 0.680 0.961 0.827 0.627
11 ADRR_1 1.208 5.004 0.998 1.000 0.895 1.000
12 ADRR_2 1.170 4.966 0.999 1.000 0.894 0.982
13 AARR_1 1.142 4.938 0.999 1.000 0.894 1.000
14 ADRR_3 1.344 4.614 0.786 0.955 0.830 0.644
15 ADRR_4 1.293 4.564 0.833 0.936 0.803 0.641
16 ADRR_5 1.330 4.547 0.731 0.955 0.832 0.614
17 ADRR_6 1.314 4.529 0.756 0.947 0.813 0.617
18 ADRR_7 1.298 4.526 0.771 0.947 0.811 0.636
19 AARR_2 1.215 4.453 0.832 0.904 0.804 0.644
20 AARR_3 1.201 4.446 0.787 0.949 0.810 0.644
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The pharmacophore hypothesis, named AADRR_1—which comprised two acceptor
(A), one donor (D) and two aromatic rings (R)—was selected for further study based on
the select scores and survival scores. It has a select score of 1.608, survival score of 4.885,
site score of 0.781, vector score 0.957, volume score 0.840, and BEDROC value of 0.639. The
distances between the pharmacophoric features were depicted in Figure 3 showing the
alignment of all the active and inactive compounds to AADRR_1.
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(B) alignment of AADRR_1 with all the active and inactive compounds.

To evaluate its ability to detect active and inactive sets of compounds, receiver op-
erating characteristics (ROC), area under accumulation curve (AUAC), and enrichment
factor (EF) were calculated. ROC reflects the sensitivity and specificity of the model and
AUAC reflects the discriminated ability. When the AUAC value is 1 (100%), it indicates that
active and inactive compounds can be distinguished perfectly. EF describes the number of
active compounds found using a specific pharmacophore model instead of the hypothetical
number of compounds found by randomly screening. In this study, AADRR_1 showed
promising results with EF value of 63.00%, together with ROC value of 0.62 and AUAC
value of 0.78, which confirmed that AADRR_1 represented a satisfactory model to predict
active molecules.

2.2. Three-Dimensional QSAR
2.2.1. 3D QSAR Model

QSAR analysis is another method developed for ligand-based drug discovery for
more than 50 years [46]. The first and critical step for QSAR modeling is the collection of
structures and corresponding bioactivity or properties from databases or literature. The
mathematical methods could then be used to describe the correlation between the structural
descriptors and bioactivity (QSAR) or properties (QSPR) [47].

In this study, all of the 61 compounds were aligned using the Phase Hypothesis
Alignment module in Maestro 10.2, then a field-based 3D QSAR model was constructed to
elucidate structural features that contributed to antimicrobial activity of MC4 derivatives.
Among all the generated models, the PLS factor 3 model was selected for higher prediction
accuracy compared to all other generated models with different PLS factors. Table 3 listed
the statistical parameters related to the 3D QSAR model. In Maestro 10.2, r2 represents the
non-cross-validated value for regression, r2cv is the LOO cross validated correlation value
and Q2 is another non-cross-validated value which is based on the test predictions [32].
The predicted activity of the training and test sets of compounds was presented in Table 1
and the correlation with experimental activity was shown in Figure 4.
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Table 3. Statistical parameters of the selected 3D QSAR model (PLS factor 3).

SD r2 r2
CV r2 Scramble Stability F P RMSE Q2 Pearson-r

0.212 0.895 0.756 0.502 0.943 110.6 4.05 × 10−19 0.29 0.792 0.895
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2.2.2. Y-Randomization Test

Y-randomization test was used in the 3D QSAR model in order to validate and evaluate
the possibility of chance correlations. Using the original independent variable matrix, sev-
eral 3D QSAR were constructed using the original dependent variable matrix after dozens
of random shuffles of the dependent variable (pMIC values). Results of the first 10 random
shuffles for the test were shown in Table 4. The r2

Rand and r2cvRand values of the new
models obtained after each shuffle were lower than that of original models, implying that
the random correlation of the training set could be excluded.

Table 4. r2 and r2cv values after several Y-randomization tests.

Iteration r2
Rand r2cv Rand Iteration r2

Rand r2cv Rand

1 0.586 0.097 6 0.759 0.470
2 0.741 0.214 7 0.414 −0.238
3 0.436 −0.202 8 0.727 0.323
4 0.701 0.121 9 0.728 −0.001
5 0.634 0.016 10 0.626 0.107

2.2.3. Contour Maps Analysis

The colored contour maps for steric, electrostatic, hydrophobic, H-bond donor, and
H-bond acceptor were generated to visualize the contribution of structural substituents
to biological activity in terms of positive or negative effects (Figure 5). The most active
compound 25 was used for further analysis.

In the steric contour (Figure 5A), the green regions represented the introduction of
bulky substituents that might increase activity. On the contrary, the yellow regions signified
the bulky groups were unfavored. It was recognized that a larger green contour was found
around -CF3 group of compound 25, indicating that bulky substituents might be preferred
in this region, while at the opposite position around -OH, less steric hindrance would
be beneficial.

The electrostatic feature of the compounds was presented in the model as blue and
red areas corresponding to the favorable and unfavorable electron-withdrawing effect in
the place, respectively (Figure 5B). The contour map suggested that the -NO2 group could
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be replaced by some electron-donating groups, such as the amine group by reduction to
increase the activity.

The hydrophobic contour map was presented as magenta and yellow green (Figure 5C).
The magenta-colored regions implied hydrophobic groups preferred, whereas the yellow
green regions represented hydrophobic groups that were unfavorable to biological activity.
The -NO2 group was covered by a yellow green contour with magenta cloud, indicating that
it could be replaced by some hydrophilic groups with hydrophobic parts, such as alkoxyl
groups and alkyl amines. In addition, the left phenyl group was roofed by another yellow
green contour, indicating that some hydrophilic group could be introduced to improve
the activity.

Figure 5D depicted the effects of H-bond acceptor and donor substitutions to biological
activity. The regions preferred with H-bond acceptors were represented in cyan, and the
regions with H-bond acceptors disfavored were represented in spring green. Besides,
H-bond donor-favorable regions were pink and unfavorable regions light blue. The cyan
regions were mainly distributed near the -OH group at α position of trifluoroethyl group,
indicating that oxidization of the alcohol to ketone might be beneficial to bioactivity. On
the contrary, a pink contour covering the phenol group implied OH or other H-bond donor
groups should be beneficial to bioactivity.

Overall, this model helped gain deep understanding of the structural information of
MC4 derivatives for further modifications. From the electrostatic and hydrophobic contour
maps, we concluded that the -NO2 group could be replaced by other groups. Additionally,
H-bond acceptor and donor contour maps demonstrated that the phenol group could be
replaced by other hydrogen donors.
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Figure 5. 3D QSAR StDev*Coeff contour maps based on the most active compound 25. (A) Steric
fields: favored (green) and disfavored (yellow); (B) Electrostatic fields: electropositive (blue) and
electronegative (red); (C) Hydrophobic field: favored (magenta) and disfavored (yellow green);
(D) H-bond acceptor field: favored (cyan) and disfavored (spring green); H-bond donor field: favored
(pink) and disfavored (light blue).

2.3. AutoQSAR

AutoQSAR uses machine learning tools along with statistical methods to generate
predictive QSAR models, which were shown to be as predictive as human experts in most
cases [48]. With the dataset shown in Table 1, 10 AutoQSAR models were developed
(Table 5). Among these models, kpls_dendritic_3 model performed greater than the rest,
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with a ranking score of 0.848, R2 (value of R2 of the regression model) of 0.846, and Q2

value (value of Q2 for the predicted activities of the test set) of 0.867. We also displayed the
scatter plots of observed pMIC against predicted pMIC values for model 1 in Figure 6.

Table 5. Model report of best ten QSAR model generated by AutoQSAR.

ID Model Code score S.D. R2 RMSE Q2 Factor

1 kpls_dendritic_3 0.848 0.251 0.846 0.232 0.867 1
2 kpls_linear_3 0.833 0.256 0.840 0.254 0.840 1
3 kpls_linear_14 0.820 0.266 0.820 0.266 0.838 1
4 kpls_dendritic_14 0.818 0.270 0.815 0.256 0.851 1
5 kpls_radial_14 0.813 0.273 0.810 0.264 0.841 1
6 kpls_linear_9 0.810 0.270 0.819 0.271 0.824 1
7 kpls_radial_9 0.804 0.282 0.803 0.277 0.816 1
8 kpls_radial_44 0.802 0.282 0.821 0.273 0.761 1
9 kpls_linear_50 0.8015 0.277 0.825 0.272 0.776 1
10 kpls_molprint2D_22 0.7957 0.279 0.823 0.275 0.764 1
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2.4. Pharmacophore-Based Virtual Screening

The ChemDive PPI library containing 222,447 compounds was chosen for pharmaco-
phore-based virtual screening against the selected model AADRR_1. First of all, the PHASE
database was created by applying Lipinski’s filter, which yielded a total of 355,735 confor-
mations. Subsequently, virtual screening was conducted using the selected pharmacophore
model, which identified 22,481 molecules as matches. In this study, only the compounds
with the phase screen score above 1.5 and five out of five matches were chosen. This
filtration led to the selection of 2,245 compounds for further screening.

2.5. 3D QSAR, Auto QSAR, and ADME/T Prediction

The molecules identified by pharmacophore based virtual screening were subjected
to both 3D QSAR and AutoQSAR prediction. Only the compounds with pMIC values
above 3.8 that predicted by both models were retained. As a result, 20 compound hits
were obtained.

In order to discover hits with proper drug-like properties to reduce the risk of subse-
quent optimization, in silico prediction of ADME/T properties of the hits was performed
using Qikprop of Maestro 10.2 and Discovery Studio 2016 (DS 2016). Finally, four com-
pounds, J098-0498, 1067-0401, M013-0558, and F186-0261 displayed acceptable parameters
in the ADME/T calculation (Figure 7).
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Figure 7. Chemical structures of the potential hit compounds.

The values of the Qikprop descriptors for the four hit compounds were depicted
in Table 6 and all of them fell in the standard range of parameters [49,50]. The aqueous
solubility (QPlogS) of these compounds was predicted satisfactory and the percentages
of oral absorption very high (>80%). Moreover, they were expected to have great Caco-2
and MDCK cell permeability. Furthermore, their binding ability to human serum albumin
(QPlogKhsa) was calculated to be moderate, indicating that more free drugs are available in
circulation. In addition, CNS, #metab, and QPloghERG calculation were predicted within
the standard ranges, indicating that these compounds should possess low central nervous
effect, and low heart toxicity with good metabolic stability. Further pharmacokinetic and
toxicology properties were calculated using DS 2016. Results revealed that all the molecules
were not inhibitors or substrates of CYP2D6, indicating these molecules were less prone to
induce drug–drug interactions and could be well eliminated through metabolic biotransfor-
mation. Although the four compounds were predicted to be hepatotoxic, this issue was
innocuous at this stage of drug discovery, as the hit molecules would be subjected to several
rounds of structural modifications for lead optimization. For the rat oral median lethal dose
(LD50) model, the selected hits presented oral LD50 values ranging from 4.74 to 67.95 g/kg
body weight/day, indicating that these molecules were very safe for animal experiments.

Table 6. Results of 3D-QSAR, auto-QSAR, and ADME/T prediction.

Parameters J098-0498 1067-0401 M013-0558 F186-0261

Screening
Phase Screen Score 1.599 1.506 1.606 1.511
3D QSAR_pMIC 4.01 3.98 4.15 3.81

AutoQSAR_pMIC 3.81 4.16 3.83 3.82

ADME/T

QPlogS −6.30 −6.22 −6.84 −6.42
Human Oral

Absorption (%) 96.49 81.61 100.00 100.00

QPPCaco 459.59 103.39 918.22 1170.89
QPlogKhsa 0.31 0.18 0.67 0.23
QPPMDCK 214.947 178.206 451.12 279.964

#metab 6 4 3 4
QPlogHERG −7.21 −6.75 −7.09 −6.80

CNS −2 −2 −1 −1
CYP2D6 false false false false

Hepatotoxicity true true true true
Rat Oral LD50 (g/kg) 67.95 4.74 9.29 5.72
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In addition to ADME/T properties, the druglikeness parameters of the molecules
were calculated using SwissADME (http://www.swissadme.ch/index.php, accessed on
13 November 2022). Results revealed that all the molecules were druggable without any
violation of Lipinski’s rule of five (Table S2).

2.6. Docking Studies and Binding Free Energy Calculation
2.6.1. Docking Sites Prediction

To reveal the binding modes of the four hits with the target protein NusB, molecular
docking study was performed. As there was no crystal structure of small molecule in com-
plex with NusB, binding pockets at the surface of NusB (protein extracted from NusB:NusE
complex, PDB: 3D3B, [17]) was calculated using Protein Plus (https://proteins.plus/, ac-
cessed on 13 November 2022) [51]. Results showed four pockets (I–IV) at NusB surface,
while two of them (pocket I and III) located at the interface in contact with NusE (Figure 8).
Moreover, compared with pocket III, pocket I possesses a relatively larger cavity with
a volume of 251.65 Å3 and a drug score of 0.65, indicating this pocket might be more
druggable. Moreover, Pocket I was composed of residues including E81, Y18, and E75
(E. coli amino acid residue numbering), which were exactly the designed binding site of
nusbiarylins and conserved across prokaryotes [20]. Therefore, pocket I was chosen for
docking study.
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2.6.2. Binding Modes Analysis and Free Energy Calculation

The four hit compounds were docked to pocket I by Glide XP docking of Maestro 10.2.
The results were shown in Table 7 and Figure 9. XP docking scores for the four compounds
were ranging from −2~−3 kcal/mol, indicating that the complexes might not be stable
enough. Furthermore, we calculated the binding free energy of the four hits in complex
with NusB using Prime MM-GBSA module in Maestro 10.2 (∆GPrime

MM−GBSA). Residues
within 5 Å away from the ligand were set as flexible. Surprisingly, the ∆GPrime

MM−GBSA of
the four hits were around −60 kcal/mol, especially for compound F186-0261, with the
highest ∆GPrime

MM−GBSA value of −65.08 kcal/mol. The binding free energy implied that the
hit compounds might bind to NusB tightly through a dynamic process.

Figure 9A displayed the key interactions between J098-0498 and NusB. The amide
group of J098-0498 formed one hydrogen bond with Glu75 (O . . . H 2.11 Å) of NusB,
and another hydrogen bond with Leu74 (O . . . H 2.41 Å). Additionally, both tetrahy-
drobenzo[b][1,4]oxazepane moiety and furan ring of J098-0498 interacted with Phe122
through π–π stacking. The interactions between 1067-0401 and NusB were depicted in
Figure 9B. A hydrogen bond was formed between the hydroxyl group of 1067-0401 and
Glu76 (O . . . H 1.74 Å). Meanwhile, the hydrazide group formed another H-bond with
Gly78 (O . . . H 1.84 Å). Indeed, these two hydrogen bonds were more stable and led to

http://www.swissadme.ch/index.php
https://proteins.plus/
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a lower binding free energy of the 1067-0401/NusB complex when compared with that
of J098-0498/NusB complex. In Figure 9C, M013-0558 interacted with NusB through one
hydrogen bond between the amide group of M013-0558 (O . . . H 2.19 Å) and a π–cation
interaction between benzene group from dibenzo[b,f ][1,4]oxazepin-11(10H)-one moiety
with Lys129. As shown in Figure 9D, F186-0261 bound with NusB through two hydrogen
bonds, one was formed by the thiazole moiety with Gly78 (O . . . H 2.41 Å) and another
one by the amide moiety with Glu76 (O . . . H 2.11 Å). Overall, all of these compounds
showed strong affinity with NusB residues including Glu75, Glu76, and Glu78 via hydrogen
bonding interactions.

Table 7. XP docking scores of the identified hits to NusB, and their corresponding binding free energy
calculated by Prime MM-GBSA module in Maestro 10.2.

ID XP Docking Score
(kcal/mol)

∆GPrime
MM−GBSA

(kcal/mol)

J098-0498 −2.63 −58.64
1067-0401 −2.49 −64.08

M013-0558 −2.98 −60.72
F186-0261 −2.39 −65.08
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3. Materials and Methods
3.1. Data Preparation

All the small molecules used for model construction were collected from previous
studies [24–26]. The unit of antimicrobial activities (MIC) in µg/mL was transformed into
molarity (M). Subsequently, the values were converted to pMIC using the following equa-
tion pMIC = -lgMIC. The data set was randomly divided into training set (43 compounds)
and test set (18 compounds) by Maestro 10.2.

3.2. Ligand Preparation

All the molecules used in this study were minimized using Macromodel (Maestro
10.2) module with OPLS_2005 force field, and the parameters were set to default, unless
mentioned otherwise.

3.3. Creation of Ligand-Based Pharmacophore Model

Pharmacophore mapping was carried out using the Phase module of Maestro 10.2.
The ligands were assigned as active with a threshold of pMIC ≥5.0, and inactive ≤3.0.
Ligands with pMIC values between 3.0 and 5.0 were considered as moderately active. The
hypothesis requirement was set to match 50% of the active ligands, number of features
in the model was set to five. Six in-built pharmacophore features in the PHASE module—
including the hydrogen bond donor (D), hydrogen bond acceptor (A), hydrophobic group
(H), aromatic ring (R), negative ionizable group (N), and positive ionizable group (P)—were
used to generate the pharmacophore model. The resulting models were scored and ranked
in accordance with their survival scores, site scores, vector, and volume scores.

3.4. Three-Dimensional QSAR Model Construction

3D QSAR model was generated by 3D Field-based QSAR module in Maestro 10.2.
The alignment was conducted by Ligand Alignment Panel. Field-based QSAR method
was used to construct the 3D QSAR model. pMIC of the compounds were chosen for
Activity Property [29]. The recommend field style Gaussian, including steric, electrostatic,
hydrophobic, H-bond acceptor, and donor field, was selected. Maximum PLS value were
set to 6 and number of ligands to leave out for cross-validation was set to 1. The aligned
molecules were encompassed by a 3D cubic lattice with grid spacing of 1 Å and extending
3 Å to all sides. Finally, default energy cutoff of 30 kcal/mol for steric and electrostatic
fields were used.

3.5. Y-Randomization Test

An estimation of the robustness of a model is usually conducted using the Y-rando-
mization test [52]. A new QSAR model was constructed after each iteration in which the
activities of the molecules (pMIC) were randomly shuffled. Compared to the original
model, the new QSARs were expected to have lower r2 and r2cv values. On the contrary, as
a result of structural redundancy and chance correlation, higher r2 and r2cv mean that no
acceptable 3D-QSAR can be generated for this data set.

3.6. Machine Learning-Based AutoQSAR Model Generation

AutoQSAR module was used to generate predictive QSAR models. All the minimized
ligands were imported to Maestro workspace. The antimicrobial activity (pMIC) was set as
dependent variable, while the descriptors or fingerprints related to molecular properties
were computed automatically. Training/test was set to 70/30 to split the input data. Finally,
top 10 predictive models were generated. These models were assessed by ranking scores,
root mean square errors (RMSE), standard deviation (SD), Q2 and R2 values.
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3.7. Creation of Database and Pharmacophore-Based Virtual Screening

The selected pharmacophore model was used for pharmacophore-based virtual screen-
ing of a focused compounds library from ChemDiv containing 222,447 molecules. The
retrieved compounds were subjected to Create Phase Database, involving ligand prepara-
tion to ionization and energy minimization, followed by ligand filtering using Lipinski’s
rule. Finally, a database containing 355,735 conformations were generated. The database
was screened by the selected pharmacophore model. Ligands that fulfilled five out of five
matches were retained and ranked by the phase screen scores.

3.8. QSAR Screening and ADME/T Calculation

Compounds that selected by the pharmacophore screening were subjected to QSAR
prediction. The created 3D QSAR model was imported to Field-Based QSAR module. The
ligands were selected and then proceeded via the ‘Predict’ option to obtain the predicted
pMIC values. On the other hand, the AutoQSAR models were imported from the Auto-
QSAR panel, the best model was selected to give the predictions. Finally, compounds with
predicted pMIC values above 3.8 in both models were retained. ADME/T properties of
the retained molecules were calculated, only compounds with parameters within standard
ranges were listed as potential hit compounds.

3.9. Docking and Binding Free Energy Calculation

The four ligands were prepared with LigPre module in maestro 10.2 under OPLS_2005
force field, other parameters were set default. The structure of NusB was extracted from
crystal structure of NusB/NuE complex (PDB: 3D3B), which was download from PDB
Data Bank. The structure was imported to maestro and prepared with Protein Preparation
Wizard module. Hydrogens were added, waters were removed and the protein was
minimized under OPLS_2005 force field. Subsequently, the receptor grid box was generated
with using Receptor Grid Generation Module. The coordinates of the center of the docking
site were defined as 7.6483, 10.4600, −2.4856 (x, y, z); and the radius of the box was 20 Å.
Finally, the prepared ligands were docked to the generated grid box using Glide with XP
docking methods.

Binding free energy of the complexes was calculated using Prime MM-GBSA method
under the OPLS_2005 force field use the VSGB 2.0 solvation model and residues within
5 Å away from the ligand were set as flexible. Other parameters were set default unless
otherwise mentioned.

4. Conclusions

In the present study, we proposed a ligand-based virtual screening approach, which
integrated ligand-based pharmacophore model, 3D QSAR, AutoQSAR, and ADME/T
calculation, as well as a structure-based docking study. As the result of the workflow, four
compounds, including J098-0498, 1067-0401, M013-0558, and F186-026, with pMIC values
of 4.01 (3.81), 3.98 (4.16), 4.15 (3.83), 3.81 (3.82) predicted by 3D QSAR (AutoQSAR) models
were identified as potential inhibitors of NusB-NusE PPI. Moreover, molecular docking
was performed to validate the binding mode of the hits to NusB. Results showed that these
compounds can potentially bind to the designed binding site at the conserved region of
NusB with the binding free energies around −60 kcal/mol.

Besides NusB-NusE PPI, numerous PPIs are present in bacterial transcription such
as RNAP-σ [32], RNAP-NusG PPI, and RNAP-NusA PPI [53–55], we believe that the
workflow presented in this study will contribute to the further optimization of nusbiarylins,
as well as the discovery of other novel bacterial transcription inhibitors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24010339/s1.
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