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Abstract: The development of “biohybrid” drug delivery systems (DDS) based on mesenchymal
stem/stromal cells (MSCs) is an important focus of current biotechnology research, particularly in the
areas of oncotheranostics, regenerative medicine, and tissue bioengineering. However, the behavior
of MSCs at sites of inflammation and tumor growth is relevant to potential tumor transformation,
immunosuppression, the inhibition or stimulation of tumor growth, metastasis, and angiogenesis.
Therefore, the concept was formulated to control the lifespan of MSCs for a specific time sufficient for
drug delivery to the target tissue by varying the number of internalized microcontainers. The current
study addressed the time-dependent in vitro assessment of the viability, migration, and division of
human adipose-derived MSCs (hAMSCs) as a function of the dose of internalized polyelectrolyte mi-
crocapsules prepared using a layer-by-layer technique. Polystyrene sulfonate (PSS)—poly(allylamine
hydrochloride) (PAH)-coated spherical micrometer-sized (diameter ~2–3 µm) vaterite (CaCO3) mi-
crocapsules (PAH-PSS)6 with the capping PSS layer were prepared after dissolution of the CaCO3

core template. The Cell-IQ phase contrast imaging results showed that hAMSCs internalized all
(PAH-PSS)6 microcapsules saturating the intercellular medium (5–90 particles per cell). A strong
(r > 0.7) linear dose-dependent and time-dependent (up to 8 days) regression was observed between
the in vitro decrease in cell viability and the number of internalized microvesicles. The approximate
time-to-complete-death of hAMSCs at different concentrations of microcapsules in culture was 428 h
(1:5 ratio), 339 h (1:10), 252 h (1:20), 247 h (1:45), and 170 h (1:90 ratio). By varying the number of
microcontainers loaded into the cells (from 1:10 to 1:90), a dose-dependent exponential decrease
in both the movement rate and division rate of hAMSCs was observed. A real-time cell analysis
(RTCA) of the effect of (PAH-PSS)6 microcapsules (from 1:5 to 1:20) on hAMSCs also showed a
dose- and time-dependent decrease in cell longevity after a 50h study at ratios of 1:10 and 1:20. The
incorporation of microcapsules (1:5, 1:20, and 1:45) resulted in a dose-dependent increase in 24–48 h
secretion of GRO-α (CXCL1), MIF, and SDF-1α (CXCL12) chemokines in hAMSC culture. In turn, the
normalization or inhibition of chemokine secretion occurred after 72 h, except for MIF levels below
5–20 microcapsules, which were internalized by MSCs. Thus, the proposed concept of controlling
the lifespan of MSC-based DDS using a dose of internalized PAH-PSS microcapsules could be useful
for biomedical applications. (PAH-PSS)6 microcapsule ratios of 1:5 and 1:10 have little effect on the
lifespan of hAMSCs for a long time (up to 14–18 days), which can be recommended for regenerative
therapy and tissue bioengineering associated with low oncological risk. The microcapsule ratios
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of 1:20 and 1:45 did not significantly restrict the migratory activity of hAMSCs-based DDS during
the time interval required for tissue delivery (up to 4–5 days), followed by cell death after 10 days.
Therefore, such doses of microcapsules can be used for hAMSC-based DDS in oncotheranostics.

Keywords: human adipose-derived MSCs; polyelectrolyte microcapsules; layer-by-layer technique;
phagocytosis; cell viability; migration; division

1. Introduction

Targeted drug delivery systems (DDS) and the controlled release of medicinal and
biological molecules are modern, rapidly developing scientific and technological direc-
tions. Synthetic micro- and nano-sized DDS, despite their undoubted advantages, poorly
penetrate tissue barriers and are unstable in the bloodstream [1]. Moreover, they can ag-
glomerate, posing the risk of embolism in blood capillaries, for example, in lung tissue [2].

One of the promising solutions to this problem is the development of “biohybrid”
(intra)cellular DDS containing blood cells (erythrocytes, platelets, leukocytes), stem cells,
and tumor cells [1,3–5]. In this context, mesenchymal stem/stromal cells (MSCs) are
under intense investigation. MSCs have a number of useful properties in this regard, in
particular: (1) phagocytosis of a considerable number of nanoparticles (up to 1500 per
cell) [6] and microcapsules (diameter ~2–5 microns) [7] without a fatal loss of viability for
some time; (2) chemotaxis and transendothelial emigration from the bloodstream to sites of
inflammation and tumor growth in tissues [1,8]; (3) active invasion into the extracellular
matrix and resistance to hypoxia characteristic of the central zone of tumor tissue [9,10];
(4) the ability to modulate inflammatory and immune processes [11]; and (5) a lack of
intrinsic immunogenicity [12], suggesting the possibility of using allogeneic MSCs.

Therefore, MSC-based DDSs are being widely tested for pharmacotherapy in cancer [8,13].
The local delivery of containers of antitumor cytostatic drugs in MSCs [8], including those in
polyelectrolyte (sub) micron capsules [14], is considered a perspective area of oncotheranostics.

Nevertheless, the importance of stem cells (SCs) themselves in cancer development
and progression remains uncertain [15], depending on the specific conditions of use and
due to some negative SC properties: (1) the immunosuppressive activity of MSCs and
the promotion of metastasis [1,16]; (2) the risk of tumor transformation and the potential
tumorigenicity of SCs [17] due to their active proliferation.

On the one hand, to eliminate the negative characteristics of MSCs as DDS, complex
biotechnological approaches have been proposed, including the surface or genetic mod-
ification of cells [8,18] and even the removal of their nuclear material [19]. On the other
hand, MSCs are sensitive to the internalization of external synthetic microparticles. When
the number of internalized particles is high, dose-dependent processes of cell death occur
in vitro [7,20].

Therefore, it is conceptually possible to regulate the ability of MSCs to survive, migrate,
and divide until they can be introduced into the target tissue by varying the number
of loaded microcontainers. However, such an approach for the regulated behavior of
MSCs as DDS, followed by the controlled elimination of the cells to prevent their tumor
transformation and progression, is not addressed in the current scientific literature.

Therefore, the aim of this study was to investigate the time-dependent in vitro via-
bility, migration, and division of MSCs as a function of the dose of loaded polyelectrolyte
microcapsules prepared by the layer-by-layer technique.

2. Results
2.1. Estimation of the Spreading and Uptake Capacity of hAMSCs during Phagocytosis of
FITC-Labeled Microcapsules

The isolated culture of human adipose-derived MSCs (hAMSCs) with an initial viable
cell count of 94% was divided into subgroups, to which different numbers of FITC-labeled
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polyelectrolyte (PAH-PSS)6 microcapsules were added (with different ratios of cells to
capsules: 1:0, 1:5, 1:10, 1:20, 1:45, and 1:90).

During the first 24 h, the large hAMSCs actively moved and phagocytosed the empty
microcapsules, which floated freely in the interstitial fluid. The uptake capacity of the
microcapsules by individual cells was obviously dependent on their concentration in the
intercellular medium (Figure 1).

Int. J. Mol. Sci. 2023, 24, 292 3 of 21 
 

 

2. Results 
2.1. Estimation of the Spreading and Uptake Capacity of hAMSCs during Phagocytosis of FITC-
Labeled Microcapsules 

The isolated culture of human adipose-derived MSCs (hAMSCs) with an initial via-
ble cell count of 94% was divided into subgroups, to which different numbers of FITC-
labeled polyelectrolyte (PAH-PSS)6 microcapsules were added (with different ratios of 
cells to capsules: 1:0, 1:5, 1:10, 1:20, 1:45, and 1:90). 

During the first 24 h, the large hAMSCs actively moved and phagocytosed the empty 
microcapsules, which floated freely in the interstitial fluid. The uptake capacity of the mi-
crocapsules by individual cells was obviously dependent on their concentration in the 
intercellular medium (Figure 1). 

 
(A) (B) 

  
(C) (D) 
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1:20; (D)—1:45. Scale bar is 200 µm. 

The actual uptake capacity of microcapsules by hAMSCs was tested when they were 
mixed with concentrated microcapsule suspensions (45–90 particles per cell). After the 
first 24 h of phagocytosis, the microcapsules were completely eliminated from the inter-
cellular medium and took the form of clusters inside the cells and partially on their mem-
brane. The number of fluorescent microparticles in the cells calculated on the micropho-
tographs of Cell-IQ (Figure 1) generally corresponded to the calculated proportion (ratio) 
in the cell suspension (Table S1). Subsequently, MSCs loaded for 24 h were washed from 

Figure 1. Examples of Cell-IQ phase contrast images of FITC-labelled microcapsules internalization
by hAMSCs within 24 h phagocytosis in dependence to the calculated number of vehicles in the
intercellular medium. (A)—Control cells without capsules; ratio of cells to capsules: (B)—1:10;
(C)—1:20; (D)—1:45. Scale bar is 200 µm.

The actual uptake capacity of microcapsules by hAMSCs was tested when they were
mixed with concentrated microcapsule suspensions (45–90 particles per cell). After the first
24 h of phagocytosis, the microcapsules were completely eliminated from the intercellular
medium and took the form of clusters inside the cells and partially on their membrane.
The number of fluorescent microparticles in the cells calculated on the microphotographs
of Cell-IQ (Figure 1) generally corresponded to the calculated proportion (ratio) in the
cell suspension (Table S1). Subsequently, MSCs loaded for 24 h were washed from the
microcapsules and placed in other plates to study the cell behavior during Cell-IQ ob-
servation. During the 70 h observation, the area of MSCs, which indicated the degree
of cell spreading, was not statistically different from the control values. The number of
microcapsules actually internalized by the hAMSCs was consistent with the calculated
values in the intercellular medium (Table S1). The exception was the 30 h period after
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phagocytosis, when the actual number of fluorescent particles (median equal to 135) found
in each hAMSC was three times the calculated value (45 capsules per cell) and twice the
original number of internalized capsules after 24 h of phagocytosis (62 per cell; point 0;
Table S1). At this point, all fluorescent particles were inside the cells (Figure 2).
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Figure 2. Phase contrast Cell-IQ monitoring of hAMSCs state within 10 h after 24 h phagocytosis of
FITC-labelled microcapsules in dependence to the calculated number of vehicles in the intercellular
medium. (A)—Control cells without capsules; ratio of cells to capsules: (B)—1:45; (C)—1:90. Scale
bar is 200 µm.

It was assumed that after 30 h of continuous monitoring, the post-phagocytotic MSCs
would begin to die, as the microcapsules they released accumulated in the surviving cells.
Microcapsule ingestion statistically inhibited both cell migration (to 14.5% of control values)
and division rate (to zero) (Table 1). Moreover, in the culture of microcapsule-loaded MSCs,
the cell division rate decreased in a dose-dependent manner, in accordance with a high-
probability exponential law (y = 12.25e−1.65x; R2 = 0.88; Figure S1). Consequently, the
presumed decrease in cell mass in culture led to an excessive uptake of vehicles released
from dying cells by viable hAMSCs.

The initial number of cells in the field of view of the Cell-IQ device varied greatly
between the different groups and changed constantly due to migration, division, or cell
death. Therefore, the number of MSCs in the different groups and at different time points
varied from an increase to 740 cells (+941%) to a decrease to three cells (84% of the initial
number). Therefore, the changes in cell number during a given observation period were
evaluated. To keep Table 1 simple, cell divisions and migrations were recorded as rates for
the corresponding time points of the visualization of Cell-IQ in each group.
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Table 1. Migration activity and division rate of hAMSCs loaded with FITC-labeled microcapsules
according to Cell-IQ real-time monitoring, Me (Q1–Q3).

Group
Number

Calculated
Number of

Microcapsules in
Intercellular

Medium Per Cell,
n = 3

Cell
Migration

Rate,
µm/Hour

Total
Distance

Moved by
Cells, µm

Cell Division
Rate Per 1 H of

Observation

Time of First Cell
Division after 24 H

Phagocytosis, Hours

Time of Final Cell
Division after 24 H

Phagocytosis, Hours

1 Unloaded Control
41.05

(36.26–48.9)
n1 = 30

3352
(2782–3796)

1.65
(1.48–1.77)
n1 = 138

(126–144)

7.48
(5.82–14.98)

92.90
(92.90–92.90)

2 1:10

27.52
(19.42–37.30)

n1 = 50
P1 = 0.003

1738
(756–2806)

0.27
(0.26–0.28)

n1 = 17 (15–21)
P1 < 0.05

28.73
(9.57–39.58)

89.58
(87.92–92.50)

P1 < 0.05

3 1:20

15.9
(10.61–22.36)

n1 = 32
P1 < 0.001
P2 < 0.001

1074
(689–1684)
P1 < 0.05

0.22
(0.12–0.29)

n1 = 14 (8–18)
P1 < 0.05

20.42
(13.75–29.17)

82.92
(80.42–92.08)

P1 < 0.05

4 1:45

11.47
(7.64–14.82)

n1 = 58
P1 < 0.001
P2 < 0.001

413
(275–534)

P1–3 < 0.05

0.05
(0–0.13)

n1 = 2 (1–4)
P1 < 0.05
P2 < 0.05

40.42
(30.0–42.92)
P1,3 < 0.05

68.75
(42.92–70.83)
P1–3 < 0.05

5 1:90

5.95
(4.39–8.87)

n1 = 38
P1 < 0.001
P2 < 0.001
P3 < 0.001

192
(107–359)

P1–3 < 0.05

0
P1–4 < 0.05 - -

Note: n—the number of wells observed in each group; n1—the number of migrating or dividing cells counted in
each group before monolayer formation or the end of observation; Px—statistical differences with corresponding
group (x) according to the Mann–Whitney test.

2.2. Assessment of Viability of hAMSCs Loaded with FITC-Labeled Microcapsules during
Cultivation after Phagocytosis

Table S2 shows that the viability of the MSCs loaded with 10–20 microcapsules per cell
decreased significantly after 48 h. A strong decrease (rS = 0.79; p = 0.000005; n = 24) in the
viability of MSCs loaded with 5–20 vehicles was detected by a correlation test. A regression
analysis (Figure S2) also showed a linear dose dependence of decreasing MSC survival
with an increasing number of microcapsules during 48 h of cultivation. In turn, strong
(r > 0.7) linear time-dependent (over 8 days) regressions were observed between the in vitro
decrease in cell viability and the number of microvesicles taken up (5–90 microcapsules per
cell) (Figure 3). Thus, regulation of the number of internalized microcapsules allowed us to
predict the viability of the MSCs as a cell-based drug delivery system, at least in vitro, and
to control it in a dose-dependent manner. For example, according to the linear regressions
obtained, stem cell viability was less than 25% after 144 h of the experiment and tended to
reach zero after 170 h when the microcapsules were added to the MSC culture at a dose of
1:90 (Figure 3).

According to the regression equations in Figure 3, the predicted time of MSC death at
other concentrations of microcapsules in the culture can be 428 h (1:5 ratio), 339 h (1:10),
252 h (1:20), and 247 h (1:45), respectively.
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2.3. Cell-IQ Monitoring Mobility and Division Rate of hAMSCs Loaded with FITC-Labeled Microcapsules

The next question was the effect of the loaded microcapsules on the horizontal mobility
of the hAMSCs and their ability to divide. In the control culture (without capsules) in vitro,
the duration of the measurement of these parameters was determined only by the time
of formation of a cell monolayer, which prevented the visualization of individual cells.
This was approximately 90 h after reseeding of the 24 h culture. During this time, the
MSCs were able to pass through ~3352 µm (Table 1) and undergo 126–144 (138 median)
divisions. The microcapsule-loaded MSCs entered division later and traveled a shorter
distance (Table 1), apparently due to a progressive decrease in their viability (Figure 3).
Due to the difference in study time for the control and experimental cell cultures, the
average migration and division rates of the MSCs were calculated based on the median to
make a statistical comparison. The calculations showed a statistically significant (Table 1)
dose-dependent decrease in both migration rate (y = 68.39e−0.474x; R2 = 0.99; Figure S3) and
cell division rate (see Section 2.1, Figure S1). At a concentration of 90 capsules per cell, the
MSCs barely moved (velocity ~6 µm/h with cell length up to 200 µm) and did not divide
when visually observed (Table 1).

Thus, by varying the number of microcontainers loaded by the cells, the ability of the
hAMSCs to migrate and divide can be controlled in a dose-dependent manner, at least with
respect to cell culture dynamics in vitro.

2.4. RTCA Monitoring of the Behavior of hAMSCs Loaded with FITC-Labeled Microcapsules, and
Their Secretory Activity

In previous experiments (see Sections 2.1–2.3), the adherent cell cultures were washed
out of the unabsorbed microcapsules by centrifugation after 24 h of phagocytosis. Accord-
ing to the literature [21] and our data (Figure 3), the gentle procedures of cell detachment,
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washing, and centrifugation had virtually no effect on the viability of the adipose-derived
control MSCs (without capsules). However, the entangled microcapsules could increase
centrifugal forces, turbulence, and/or shear rate. An increase in these forces, in turn, has a
negative effect on cell survival [22].

In this context, the impedance-based biosensing technology RTCA was used to contin-
uously monitor the behavior of the MSCs from the onset of microcapsule uptake (Figure 4),
for 70 h, without washing the cells. This technique, using the E-plate, allows a compre-
hensive assessment and interpretation of cell adhesion, spreading, and proliferation in the
context of in vitro cultivation dynamics [23].
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According to [23], the study (Figure 4) and interpretation of the results showed that
the control culture of MSCs (without capsules; ratio 1:0) actively adhered to the E-plate
electrodes after 5 h of observation, as indicated by an increase in the cell index (CI) up
to 8.5 arbitrary units. A further decrease in the CI to 2 arbitrary units by 30 h after the
experiment can be interpreted as a weak phase of cell spreading. This could be due to their
active migration (Table 1, Figure 1A) and limited proliferation.

Indeed, our Cell-IQ monitoring could not detect dividing cells during the first 16 h
of MSC culture (not shown). Kho et al. [23] were also able to detect the phase of cell
proliferation after only 16 h of RTCA monitoring. Moreover, the addition of water to
the culture medium (~25% in the control medium) as a solvent for the microcapsule
suspension may lead to a decrease in RTCA impedance values in the cell culture. A
similar effect of water on the behavior of RTgill-W1 (Rainbow Trout gill-Waterloo 1) cells
has been described [24]. Nevertheless, the CI of the control MSC culture was stable
during the observation period of 30–72 h, indicating adaptation of the cells to the in vitro
manipulations.

The ingestion of even low concentrations of microcapsules (calculated ratios of
5–20 per cell) significantly decreased the CI values during the first 5–8 h (Figures 4 and
S4A–C). However, later (from about 10 h), the median values of the microcapsule-loaded
hAMSCs exceeded the control values. At ratios of 1:5, 1:10, and 1:20, the CI significantly
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exceeded the control values at periods of 15–55 h, 15–40 h, and 12–30 h, respectively
(Figures 4 and S4A–C). In contrast to the 1:5 ratio, the mean CI decreased at the 1:10 and
1:20 ratios after 65 and 35 h, respectively (Figure 4). At 1:20, the decrease in CI values
(compared with control) became significant after 50 h of observation (Figures 4 and S4C).
According to Figure 3, this could indicate a time-dependent decrease in the viability of
microcapsule-loaded MSCs, especially at ratios of 1:10 and 1:20.

According to the RTCA assessment, the MSC culture behaved in many ways the
same after microcapsule ingestion, as after forced washing during the 72 h observation
period, ruling out any significant effect of the separation and centrifugation manipula-
tions on stem cell condition. In addition, a brief period of high MSC culture activity
was observed after microcapsule uptake. To understand the possible mechanisms of this
phenomenon, the spectrum of cytokines released by the microcapsule-loaded MSCs was
examined (Figures 5 and 6). Cytokines are extremely important for MSC survival, prolifer-
ation, and migration; therefore, this study was significant.

A multiplex analysis revealed that, of the 21 cytokines, chemokines, and growth factors
tested, secretion of the chemokines GRO-α (CXCL1), MIF, and SDF-1α (CXCL12) increased
with increasing the microcapsule concentration (1:5, 1:20, and 1:45) in the hAMSCs cultured
for 24–48 h (Figures 5 and 6A). A statistically significant increase in chemokine concentra-
tions in the intercellular fluid was observed at the time of the increased migratory activity of
microcapsule-loaded MSCs (Figures 4–6). The GRO-α levels increased to 1.6–6.8 times the
control level within 24–48 h after the ingestion of various doses of the vehicle. In addition,
the levels of MIF (up to 201–378% of the control value) and SDF-1α (up to 118–120% of the
control value) were increased after 48 h of the in vitro study.
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The chemokine secretion situation changed significantly after 72 h of in vitro cultiva-
tion of the microcapsule-loaded MSCs (Figures 5 and 6B). MIF levels secreted by MSCs
loaded with 5 and 20 microcapsules were still elevated (157–294% of baseline; p < 0.05); a
dose of 45 capsules per cell resulted in normalization of the MIF levels (88% compared with
control). In turn, GRO-α concentrations fluctuated within the control value (69–97–102 %).
Finally, MSCs loaded with 20 and 45 microcapsules statistically decreased SDF-1α output
into the intercellular fluid after 72 h of cultivation (to 40–78% of the control value; p < 0.05).

The described effect of high doses of microcapsules on the secretory capacity of MSCs
could be one of the molecular mechanisms for the reduction in their migratory activity after
50 h of RTCA observation (Figures 4 and S2).

3. Discussion

MSCs are considered promising cell-based delivery systems for drugs and biological
molecules [7,20,25–27].

In the short term, the use of molecule-loaded MSCs seems to be a promising direction
for the application of local pharmacotherapy against cancer due to their high affinity for
tumor foci [8,13,14,28–30]. Some groups of authors propose to immortalize MSCs to extend
their limited lifespan and enhance their useful properties (proliferation, secretory activity)
for cell-mediated drug delivery [31,32]. At the same time, the scenario of using MSCs
is mainly considered unilaterally. The cells must deliver micro- or nanocontainers into
the target tissue [33], and their subsequent fate (migration, differentiation, proliferation,
cytokine secretion, death) in the inflammatory/tumor site is usually poorly known.

The role of stem cells in cancer development and progression also remains unclear [15],
especially in terms of their engineered and immortalized forms. When physically destroyed
capsules are ingested, e.g., by ultrasound treatment or UV irradiation [34], host cells are
destroyed by the induced release of microcontainers in the affected area. Nevertheless,
it should not be forgotten that a significant proportion of carrier cells do not reach the
target tissue and are distributed throughout the body despite all existing manipulations for
targeted delivery [35]. At low concentrations of microparticles (up to 10 per cell), MSCs
can survive and differentiate in vitro for at least 14 days [20]. In the case of permeable
or biodegradable intracellular particles, the behavior of MSCs is still unclear. Moreover,
internalized particles can be released from cells by exocytosis (i.e., [36]), so the anti-tumor
or pro-tumor effect of surviving MSCs is unpredictable.

Based on previous in vitro studies [7,20,26], a dose-dependent death of MSCs can be
assumed with an increasing concentration of internalized microcapsules. However, the
short time span of in vitro observations (24–72 h) in these and other publications (e.g., [33])
does not allow us to discuss the possibility of regulating the survival time of MSCs by
varying the number of loaded microcapsules. This time should be sufficient for in vivo
drug delivery to various target tissues (at least 72 h according to [35]), followed by cell
self-destruction.

The results of Cell-IQ monitoring showed that hAMSCs actively took up hollow FITC-
labeled microcapsules from the extracellular medium added to the cell suspension in a
range of 5–90 particles per cell (Figures 1 and 2). At the same time, the number of micro-
capsules actually taken up, as measured by computer morphometry of digital cell images,
approximately corresponded to the calculated proportions (ratios) of the microcapsules in
the interstitial fluid (Table S1). Moreover, after 24 h of phagocytosis followed by 30 h of
observation, the cells accumulated an excessive number of microcapsules (Table S1). It was
hypothesized that viable hAMSCs engulf the vesicles released from destroyed cells when
the cell mass in culture decreases, due to decreased cell division ability (Table 1). Therefore,
hAMSCs are expected to utilize all BSA-FITC (PAH-PSS)6 microcapsules containing the
outermost PSS layer in the intercellular medium at an estimated rate of up to 90 particles
per cell (1:90).

Although the PSS-PAH layers are not degradable, they are reported to be biocompati-
ble for various cells, e.g., hepatocytes, fibroblasts, osteoblasts [37], and MSCs [38]. The cells



Int. J. Mol. Sci. 2023, 24, 292 11 of 20

successfully adhere and proliferate, which is partly due to the presence of sulfonate groups
in the composition of PSS [37]. At the same time, in [38], it was found that the outer layer
(PSS or PAH) continues to influence the behavior of MSCs. According to the results of the
study, the layer (PAH-PSS)3- PAH induced the development of nodular structures, leading
to disruption of the cell monolayer; (PAH-PSS)4, in turn, showed monolayer cell growth
completed with PSS, which reached confluence after 10 days of cultivation.

Leukocytes [39], endothelial cells [40], tumor cells and fibroblasts [41], neurons and
dendritic cells [42], MSCs from bone marrow [20], and adipose tissue [7] successfully
absorbed multilayer PSS/PAH microcapsules with different outer layer (PSS or PAH); How-
ever, the mechanism of their absorption is not yet fully understood. Uncharged polymer
particles are poorly digested by MSCs [43]. In turn, the PAH layer carries a positive [44]
and the PSS layer a negative electrostatic charge or zeta potential [40,45]. At the same time,
according to various data, the outer membrane of MSCs may have a negative [46,47] or
positive zeta potential [48,49], which is indirectly confirmed by experiments with charged
nanoparticles and fibers. Physiologically, this may particularly reflect their spontaneous
in vitro differentiation into negatively charged fibroblasts [50] versus positively charged
osteoblasts [51].

Among the contradictions found, two circumstances can be considered plausible compromises:

1. There is no direct relationship between the amplitude and sign of the surface charge
of particles and their internalization by MSCs, in contrast to some tumor lines (e.g.,
HeLa, Jurkat) [43] and healthy (U937 macrophages and HL-60 neutrophils) cells [39].
This suggests the presence of other non-electrostatic uptake mechanisms in MSCs;

2. The initial zeta potentials of the outermost layer capsules of PAH and PSS (+10.13 mV
and −17 mV, respectively) become weakly negative (−5.5 and −8.97 mV, respectively)
after introduction into the culture medium [40].

Be that as it may, the PSS-PAH microcapsules engulfed by the cells are considered
non-toxic at short cultivation times (24–72 h) [7,40,41]; they are stable in the cell cytoplasm
for up to 7 days [40]. At the same time, Brueckner et al. note that, regardless of the sign of
the surface charge, multilayer microcarriers based on PAH-PSS layers significantly reduce
the in vitro viability of various cells (neutrophils, macrophages, epithelial cells) [39]. In this
context, the authors consider the optimal ratio of cells to carriers as 1:5 and 1:10. According
to Gupta et al. [52], endocytosis of particles leads to disruption of the cell membrane and
disorganization of the cytoskeleton.

Our cytotoxicity study showed (Figure 3) that hollow (PAH-PSS)6 microcapsules
contribute to a linear (r = 0.71–0.98) decrease in the in vitro viability of hAMSCs, in a
dose-dependent manner, depending on the number of particles ingested (5–90 microcap-
sules per cell), and in a time-dependent manner (within 8 days of observation). Cell-IQ
monitoring showed a dose-dependent exponential decrease (Table 1) in both division rate
(see Section 2.1) and cell movement (see Section 2.3) with a high coefficient of determination
(R2 = 0.88–0.99).

Thus, it is possible to control the in vitro behavior of hAMSCs (viability, mobility, and
proliferation) in a dose-dependent manner by microcontainers introduced into the cells.

Cell-IQ studies were performed on the adherent cultures of the MSCs after 24 h of phago-
cytosis and the subsequent washing of cells from unabsorbed microcapsules by centrifugation.
These manipulations are considered relatively gentle [21]. However, intracellular particles
can increase centrifugal forces, turbulence, and/or shear rate during centrifugation. In turn,
an increase in these forces has negative effects on cell survival [22]. The shear rate of the
centrifuge, which is influenced by turbulence, vortex size, and viscosity [53], is the factor that
determines the presence of stress phenomena that damage cells [54].

Here, continuous 70 h monitoring of the behavior of the hAMSCs based on E-plate
RTCA was performed from the beginning of microcapsule recording (Figure 4), without
washing the cells by detachment and centrifugation. E-plate allows comprehensive assessment
and interpretation of adhesion, spreading, and cell proliferation in the dynamics of in vitro
culture [23]. A control culture of hAMSCs (without capsules; 1:0 ratio) showed a stable CI after
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30–72 h of observation (Figure 4), indicating that it adapted to in vitro manipulation. We have
previously shown [7] that high ratios (1:45 and 1:90) of hollow microcapsules significantly
suppress the RTCA indices of hAMSCs. Therefore, in this study, we examined the effect of
low concentrations (calculated ratios of 5–20 per cell) of PAH-PSS microvesicles.

However, ingestion of even low concentrations of PAH-PSS microcapsules statistically
significantly decreased the CI values during the first 5–8 h of observation (Figures 4 and
S1A–C). Later (~10 h), however, the median values of the MSCs loaded with microcapsules
exceeded the control values. At the ratios of 1:10 and 1:20, but not at 1:5, the median CI
decreased after 65 and 35 h, respectively (Figure 4). At a ratio of 1:20, the decrease in CI values
(compared with control) became significant after 50 h of observation (Figures 4 and S1C). This
could mean that the viability of microcapsule-loaded hAMSCs decreases in a time-dependent
manner, especially at the ratios of 1:10 and 1:20.

Thus, the culture of MSCs after the internalization of PAH-PSS microcapsules behaves
in many ways similar to that after forced washing of the cells, which includes the phases of
cell detachment and centrifugation, up to an observation time of 72 h. In addition, a short-
term phase of high hAMSC culture activity was observed after microcapsule ingestion,
lasting approximately 15–55 h, 15–40 h, and 12–30 h at particle concentrations of 1:5, 1:10,
and 1:20, respectively (Figures 4 and S1A–C). To understand the possible mechanisms of
the resulting phenomenon, the spectrum of cytokines secreted by the microcapsule-loaded
hAMSCs was examined (Figures 5 and 6).

The multiplex analysis showed that a statistically significant increase in the concentra-
tions of the chemokines GRO-α (CXCL1), MIF, and SDF-1α (CXCL12) in the extracellular
medium was observed at the exact time when the activity of microcapsule-loaded hAM-SCs
in the RTCA system increased or decreased (Figures 4–6 and S2A–C). For example, the
GRO-α levels increased (up to 1.6–6.8-fold of the control value) 24–48 h after the ingestion
of various doses of vehicle; MIF (up to 201–378% of the control value) and SDF-1α (up to
118–120% of the control value) by hour 48 of the in vitro study. Conversely, normalization
or inhibition of chemokine secretion was observed at 72 h, with the exception of MIF levels
below 5–20 microcapsules, which were internalized by MSCs.

Apparently, the secretion of cytokines may be a manifestation of stress phenomena of
activated/damaged cells [54] caused by microcapsule uptake. The secretion of biomolecules
is extremely important for the survival, proliferation, and migration of MSCs [55–57]. At the
same time, GRO-α (CXCL1), MIF and SDF-1α (CXCL12) are able to stimulate tumor growth
and progression [58–60]. In particular, GRO-α enhances MSC migration [55], MIF promotes
MSC proliferation and survival [56], and SDF-1α mediates MSC recruitment and migration
via specific receptors on healthy cells [57,60]. In turn, the chemokine CXCL1 mediates
tumor–stroma interaction, regulates gastric tumor invasion, and promotes local tumor
growth through activation of the VEGF pathway [58]. MIF was significantly increased
in tissue and serum samples from osteosarcoma patients (OS) and was associated with
their tumor size, lung metastasis, and survival. This chemokine was able to activate the
RAS/MAPK pathway in vitro in a time- and dose-dependent manner, thereby promoting
OS cell proliferation and migration [59]. CXCL12 and its CXCR4 receptor play important
roles in all phases of tumor progression, including cell proliferation and survival; the
production of matrix metalloproteinases (MMPs) and invasion; the accumulation of cancer
stem cells in the tumor; triggering functions related to metastasis such as epithelial-to-
mesenchymal transition; promoting resistance to chemotherapy and endocrine therapy;
and reducing the efficacy of immunotherapy [60]. Finally, chemokines also regulate the
migration of MSCs to tumor sites, where they can exert a variety of cancer-promoting
activities and differentiate into tumor-promoting cancer-associated fibroblasts [60].

From the dualistic perspective of stem and tumor cell stimulation, the controlled,
time-dependent death of MSCs after targeted microcapsule delivery to the target tissue is a
potentially useful property for preventing chemokine-induced hyperplasia and transforma-
tion of stem and tumor cells.
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4. Materials and Methods
4.1. Materials

Bovine serum albumin (BSA, MW); fluorescein isothiocyanate isomer I (FITC);
phosphate-buffered saline (PBS); calcium chloride; sodium carbonate; poly (allylamine hy-
drochloride) (PAH); poly (sodium 4-styrenesulfonate) (PSS); minimum Essential Medium
Eagle Alpha Modification (α-MEM); Dulbecco’s Modified Eagle Medium (DMEM); F12/
DMEM; fetal bovine serum (FBS); L-glutamine; Ethylenediaminetetraacetic acid (EDTA);
penicillin/streptomycin; Alizarin Red S; Alcian Blue; and Oil Red were purchased from
Sigma–Aldrich (St. Louis, MO, USA).

MSC Phenotyping Kit and Viability Fixable Dyes were purchased from Miltenyi Biotec
(Bergisch Gladbach, Germany), and trypan blue solution from Invitrogen (Carlsbad, CA, USA).

StemPro® Differentiation Kit was purchased from Thermo Fisher Scientific (Waltham,
MA, USA).

4.2. Isolation and Cultivation of Human Adipose-Derived MSCs

Adult human adipose-derived mesenchymal stem cells (hAMSCs) were isolated from
the lipoaspirates of healthy men undergoing liposuction for esthetic reasons at the surgical
clinic. The local ethics committee of the Innovation Park of Immanuel Kant Baltic Federal
University (Kaliningrad, Russia) approved this study (Approval No. 1, 28 February 2019).
Informed consent for the procedure was obtained from the donors before participation in
the study, as described in [61]. Cellular material from two donors was used to investigate
short-term (24–48 h) or prolonged cell viability (see Section 2.2), as well as to perform
Cell-IQ monitoring (see Sections 2.1 and 2.3). RTCA monitoring and chemokine secretion
were examined using cells from a third donor.

A stromal vascular fraction and processed lipoaspirate (PLA) were obtained as de-
scribed in [62,63]. The PLA was then passaged three times at subconfluence (each passage
lasted 5–7 days) and cultured at 37 ◦C and 5% CO2 in culture medium consisting of 90% α-
MEM, 10% inactivated FBS, 0.3 g/L L-glutamine, and 100 U/mL of penicillin/streptomycin
to increase the population of ex vivo hAMSCs. Adherent cells were detached from plastic
wells with 0.05% trypsin (PanEco, Moscow, Russia) in 0.53 mM of EDTA and washed twice
with PBS.

The compliance of the isolated cells with the minimal MSC criteria defined by the
International Society for Cellular Therapy (ISCT) [64] and the International Federation for
Adipose Therapeutics and Science (IFATS) [65] was assessed for each PLA. Expression of
CD surface markers and cell viability were determined using the MSC Phenotyping Kit
and Viability Fixable Dyes, according to the manufacturer’s protocol. Multilineage cell
differentiation into osteoblasts, chondrocytes, and adipocytes was performed in specific
induction media StemPro® Differentiation Kit by selective staining with Alizarin Red S,
Alcian Blue, or Oil Red, as previously described [7]. As a result, the adherent fibroblast-like
cells (Figure 1A) showed an initial viability of 94-95-99% and a high expression of the
antigens CD73 (99-96-98%), CD90 (99-99-98%) and CD105 (91-98-90%) versus a very low
expression (1.23-0.37-2.1%) of the markers of the hematopoietic immunophenotype (CD45,
CD34, CD20 and CD14) in the cell populations isolated from the first, third, and second
donor, respectively.

After 21 days of cultivation in StemPro® (Thermo Fisher Scientific, Waltham, MA,
USA) induction media, the cells from all three donors were differentiated into three cell
lines and confirmed to meet the MSC criteria.

4.3. Synthesis of Microcapsules

Microcapsules were synthesized using the layer-by-layer (LbL) method, as previously
described [7,66]. To prepare spherical vaterite particles, solutions of Na2CO3 (0.33 M) and
CaCl2 (0.33 M), each containing 2 mL, were mixed and vigorously stirred for 30 s at RT
using a magnetic stirrer. After completion of the process, the resulting CaCO3 particles
with an average diameter of ~2–3 µm were washed three times with deionized water. Then,
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PAH and PSS polyelectrolytes were alternately assembled on spherical micrometer-sized
vaterite (CaCO3) particles and sealed with the PSS layer. The polyelectrolytes were used at
concentrations of 2 mg/mL in aqueous 0.5 M NaCl solution. BSA conjugated with fluores-
cein isothiocyanate isomer I (FITC-BSA) was used to label the capsules for visualization
as one of the negatively charged layers. Briefly, for this purpose, BSA (4 mg/mL, pH 8)
and FITC (1 mg/mL) were dissolved in PBS and ethanol, respectively. These two solutions
were mixed and incubated for 12 h followed by dialysis against deionized water.

The capsules were washed three times with deionized water after each step to remove
unabsorbed polymers. The CaCO3 nuclei were dissolved with 5 mL of 0.2M EDTA solution,
resulting in intact soft hollow microcapsules (PAH-PSS)6 with a diameter of 2–3 µm. The
microcapsule suspension (116 × 106 particles) was kept in 1 mL of deionized water before
the experiments.

4.4. Analysis of Cell Viability and Chemokine Secretion in Response to Microcapsule Ingestion

The in vitro viability of hAMSCs loaded with different doses of FITC-labeled microcap-
sules was estimated using a CountessTM Automated Cell Counter (Invitrogen, Carlsbad,
CA, USA) after staining with 0.4% trypan blue. The percentage of viable and dead (stained)
cells was measured after they were harvested with 0.05% trypsin in 0.53 mM of EDTA and
washed twice with PBS.

Supernatants from 24, 48, and 72h MSC cultures loaded with different ratios of mi-
crocapsules were collected and centrifuged at 500× g for 10 min. Chemokines GRO-α,
MIF, and SDF-1α were determined by fluorescence flow fluorimetry using an automated
Bio-Plex Protein Assay System (Bio-Rad, Hercules, CA, USA) and a commercial assay
system (Bio-Plex Pro Human cytokine Group II 21-Plex Panel, Bio-Rad, Hercules, CA, USA,
for GRO-α, MIF, SDF-1a, LIF, SCF, SCGF-β, CTACK, M-CSF, MCP-3, MIG, TRAIL, IL-1a,
IL-2ra, IL-3, IL-12 (p40), IL-16, IL-18, HGF, TNF-β, β-NGF, and IFN-α2), according to the
manufacturer’s protocol.

4.5. Cell-IQ Visualization of Microcapsule Internalization, Cell Motility, and Division

Microcapsule uptake was analyzed by particle counting in hAMSCs using digital-
phase contrast images acquired with a Cell-IQ® v2 MLF integrated platform (CM Tech-
nologies Oy, Tampere, Finland) for continuous real-time live cell microscopy. Here, the
isolated hAMSCs (fifth passage; 500,000 viable cells per capsule dose) were directly mixed
with the suspension of FITC-labeled microcapsules at different ratios (1:0, 1:10, 1:20, 1:45,
and 1:90 particles per cell) in intercellular medium; then, the obtained mixture was seeded
at a density of 5.0 × 104 cells/cm2 and incubated for 24 h at 37 ◦C, 5% CO2. The culture
medium (3 mL) consisted of 90% F12/DMEM (Sigma-Aldrich, St. Louis, MO, USA); 10%
inactivated FBS (Sigma, USA), 0.3 g/L L-glutamine (Sigma, USA); and 100 U/mL of peni-
cillin/streptomycin (Sigma-Aldrich, USA). After phagocytosis, the cells were washed with
PBS to remove free microcapsules, removed from wells with 0.05% trypsin in 0.53 mM of
EDTA, washed twice with PBS, and transferred to the Cell-IQ system (37 ◦C, 100% humidity,
and 5% CO2). They were then cultured after phagocytosis for an additional 96 h, according
to the manufacturer’s instructions and our previous study [63].

To analyze the cell morphology, motility, and division, 50 µL of cell suspension
(5 × 104 viable hAMSCs) was dropped into the center of three wells for each group. The
hAMSCs were allowed to adhere to the bottom of the wells in a humidified chamber for
80 min. The wells were then carefully filled with 1.5 mL of the culture medium, and the
cells were observed in a Cell-IQ platform for 96 h in a humidified atmosphere of 95% air
and 5% CO2 at 37 ◦C until a monolayer formed in the visualization wells. In each well,
twelve visualization points (3 fields of 4 points each) were selected from three sides near
the droplets for phase contrast monitoring. Digital images of the hAMSC cultures were
acquired every 90 min. Based on the varying duration of the mobility and division of
hAMSCs loaded with a variable ratio of microcapsules (Table 1), the average rates of cell
migration and division were calculated.
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To determine the loading of hAMSCs with FITC-labeled microcapsules, cell areas and
the number of internalized fluorescent particles were counted at 0, 6, 18, 30, 42, 54, and
70 h after phagocytosis. In accordance with the recommendation of the article [67], an
overwhelming number of microcapsules per cell (1:45 and 1:90 microcapsule/cell ratio) was
used in the intercellular medium. Since cells are three-dimensional (3D) objects, the number
of particles counted in 2D optical images is the number of particles per cross-section of the
cell and not the total number of particles per cell [67]. We neglected this fact and counted
the number of capsules per cell because for large (up to 200 µm) adherent hAMSCs the
cell thickness is incomparably smaller than their area, so it is possible to consider adherent
hAMSCs as 2D objects. Moreover, the area occupied by the cells did not change statistically
significantly over time (Table S1).

At the same time, it was problematic to count individual particles in hAMSCs because
of the large number of absorbed microcapsules (Figures 1 and 2). Therefore, the total
fluorescence area (Stotal fluorescense) and the fluorescence area of individual microcapsules
(Scapsule fluorescence) were calculated for each cell. Then, the number of capsules absorbed
by each cell was calculated using the following formula:

Ncaps/cell = Stotal fluorescense/Scapsule fluoresnece

A morphometry method was used to quantify the cell parameters by measuring their
optical properties [68]. Image J v. 1.43 software (National Institutes of Health, Bethesda,
Maryland, AR, USA) was used to process the digital images.

4.6. RTCA Monitoring of MSC Behavior

The experiment was performed according to the previously described method [23]
with some modifications.

E-plates of xCELLigence were prepared by adding 100 µL of culture medium (DMEM,
2% inactivated FBS, 1% ITS, and 200 U/mL of penicillin/streptomycin) with 24 µL of
deionized water or water suspension saturated with various ratios (1:5, 1:10, and 1:20)
of FITC-labeled synthetic microcapsules. After equilibration to 37 ◦C, the plates were
placed in the RTCA DP system (Roche Applied Science, Pennsburg, Germany) and base-
line impedance was measured to ensure that all wells and ports were operating within
acceptable limits. After harvesting and counting, the hAMSCs were diluted to the correct
seeding density (40,000 per well) and added to the wells in 100 µL volumes. Cell density
followed the previously developed standard protocols [7]. Four wells were used for each
experimental group. The control group contained only hAMSCs without microcapsule
contamination (1:0 ratio). Cell index signals were recorded for each well using RTCA
software 2.0.0.1301 every 15 min for up to 70 h.

4.7. Statistical Analysis

The statistical analysis was performed with Statistica 13.3 software for Windows 10.0
(TIBCO Software Inc., Palo Alto, CA, USA). Data were expressed as mean (X), standard error
of the mean (SE), and standard deviation (SD), as well as median (Me), 25% quartile (Q1),
and 75% quartile (Q3). The Shapiro–Wilk test was used to determine the normality of the
distribution. In cases where the results were not normally distributed, the non-parametric
Mann–Whitney criterion was used to detect significant differences between independent
samples; otherwise, a Student’s t-test was performed. Statistically significant differences
were considered at a value of p < 0.05. Spearman’s rank correlation (rS) and regression (r)
analyzes were performed; coefficients were kept at a significance level above 95%.

5. Conclusions

The controlled, time-dependent death of MSCs after the targeted tissue delivery of mi-
crocapsules is a potentially useful property for preventing chemokine-induced hyperplasia
and transformation of stem and tumor cells.
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MSCs have numerous advantages as cell-based DDS for oncotheranostics [69], and
the ability of MSCs to divide and differentiate into various cells [70] raises enthusiasm for
their use in regenerative therapy and tissue engineering, including tumor pathology. Due
to their ability to reach the tumor, MSCs are an attractive vehicle for cell therapy to deliver
therapeutic agents into the tumor [71]. On the other hand, the risk of tumor transformation,
immunosuppression, and potential tumorigenicity of SCs [1,17], as well as MSC-induced
tumor-supportive processes (chemoresistance, metastasis, and angiogenesis) [69], are rea-
sons for some reluctance to use MSC-based DDS in oncology.

Therefore, therapeutic strategies for the vascular delivery of MSCs require an un-
derstanding of what happens to these cells after systemic injection [35] and infiltration
of the target tissue. Since it is not possible to predict the pro- or antitumor behavior of
MSCs, the best outcome of MSC-based DDS currently appears to be the targeted delivery
of internalized drugs or biomolecules and the subsequent death of stem cells at the site
of tumor growth. MSCs are known to migrate and colonize tumor foci in mice within
5 days [72]. Given the known sensitivity of MSCs to LbL microcapsules [7,20], we ex-
perimentally investigated the possibility of time- and dose-dependent regulation of the
behavior of hAMSCs under different concentrations of internalized PAH-PSS microvesicles.

In this context, we presented the following in vitro results:

1. hAMSCs internalize all (PAH-PSS)6 microcapsules present in the intercellular envi-
ronment, with the number of particles per cell ranging from 5 to 90.

2. Strong (r > 0.7) linear, dose- and time-dependent (up to 8 days) regression was ob-
served between the in vitro decrease in cell viability and the number of microvesicles
absorbed (5–90 microcapsules per cell). According to the regression equations, the
approximate time-to-complete-death of hAMSCs at different concentrations of micro-
capsules in culture can be 428 h (1:5 ratio), 339 h (1:10), 252 h (1:20), 247 h (1:45), and
170 h (1:90 ratio).

3. By varying the number of microcontainers loaded into the cells (from 1:10 to 1:90), a
dose-dependent exponential decrease in both the movement rate (y = 68.39e−0.474x;
R2 = 0.99) and the division rate of hAMSCs (y = 12.25e−1.65x; R2 = 0.88) was observed
with high coefficients of determination. At a concentration of 90 capsules per cell, the
hAMSCs hardly moved or divided on the real-time phase contrast display of Cell-IQ.

4. RTCA monitoring of the effect of PAH-PSS microvesicles (from 1:5 to 1:20) on hAMSCs
also showed a dose- and time-dependent decrease in cell longevity after a 50 h study,
at ratios of 1:10 and 1:20.

5. Microcapsule uptake (1:5, 1:20, and 1:45) results in a dose-dependent (up to
0.18–0.2 ng/mL) increase in secretion of the chemokines GRO-α (CXCL1), MIF, and
SDF-1α (CXCL12) in hAMSCs culture, which are capable of stimulating the activity of
both stem and tumor cells (see Discussion). This is classified as average (0.1–1 ng/mL)
secretory activity according to [73].

In conclusion, the dose- and time-dependently regulated longevity of hAMSCs appears
to be a potentially useful property for the delivery of PAH-PSS microcapsules to target
tumors. For situations with low oncological risk, such as regenerative therapy and tissue
bioengineering, the microcapsule ratios of 1:5 and 1:10 can be recommended, as this slightly
affects the behavior of hAMSCs over a long period of time (14–18 days). With regard to
the use of DDS based on hAMSCs for oncotheranostics, microcapsule ratios of 1:20 and
1:45 seem to be optimal: they do not significantly restrict the migratory activity of hAMSCs
during the time interval required for tissue delivery (up to 4–5 days) but lead to cell death
after 10 days of the in vitro experiment.

The formulated concept and the results obtained in vitro with empty microcapsules
need to be tested on the drug- or biomolecule-loaded PAH-PSS microcapsules and verified
in the in vivo system.
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