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Abstract: Cassava is one of the most versatile tuberous-root crops on Earth. However, the postharvest
storage properties of cassava tuberous root mean that it is perishable through a process known as
postharvest physiological deterioration (PPD), which seriously affects its starch quality. Therefore, a
comprehensive understanding of the transcriptional regulatory activity of cassava against the PPD
response is necessary in order to extract key molecular mechanisms related to PPD tolerance. In
this study, we found that RYG1 tuberous roots showed delayed PPD compared to those of SC8. In
addition, RYG1 roots maintained a more stable cell wall structure after storage than those of SC8.
The transcriptome changes in tuberous roots were analyzed for both RYG1 and SC8 after 21 days of
storage (SR and SS) compared to fresh (FR and FS) by the RNA-Seq method. The total number of
differentially expressed genes (DEGs) in the various comparisons of these four samples ranged from
68 to 3847. Of these, a total of 2008 co-DEGs in SR vs. SS were shared by either SR vs. FR or SS vs. FS.
GO and KEGG enrichment analysis revealed that upregulated co-DEGs in SR vs. SS were mainly
enriched in photosynthesis, protein processing, hormone and cutin, suberine and wax biosynthesis.
By contrast, the downregulated co-DEGs were mainly related to cell wall organization, starch and
sucrose metabolism, galactose metabolism, phenylpropanoid biosynthesis, diterpenoid biosynthesis,
cysteine and methionine metabolism and flavonoid biosynthesis. The protein–protein interaction (PPI)
networks of the co-DEGs showed a complex interaction of genes in different pathways, and 16 hub
genes were characterized to have a degree in excess of 15, among which eight genes were associated
with photosynthesis. These results provide new information for the study of cassava resistance to
PPD and lay a foundation for the further molecular breeding of storage-tolerant cassava varieties.

Keywords: cassava; postharvest physiological deterioration; storage; shelf life; transcriptome analysis

1. Introduction

Cassava (Manihot esculenta Crantz) is a starch-rich tuberous-root crop, grown in tropi-
cal and subtropical regions, that plays an important role in global food security [1–4]. The
cassava can be used as a food and vegetable for human consumption—similarly to potatoes.
It also has value in other applications, including use as livestock and poultry feed [5,6], bio-
fuel production [7,8] and medicine [9]. However, its processing and utilization are seriously
affected by its deterioration after harvest, which is known as postharvest physiological
deterioration (PPD) [10]. Decay and metamorphism reduce the transparency of starch, seri-
ously affecting the quality and the processing of starch and fuel ethanol, which causes both
farmers and industrial enterprises to suffer huge economic losses. Globally, yield losses
due to PPD are estimated at up to 29% [10,11]. This has led to a great loss of enthusiasm
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among the participants in the cassava industry chain. It is estimated that if the storage life
of cassava was extended to 45 days, there would be an additional economic benefit of at
least USD 35 million per year in Thailand [12,13]. In Africa, the main cassava-producing
region, the economics of extending cassava’s shelf-life are expected to be even higher [13].
Therefore, one of the main objectives of cassava breeding is to delay the postharvest rot
and thereby improve the shelf life of cassava.

Recognizing the economic impact of postharvest decay, researchers have carried out
numerous studies on the storage shelf life of cassava. Different storage techniques have
been developed to keep cassava fresh. However, the problem remains unsolved, because
the storage techniques used are either too labor-intensive or are limited by increased
cassava production [14]. The breeding of new, durable cassava varieties would provide a
permanent solution to the perishability problem affecting cassava after harvest. In 2002,
Coters et al. identified 10 genes related to the wound response in cassava PPD using
the quantitative trait loci (QTL) mapping method [15]. Genome-wide association studies
(GWAS) are another potential genetic anatomical method for complex traits. Although the
role of GWAS in cassava PPD has not been reported, GWAS studies on cassava root rot have
been reported [16]. It can also provide a reference for the molecular mechanism of cassava
postharvest metamorphism. Genomic selection (GS) is also a very important technique
in plant breeding. At present, it has been applied in cassava breeding [17–21], but its
application in cassava PPD has not been reported. With the development of biotechnology
and improvements in cassava genetic transformation systems, it is possible to obtain
decay-resistant cassava varieties by means of genetic engineering. Obtaining a fuller
understanding of the molecular mechanisms of cassava decay and deterioration after
harvest is therefore of great significance in the cultivation of cassava varieties with resistance
to PPD via molecular means.

Because agricultural products respond to postharvest storage stress in a species-
specific manner, transcriptome sequencing has been widely used to study postharvest gene
expression in different agricultural products and to understand the molecular mechanisms
of PPD and resistance to PPD [22–28]. Transcriptome analysis has also been carried out
in several cassava PPD studies. Huang et al. (2001) used an RNA fingerprinting method,
called cDNA-AFLP, to study the gene changes and important metabolic pathways in the
early stage (the first 72 h) of PPD in cassava. Seventy transcription-derived fragments were
screened and isolated. The analysis showed that important biochemical and physiological
processes such as oxygen stress, carbohydrate metabolism, protein metabolism and pheno-
lic compound synthesis were involved in PPD in cassava [29]. Reilly et al. (2007) analyzed
the transcriptome of cassava roots after harvest and identified 72 genes that were altered
during postharvest regulation. Many of the upregulated and PPD-specific expressed genes
are involved in cellular processes such as reactive oxygen species turnover, cell wall repair
and programmed cell death [30]. Transcriptome analysis has also been used to analyze the
role of melatonin in delaying the PPD of cassava [31,32]. Melatonin treatment activated
the expression of several antioxidant enzymes, calcium signaling, the MAPK cascade and
transcription factors, as well as starch degradation-related genes in cassava [31,32]. Yan et al.
(2021) conducted a comparative transcriptome analysis of cassava postharvest deterioration
and found that the expression of a large number of genes encoding antioxidant enzymes
and protein kinases was significantly upregulated in the process of PPD, and the expression
of genes related to starch degradation was significantly upregulated, while genes related
to starch synthesis were significantly downregulated [33]. Previous studies have mainly
focused on the stress response of cassava stored for a short time after harvest, such as 6 h,
12 h, 48 h [31–33], 72 h [29] or the longest period of 11 days [34], but the changes in the gene
expression levels of cassava stored for 3 weeks without decay have not been studied. It
is more important to identify the key genes that maintain the PPD tolerance in the more
storable cassava.

In a previous study, we found that RYG1 cassava tuberous roots were significantly
more resistant to PPD than SC8 cassava [35]. In the current study, to further understand
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the molecular basis for the extended shelf life of RYG1, the transcriptomes of two cassava
varieties at two time points after harvest (fresh and after 21 days in storage) were established
and compared. Some important genes and pathways related to maintaining a longer shelf
life in cassava have been found. The results of this study will provide new theories and
insights for extending the shelf life of cassava by molecular means.

2. Results
2.1. Comparison of the PPD Tolerance of SC8 and RYG1 Cassava Tuberous Roots during Storage

After comparing the PPD in both SC8 and RYG1 cassava, we found that the RYG1
cassavas were more resistant to PPD than SC8 cassavas (Figure 1). As is apparent in
Figure 1, SC8 cassava roots were significantly deteriorated after 21 days of storage and
totally deteriorated after 28 days, with fungal growth being clearly observable after 35 days,
and, by 42 days, the fungus was spread more widely. By contrast, RYG1 roots remained
fresh, without any sign of deterioration after 21 days of storage. Indeed, by 35 days, the
peel and flesh of cassava were still be observed to be light green. However, at 42 days,
RYG1 cassava roots appeared to change to a light coffee color, which is symptomatic of
deterioration (Figure 1). These results indicated that the RYG1 cassava was more tolerant
to PPD than SC8.
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Figure 1. PPD detection results for the SC8 and RYG1 cassavas after the proximal and distal ends
were removed.

2.2. Microscopic Structure of SC8 and RYG1 Cassava

To understand how the structure of cassava changed after storage, the ultrastructural
features of RYG1 and SC8 cassava were observed, both fresh and after 21 days of storage,
by transmission electron microscopy. The results revealed that the cell wall and membrane
were close together, without separation, both in fresh RYG1 (hereafter, FR) and fresh SC8
(hereafter, FS). The cell wall was smooth and uniform in morphology. By contrast, after
21 days of storage of RYG1 (hereafter termed SR) and 21 days of storage of SC8 (hereafter
termed SS), the different cassava cultivars showed great differences in their cell structures.
The cell structures of SS were severely damaged, with visible morphological changes,
including plasma membrane invagination and cell wall collapse. Meanwhile, in SR, the cell
morphological changes were considerably weaker than those exhibited by SS (Figure 2).
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Figure 2. Transmission electron microscopy images of SC8 and RYG1 cassava. CW, cell wall. Blue
arrow, plasma membrane invagination. Red arrow, cell wall collapse. The white lines indicate 2 µm.

2.3. Assembly of Transcriptomes and Quality Assessments

To determine how the tuberous roots of RYG1 maintain a longer shelf life than SC8,
we performed mRNA sequencing to analyze the transcriptomes of tuberous roots from FS,
FR, SS and SR. In our data, each sample generated an average of ~2.96 GB of clean data
(Table S1). Clean reads with quality scores ≥20% reached more than 95%, and clean reads
with quality scores ≥30% accounted for more than 90% (Table S1). After the reads were
filtered, 18.48–24.27 million clean reads were obtained, among which more than 73.92%
were mapped to the cassava reference genome. We found that 73.57% of the mapped reads
were aligned to unique locations. Finally, 31,592 genes were obtained (Table S1). Next,
correlation analysis between biological replicates of RNA-seq data showed high Pearson’s
correlation values (R2 ≥ 0.88) between repeats (Figure 3a), indicating that the sequencing
results exhibited high reproducibility.

The total transcriptional responses of FS, FR, SS and SR were next compared. The
principal component analysis (PCA) plot showed 59.6% variance in PC1 and 33.8% variance
in PC2 (Figure 3b). The FS and FR groups were difficult to separate by either PC1 or PC2,
indicating that their global gene expression was highly similar. By contrast, PC1 clearly
separated the samples of SS and SR from the FS and FR (Figure 3b), suggesting that the
overall gene expression profiles of cassava were largely affected by storage stress when
compared with the fresh condition. Notably, PC2 clearly separated the samples of SS and
SR from both FS and FR, even separating SS from SR, indicating that highly diverse patterns
of gene expression existed between SS and SR, between SR and FR and between SS and FS
(Figure 3b).
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ical replicates for RNA-seq. Color levels correspond to the degree of correlation in each replicate.
(b) Principal component analysis (PCA) of the whole transcriptome in cassava samples.

2.4. Identification of Differentially Expressed Genes

We subsequently analyzed the differentially expressed genes (DEGs) in the four pair-
wise comparisons with the criteria of |log2(fold change) | more than 2 and false discovery
rate (FDR, adjusted p-value) less than 0.05. Among them, there were 68 DEGs (five upregu-
lated, 63 downregulated) between FR and FS, 2716 DEGs (988 upregulated, 1188 downreg-
ulated) between SR and SS, 3844 DEGs (1379 upregulated, 2465 downregulated) between
SR and FR and 3847 DEGs (1640 upregulated, 2207 downregulated) between SS and FS
(Figure 4a). These results demonstrate that the storage of cassava led to a larger number of
DEGs than those caused by the cassava germplasm variety difference. In order to ensure
the accuracy of the RNA-seq data, eight DEGs were randomly selected for the subsequent
qRT-PCR validation experiments. The results showed that the expression trends of selected
genes obtained by qRT-PCR were basically similar to the RNA-seq results (Figure 5). As
such, this result confirms the reproducibility and reliability of the RNA-seq data in this
study, which can be used with confidence in subsequent studies.
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Figure 4. Differentially expressed gene analysis of FR, SR, FS and SS. (a) DEGs in statistics for
FR vs. FS, SR vs. SS, SS vs. FS and SR vs. FR. The ordinate value represents the number of DEG.
(b) Venn diagram depicting co-expressed and specific expressed DEGs in the pairwise comparisons:
SR vs. SS, SS vs. FS and SR vs. FR. (c) Heatmap of the selected 2008 (322, 947 and 729) common
DEGs. The color scale represents Z-score. (d) The upregulated and downregulated genes in the 2008
common DEGs. The ordinate value represents the number of co-DEG.

2.5. Venn Analysis of the DEGs

To explore genes that possibly contributed to differences in RYG1 and SC8’s resistance
to PPD, we used Venn diagrams to display the common DEGs (co-DEGs) shared by different
comparisons. This analysis revealed that there are 332 genes shared by SR vs. SS, SS vs. FS
and SR vs. FR; 947 genes only shared by SR vs. SS and SS vs. FS; 729 genes only shared by
SR vs. SS and SR vs. FS; and 1515 genes only shared by SR vs. FR and SS vs. FS. Furthermore,
there were 168 genes unique to SR vs. SS, 1053 genes unique to SS vs. FS and 1268 genes
unique to SR vs. FR (Figure 4b). We subsequently found that a total of 2008 genes in
SR vs. SS were shared either with SS vs. FS or with SR vs. FR (Figure 4b). It is speculated
that these genes may be the main factors responsible for the differences in response to
PPD between the two varieties. Therefore, they were selected for further studies and
their expression patterns in both varieties and under both conditions were visualized
in a heatmap (Figure 4c). Among the 2008 genes, there were 725 genes upregulated
and 1283 genes downregulated in SR vs. SS, 411 upregulated and 650 downregulated in
SR vs. FR and 849 upregulated and 430 downregulated in SS vs. FS (Figure 4d).
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indicate a significant difference.

2.6. GO Functional Enrichment Analysis of Co-DEGs

In an attempt to determine the molecular differences in RYG1 and SC8’s response to
PPD, we analyzed the functional annotations of the 2008 co-DEGs. The 725 upregulated
and 1283 downregulated co-DEGs in SR vs. SS were subjected to GO classification sepa-
rately. They grouped into three broad categories: biological processes, cellular components
and molecular functions (Table S2). In the upregulated gene sets, genes were enriched in
biological process categories related to the response to stimuli, such as light, heat, reactive
oxygen, salt stress, hormones, alcohol and inorganic substances. These genes were also
enriched in categories related to photosynthesis, such as light reaction and light harvesting,
and categories related to protein folding. In the downregulated gene sets, genes were
enriched in categories related to metabolism processes, such as the cellulose catabolic
process, phenylpropanoid biosynthesis, chitin catabolic process, gibberellin biosynthetic
process, hydrogen peroxide catabolic process and glutathione metabolic process; in cate-
gories related to cell wall organization or biogenesis; and in categories related to stimuli,
such as ethylene, jasmonic acid, salicylic acid, fungus, immunity, wounding and oxidative
stress (Figure S1).

2.7. KEGG Pathway Analysis of co-DEGs

A KEGG pathway enrichment analysis was carried out for both 725 upregulated co-
DEGs and 1283 downregulated co-DEGs (Table 1). In the upregulated gene sets, the energy
metabolism-related pathways, including photosynthesis and photosynthesis—antenna
proteins; protein folding, sorting and degradation-related pathways; protein process-
ing in the endoplasmic reticulum; lipid metabolism-related pathways, including cutin,
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suberin and wax biosynthesis and fatty acid elongation; and the signal transduction-related
pathway—plant hormone signal transduction, were significantly enriched. In the downreg-
ulated gene sets, a total of 19 pathways were significantly enriched, which included cysteine
and methionine metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis, carbon
metabolism, glutathione metabolism, the MAPK signaling pathway—plants, starch and
sucrose metabolism, galactose metabolism and terpenoid backbone biosynthesis.

Table 1. KEGG pathway enrichment of co-DEGs.

Classify Pathway ID Description Gene
Number

False Discovery
Rate

upregulated

Energy metabolism map00195 Photosynthesis 10 0.00024
map00196 Photosynthesis—antenna proteins 6 0.00036

Folding, sorting and degradation map04141 Protein processing in endoplasmic
reticulum 29 2.08 × 10−9

Global and overview maps map01110 Biosynthesis of secondary metabolites 51 0.0252

Lipid metabolism map00062 Fatty acid elongation 5 0.0418
map00073 Cutin, suberine and wax biosynthesis 7 0.0021

Signal transduction map04075 Plant hormone signal transduction 18 0.0156

downregulated

Amino acid metabolism

map00250 Alanine, aspartate and glutamate
metabolism 9 0.0058

map00270 Cysteine and methionine metabolism 23 9.50 × 10−7

map00400 Phenylalanine, tyrosine and tryptophan
biosynthesis 9 0.0061

Biosynthesis of other secondary
metabolites

map00940 Phenylpropanoid biosynthesis 42 8.91 × 10−14

map00941 Flavonoid biosynthesis 8 0.034

map00945 Stilbenoid, diarylheptanoid and gingerol
biosynthesis 8 0.0082

Carbohydrate metabolism

map00052 Galactose metabolism 9 0.0153
map00500 Starch and sucrose metabolism 16 0.0136

map00520 Amino sugar and nucleotide sugar
metabolism 14 0.0315

Global and overview maps

map01100 Metabolic pathways 211 2.41 × 10−21

map01110 Biosynthesis of secondary metabolites 149 2.07 × 10−22

map01200 Carbon metabolism 27 0.0041
map01230 Biosynthesis of amino acids 27 0.00043

Metabolism of other amino acids
map00450 Selenocompound metabolism 5 0.0282
map00460 Cyanoamino acid metabolism 9 0.0035
map00480 Glutathione metabolism 24 4.65 × 10−9

Metabolism of terpenoids and
polyketides

map00900 Terpenoid backbone biosynthesis 13 0.00043
map00904 Diterpenoid biosynthesis 6 0.03

Signal transduction map04016 MAPK signaling pathway—plant 24 2.89 × 10−5

2.8. Differentially Expressed Genes Related to Photosynthesis

In this study, both the GO and KEGG enrichment analysis of co-DEGs revealed that
photosynthesis-associated terms were significantly enriched in the upregulated co-DEGs
(Figure S1, Tables 1 and S2). We therefore searched the 2008 co-DEGs to identify all of
the photosynthesis-related genes and their expression patterns. A total of 28 genes that
participate in photosynthesis, including LHCAs, LHCBs, PETs, PSAs, PSBs, CHLH, PRK,
PPDK, GIDA, FTSH6, PGR5, RBCS1A and SIG, were revealed (Figure 6a). It was discovered
that all the DEGs had higher expression in stored RYG1 than in stored SC8, even though
they were induced in both varieties after storage in comparison to their fresh condition.
These results suggest that the stored RYG1 may exhibit higher rates of photosynthesis
than the stored SC8. However, whether the photosynthetic process is active remains to be
confirmed in future studies.
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Figure 6. Heatmap of differentially expressed genes related to photosynthesis (a), protein processing
in endoplasmic reticulum (b), galactose metabolism and starch and (c), cell wall (d), cutin, suberin
and wax biosynthesis (e) and phenylpropanoid biosynthesis and flavonoid biosynthesis (f).

2.9. Differentially Expressed Genes in Protein Processing in the Endoplasmic Reticulum Pathway

Protein processing in the endoplasmic reticulum pathway was another significantly
enriched pathway in the upregulated co-DEGs. Here, we further examined all genes in this
pathway in co-DEGs, revealing in a total of 30 genes (Figure 6b). There were 23 HSP20s,
three HSP70s, two HSP90s and two RMAs. All of the HSP20s, HSP70s and HSP90s were
upregulated in SR compared SS. Most of them were upregulated in SR compared to FR,
while others displayed no significant difference. Meanwhile, in SS vs. FS, most of the HSP
genes were downregulated. In addition, for the two RMAs, one was upregulated and the
other was downregulated in both SR vs. SS and SR vs. FR, but there was no difference in
SS vs. FS.
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2.10. Differentially Expressed Genes Related to Starch and Sucrose Metabolism and
Galactose Metabolism

A total of 34 co-DEGs were identified from the starch and sucrose metabolism and
galactose metabolism pathways, in which five genes (one HXK, four SacAs) belonged to
both pathways (Figure 6c). In addition, four GolSs, one STS, one RAF, one glgP, one glgC,
one SBE, one FRK, one SS, two TPSs and two SUSs genes were upregulated in SR vs. SS,
while the other genes, such as two PFKs, one RAF, one HXK, four SacAs, two bglBs, one
bglX, two AMYs, four CELs, one SUS and one TREH, were downregulated in SR vs. SS.

2.11. Differentially Expressed Genes Related to Cell Wall, Cutin, Suberin and Wax Biosynthesis,
Phenylpropanoid Biosynthesis and Flavonoid Biosynthesis

In the present study, we found that genes in the cell wall organization GO term and
the cutin, suberin and wax biosynthesis, phenylpropanoid biosynthesis and flavonoid
biosynthesis KEGG pathways were significantly enriched in the SR vs. SS comparison.
Therefore, we further examined the relative levels of expression of these genes. Notably,
11 PME/PMEIs (four upregulated and seven downregulated), two PLLs (one upregulated,
one downregulated), two PAEs (downregulated) and one PG (upregulated) were identified
from the SR vs. SS comparison, and all of these genes acted on pectin in the cell wall
components. In addition, our study revealed that five CSLs and one CEL gene(s), which are
associated with cellulose, were identified, and all of them were downregulated in SR vs. SS.
Moreover, a total of nine EXPs (one upregulated, eight downregulated) were identified
from the SR vs. SS comparison (Figure 6d). For the cutin, suberine and wax biosynthesis
pathway, a total of 10 genes (three upregulated, seven downregulated) were identified
(Figure 6e). A total of 52 genes were identified from the phenylpropanoid biosynthesis or
flavonoid biosynthesis pathways, in which six genes (two HCTs, two PHTs, one C3′H and
one SAM) belonged to both pathways. Most of the genes (45 out of 52) were downregulated
in SR vs. SS, while only seven genes were upregulated in SR vs. SS (Figure 6f).

2.12. Differentially Expressed Genes Related to Hormone Signaling

To explore how the plant hormones were involved in cassava PPD tolerance, the
expression profiles of 38 genes related to plant hormone signal transduction were analyzed
(Figure 7 and Table S3). For the auxin signal, 17 genes were differentially expressed in
SR vs. SS, thirteen of which were upregulated, including genes encoding seven AUX/IAAs,
three ARFs, two GH3s and one SAUR. For the ABA signal, two PP2C genes were upregu-
lated after storage in SR vs. SS, while another PP2C and two PYLs were downregulated. For
the JA signal, one JAR1 gene and two JAZs were downregulated in SR vs. SS. For the SA
signal, only one TGA gene existed and was downregulated in SR vs. SS. For the CTK signal,
only one B-ARR gene existed and was upregulated. For the ETH signal, one ETR and five
ERFs were downregulated, while only one EIN2 gene was upregulated in SR vs. SS. For the
GA signal, only one DELLA was upregulated in SR vs. SS. For the BR signal, one BSK and
one BKI1 were downregulated, while one CYCD3 was upregulated in SR vs. SS.

2.13. Differentially Expressed Genes Related to Transcriptional Regulation

Co-DEG analysis indicated that a total of 176 genes encoding putative transcription
factors (TFs) were significantly differentially expressed between RYG1 and SC8 after storage,
and their expression heatmap is presented in Figure 8. These TFs were categorized into
31 different families, including MYBs, AP2s, WRKYs, NACs, bHLHs, GRASs, C2H2s, HSFs
and IAAs. The MYB family of transcription factors was the most abundant (32 genes),
followed by the AP2s (22 genes), WRKYs (19 genes), bHLHs (13 genes), NACs (10 genes)
and GRASs (10 genes) (Figure 8).
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Figure 8. Heatmap of differentially expressed genes related to transcriptional regulation.

2.14. Protein–Protein Interaction Network Construction and Hub Gene Identification

As described above, the transcriptome analysis identified a list of co-DEGs, and
these genes participated in differential pathways or biological processes. To reveal the
interaction relationships among these co-DEGs, a protein–protein interaction (PPI) network
was constructed on the basis of gene co-expression. The co-DEGs formed PPI networks
with 524 nodes and 1004 edges, in which 324 nodes with 874 edges formed the largest
network (Figure 9a). Genes in diverse pathways were intertwined, which illustrated the
complexity of cassava’s resistance to PPD. The intertwined genes were associated with
pathways such as photosynthesis, protein processing in the endoplasmic reticulum, carbon
metabolism, nitrogen metabolism, starch and sucrose metabolism, etc. Next, by running
the cytoHubba plugin in Cytoscape v3.9.0, the genes with a degree of connectivity in excess
of 15 were identified as hub genes. Thereby, a total of 16 hub genes were obtained, of which
the degree of connectivity was 25 for both PRK and LHCA3, 23 for both PSAF and NR1,
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21 for GUN4, 20 for both LHCA1 and PETE, 19 for PSBY, 18 for both GGR and PSAD-2,
16 for GDH2s and LASPO and 15 for ALDH3F1, CYP38 and LHCA4 (Figure 9b,c). Among
these hub genes, there were 12 hub genes, including PRK, LHCA3, PSAF, GUN4, LHCA1,
PETE, PSBY, GGR, PSAD-2, ALDH3F1, CYP38 and LHCA4, that were up-regulated, and
four hub genes (NR1, 2 GDH2s and LASPO) were down-regulated in SR vs. SS. In addition,
eight of the hub genes, including PRK, LHCA3, PSAF, LHCA1, PETE, PSBY, PSAD-2 and
LHCA4, were associated with photosynthesis, which further suggested the crucial role of
photosynthesis-related genes in RYG1 cassava’s resistance to PPD (Figure 9c).
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3. Discussion

Postharvest physiological deterioration (PPD) of cassava is a major obstacle to the
development of the cassava industry. It is a complex physiological and biochemical pro-
cess involving changes in gene expression, protein synthesis and secondary metabolite
accumulation [30]. In recent decades, great progress has been made in improving cassava’s
resistance to PPD, but it is far from sufficient. Here, we compared the differences in the
postharvest response to PPD between RYG1 (PPD-tolerant) and SC8 (PPD-susceptible)
cassava cultivars in terms of their phenotype, microstructure and transcriptome. On the
whole, the phenotypes and microstructures of fresh RYG1 and SC8 cassavas were signifi-
cantly different from those at 21 days after harvest under the same storage conditions. The
differences in the physiological responses of the two cassava germplasms after storage were
partly caused by the differences in gene expression. Therefore, four sets of transcriptomic
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data were compared to analyze the functional information of differentially expressed genes,
using fresh cassava samples (FR and FS) and 21-day-storage cassava samples (SR and
SS). From the perspective of the principal component analysis of gene expression, SC8
and RYG1 cassava samples showed little difference in their gene expression profiles when
fresh, but had completely different gene expression profiles after storage, presenting a
state of polarization. This was consistent with the appearances that they exhibited, as
SC8 exhibited symptoms of deterioration, whereas RYG1 did not, after 21 days of storage.
Consistently with the results of the principal component analysis, only a small quantity of
differentially expressed genes (68 DEGs) was detected in the comparison between FR and
FS, indicating that both of them had similar gene expression profiles when fresh. However,
after 21 days of storage, a great deal of differentially expressed genes were generated in
SR vs. SS, SR vs. FR and SS vs. FS, indicating that RYG1 and SC8 had substantially different
responses to PPD at the gene transcription level. The 2008 co-DEGs shared in SR vs. SS with
either SR vs. FR or SS vs. FS were considered to be the most important genes mediating a
series of defense mechanisms against PPD in RYG1 cassava.

In previous studies, it has been shown that reactive oxygen species (ROS) are active
during cassava deterioration [30,36]. Indeed, they have been considered as the main cause
of PPD. Thus, the genes responsible for scavenging reactive oxygen species and their
regulatory mechanisms have become the focus of research. In this study, we also found that
some upregulated co-DEGs were enriched in the GO terms annotated as the response to
reactive oxygen species (Table S2, Figure S1). Most of the genes were described as HSP20s.
Moreover, these genes were upregulated or unchanged in stored RYG1 compared to the
fresh control; however, most of these genes were downregulated in stored SC8 compared
to its fresh control (Table S4). In this study, we also found that ROS fluorescence and H2O2
content in 21-day-storage RYG1 cassava were significantly lower than those in 21-day-
storage SC8 cassava (Figures S2 and S3). Therefore, we hypothesized that the positive
expression of these reactive oxygen species responsive genes in stored RYG1 triggers a
series of reactive oxygen species scavenging reactions, thereby maintaining intracellular
reactive oxygen species stability without causing cell toxicity.

Cell wall integrity and its regulatory genes have often been considered in relation to
the storage tolerance of agricultural products after harvest [37–39]. High-CO2 treatment
increases the pectin content and hardness of strawberries, and reduces their rate of rotting.
At the same time, the expression of genes related to cell wall degradation, such as pectin
methylesterase (PME), polygalacturonase (PG) and pectin lyase (PL), is inhibited [37]. The
rapid softening of peach flesh was found to occur due to the stronger expression of genes
encoding cell wall hydrolases, especially xylosidases and galactosidases [38]. Furthermore,
inhibition of the expression of cell wall modification genes related to fruit softening, such
as PG, cellulase, PME, alpha-l-arabinofuranosidase and beta-galactosidase, can improve
storage tolerance in grapefruits [39]. The differential expression of some genes related to
cell wall remodeling, such as pectin methylesterase (PME) and α-mannosidases (MNS), has
also been detected in cassava at the early stage of postharvest metamorphism [40]. In our
study, transmission electron microscopy showed that the cell wall of SR was more intact
than that of SS. GO functional annotation and enrichment analysis of co-DEGs revealed
that many cell-wall-related genes were significantly enriched, including PME/PMEIs, PLLs,
CEL and EXPs (Figure 6d). In addition, the genes in the cutin, suberin and wax biosynthesis
were also enriched. Therefore, we hypothesized that maintaining cell wall integrity is
another mechanism by which RYG1 resists PPD and maintains its shelf life. These cell-wall-
associated co-DEGs therefore deserve attention and require functional verification.

There was a strong correlation between an increase in soluble sugar content and
the extension of postharvest shelf life. For example, one of the mechanisms involved in
improving the postharvest life of sweet cherry fruit via heating and calcium treatment is
that the treatment increases the content of soluble sugar, especially galactose [41]. In potato,
the soluble sugar accumulation after cold treatment served to maintain the quality of the
crop during storage [28]. In a previous study of cassava, the soluble sugar content after
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storage in a PPD-resistant variety was higher than that in susceptible varieties [34]. In the
current study, we found that some genes involved in the starch and sucrose metabolism
and galactose metabolism pathways were significantly enriched in the co-DEGs (Figure 6c).
Moreover, the total soluble sugar content was higher in the PPD-tolerant RYG1 than in the
control after 21 days storage (Figure S4), which is consistent with the previous study. On
the other hand, the soluble sugar concentration is considered as a positive quality criterion
in fruit, and it determines the sweetness of the fruit [42,43]. Although reports on cassava’s
soluble sugar content or sweetness in cassava quality are rare, there have been several
reports that mention a preference for cassava with sweetness [44–46]. Since some (not
all) prefer no taste in cassava products, the increase in soluble sugar content after storage
may lead more people to favor cassava products, thus stimulating the cassava industry.
Therefore, we speculate that the expression of related genes plays important roles in
regulating the anti-PPD capabilities of RYG1. The hexokinase (HXK) activity and HXK gene
expression in peach fruits were increased by postharvest disease stress [47]. Plant HXK can
independently catalyze hexose phosphorylation into glycolysis and is sensitive to glucose.
HXK phosphorylation of hexoses affects a variety of hormone signaling pathways, as well
as plant development and stress responses [48]. In our study, one HXK was identified, and
its expression was significantly decreased after storage in RYG1, while it was unaltered
in SC8. This suggests that the sugar signal in RYG1 may have been sensed and thereby
effectively regulated metabolic activity.

In addition to the above possible mechanisms of resistance to PPD, we also found that
upregulated co-DEGs were mainly enriched in the photosynthetic antenna protein, photo-
synthesis and protein processing in the endoplasmic reticulum KEGG pathways (Table 1).
Previous studies have shown that the activation of the expression of photosynthesis-related
genes is closely related to the alleviation of the postharvest deterioration of agricultural
products [49–51]. Light treatment delayed postharvest yellowing, retained chloroplast
components and maintained slower sugar loss in broccoli [49]. Results in broccoli research
indicate that postharvest treatments that delay chlorophyll degradation have a higher
effect on the expression of pheophytinase genes [51]. Transcriptome analysis revealed
that the mechanism by which low-intensity white LED light delayed postharvest pakchoi
senescence was mainly through activating the expression of photosynthesis-related genes,
including genes related to Photosystem II, Photosystem I, Cytochrome b6f complex, pho-
tosynthetic electron transport and F-type ATPase [50]. In this study, we found that the
RYG1 cassava became light green after storage for 35 days (Figure 1). This result indicated
that, after longtime storage, RYG1 began to produce and accumulate chlorophyll. This
phenotypic change is also partially consistent with previous studies in other crops. Al-
though the expression of photosynthesis-related genes was upregulated after storage in
both RYG1 and SC8, the expression of these genes was higher after storage in RYG1 than in
SC8 (Figure 6a). These results suggested that RYG1 may have a higher energy state due to
a higher photosynthetic rate than that of SC8 occurring after storage, thus helping to delay
the deterioration during postharvest storage. Interestingly, among the hub genes screened,
we also found that eight hub genes (PRK, LHCA3, PSAF, LHCA1, PETE, PSBY, PSAD-2
and LHCA4) were all related to photosynthesis (Figure 9bc). The direct involvement of
these genes in delaying postharvest fruit deterioration has not been reported; however,
several gene-related proteins have been reported as participating in the discoloration of
postharvest fruits and vegetables [52,53]. The expression of LHCI and LHCII was signifi-
cantly downregulated in the yellowing of broccoli heads [52]. The expression of LHC (CAB)
proteins was downregulated with the decrease in the chlorophyll content in peach peel [53].
The LHC was also used as an index to measure tomato postharvest ripening [54]. This
further piqued our interest, since it suggests that photosynthesis may play a non-negligible
role in the PPD resistance of RYG1; however, given the fact that this observation was made
in a tuberous root, rather than an above-ground organ of the plant, the exact physiological
significance of this finding warrants further investigation. Nevertheless, the upregulation
of photosynthesis in other below-ground tissues is not without precedence, with similar
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findings being reported for Acmella, Datura, Artmisia, Rudbeckia, Stevia, Tagetes, Alnus
and cassava [55–57]. Long ago, researchers found that the chloroplast structure and chloro-
phyll fluorescence in green root plastids were similar to those in leaves, while there was
no chloroplast structure formation in dark grown roots [55]. Moreover, these studies also
showed that the green roots are photoautotrophic [55]. Although we have not detected the
chloroplast structure in cassava tuberous roots, the green accumulation in cassava could be
clearly found by observing 35-day cassava slices (Figure 1). In view of this, it is reasonable
to speculate that cassava tuberous roots may form photoautotrophs under long-term light
conditions after separation from the parent plant.

The genes involved in protein processing in the endoplasmic reticulum pathway
were mainly heat shock protein (HSP) genes. HSPs are proteins encoded by multi-gene
families that protect plants from abiotic stress and are produced under ultra-stable high
temperatures. They act as molecular chaperones to maintain protein homeostasis in the
cell by helping in protein folding, protein unfolding, protein assembly, protein intracellular
distribution and protein degradation [58]. Environmental stresses often lead to protein
dysfunction, so the ability of HSPs to repair and assist in the refolding of damaged proteins
is important in order to protect cells from stress. It has been reported that heat shock
proteins maintain an incredibly important role in reducing the postharvest sensitivity of
fruits to biological and abiotic stresses [25,59]. For example, the molecular mechanism of
extending the fruit shelf life and quality in citrus involves the upregulation of heat shock
proteins [59]. Some upregulated HSPs were also detected in storage potato with good
quality [28]. In our data, 23 HSP20s, 3 HSP70s and 2 HSP90s were identified in the co-DEGs.
All of the HSPs were upregulated in SR compared SS. These HSPs were either upregulated
or showed no significant difference in SR compared to FR. Meanwhile, in SS vs. FS, most
of the HSP genes were downregulated (Figure 6b). As described in the above, HSP20s
were also the major genes identified in this study in response to ROS. This highlights even
further their importance in PPD resistance.

Phenolic secondary metabolites produced in the phenylpropanoid biosynthesis path-
way affect the quality characteristics of plant foods, such as their appearance, flavor and
other health properties [60]. Previous studies have identified that some proteins in the
phenylpropanoid biosynthesis pathway respond to postharvest deterioration at the pro-
teomic level [61]. In this work, genes involved in the phenylpropanoid biosynthesis and
flavonoid biosynthesis pathways were specifically enriched in the downregulated co-DEGs
in SR vs SS. It may be conjectured that the expression differences in these genes might be
related to the maintenance of cassava root quality after harvest.

Phytohormone signaling pathways play important roles in many environmental
stresses and are often involved in the storage and preservation of agricultural prod-
ucts [62,63]. The present transcriptome data implied the important role of auxin pathway
genes in RYG1 resistant to PPD. Among the 38 genes involved in the plant hormone signal
transduction pathway, 17 genes belonged to the auxin signal (Figure 7). Specifically, there
were seven AUX/IAAs and three ARFs that were upregulated in SR vs SS. In strawberry,
exogenous IAA delayed the fruit ripening process by upregulating the AUX/IAA and ARF
genes and downregulating the genes related to cell wall degradation and pectin [22]. In the
present data, most of the cell wall degradation-related genes were downregulated in RYG1
after storage. These results suggested that the auxin signaling pathway plays an important
role in the PPD resistance of RYG1.

The complexity of the molecular mechanism of RYG1’s resistance to PPD was fur-
ther demonstrated by constructing a protein–protein interaction network. Different gene-
regulatory pathways intertwine to synergistically resist the occurrence of postharvest
metamorphism (Figure 9). Among the selected 16 hub genes, with the exception of eight
genes related to photosynthesis, there were another eight hub genes, including GUN4, GGR,
ALDH3F1, CYP38, NR1, two GDH2s and LASPO. GUN4 is one of the key regulators in
the chlorophyll biosynthesis pathway [64]. The reduction in chlorophyll loss in Chinese
cabbage under 21 days of light storage was related to the upregulation of this gene’s expres-
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sion [65]. GGR is another gene participating in chlorophyll biosynthesis [66]. Thus, GUN4
and GGR may be involved in the fight against PPD by regulating the chlorophyll synthesis
process. The stress-induced ROS cause the excessive accumulation of toxic aldehydes in
cells. ALDHs can convert toxic aldehydes to nontoxic carboxylic acids, thus reducing the
damage to cells [67]. LASPO is considered pivotal to maintain NAD homeostasis [68].
GDH2 activates the catabolic oxidation of glutamate and provides a carbon skeleton for the
citrate cycle (TCA cycle) [69]. It is also a key enzyme in NH4

+ assimilation and is involved
in various stresses [70]. It is well documented that the downregulation of GDH expression
and the reduced GDH activity are correlated with a delay in the initiation of senescence
or the extended shelf life of fruits as well as vegetables [71–73]. A decrease in NR activ-
ity coincided with the alleviation of postharvest pericarp browning in longan fruit [74].
However, enhanced NR gene expression appears in the accelerated softening of tomato
fruits [75]. The abovementioned evidence partially supports the notion that the function of
these hub genes might be involved in regulating postharvest deterioration in cassava. The
molecular mechanisms of these hub genes affecting the shelf life of postharvest cassava
need to be further studied through a series of experiments. For example, the effect of these
genes on PPD resistance in cassava can be observed by overexpressing or suppressing their
expression in cassava.

4. Materials and Methods
4.1. Plant Treatment and Tissue Sampling

Cassava (Manihot esculenta Crantz) cultivars SC8 and RYG1 were selected for this study,
according to previous results [35] in which SC8 and RYG1 were identified as being sensitive
and tolerant to PPD, respectively. Cassavas were harvested after 1-year planting from the
experiment field in the city of Wenchang, Hainan Province, China, in March 2015. They
were kept at 28~30 ◦C and 65~70% relative humidity, under 16/8 h light/dark conditions.
The cassavas, with the proximal and distal ends removed, were transected weekly (0, 7, 14,
21, 28, 35 and 42 d) with a thickness of 1 cm, to detect the PPD in the sections.

4.2. Transmission Electron Microscope Observations

Cassava samples of FR, SR, FS and SS were fixed in glutaraldehyde (2.5%) for more
than 3 h. The samples were cleaned 3–4 times with phosphoric acid buffer (PAB, PH7.2,
0.1 mol/L), and then fixed overnight with osmium acid (1%) at 4 ◦C. After this, the samples
were washed with PAB (0.1 mol/L, pH 7.2) 3 to 4 times, for 45 min each time. Next, the
samples were dehydrated with 50%, 70%, 80%, 90% and 100% ethanol solutions for 12 to
15 min each time, followed by epoxy propane 2 times, for 10 min each time, with epoxy
propane:EPON resin = 2:1, and epoxy propane:EPON resin = 1:2. They were permeated for
2 h, and then placed in pure resin overnight. This was replaced with acetone:ethanol = 1:1
and pure acetone for 25–35 min each time, and then with acetone:EPON resin (3:1) for
2 h. We then placed samples in acetone:EPON resin (1:1) and permeated them for 2 h; in
acetone:EPON resin (1:3), they were permeated for 2 h, and then in pure resin overnight.
We then replaced the sample overnight with pure resin and then buried the sample in an
embedded plate with pure resin. The polymerization was carried out at 37 ◦C for 12 h,
45 ◦C for 12 h and 60 ◦C for 48 h. We then sliced, dyed, dried and observed the samples.

4.3. RNA-Seq Transcriptome Analysis

The samples from 0 and 21 d treatments were collected and frozen with liquid nitrogen
for the total RNA extraction. The methods of total RNA extraction and RNA-seq library
conduction were same as those previously described [76]. The RNA quality and concentra-
tions were evaluated using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA). Equal amounts of RNA from each sample were sequenced on an Illumina HiSeq
2500 sequencer (Illumina, San Diego, CA, USA) at the Gene Denovo company (Guangzhou
China), to construct the strand-specific RNA-seq libraries. The data were submitted to the
National Genomics Data Center (NGDC) with the assigned accession number CRA007720.
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The experiments on RYG1 and SC8 were performed with two biological repeats, and each
repeat consisted of a mixture of five individual roots.

4.4. Screening of Differentially Expressed Genes (DEGs) and Enrichment Analysis

RNA-seq data analysis was carried out essentially according to previous methods [76].
Briefly, the ribosomal RNA reads of raw data were first removed to obtain clean reads. The
clean data were aligned to the cassava genome [77]. For each cassava gene, its expression
level was calculated using the fragments per kilobase of transcript per million mapped
reads (FPKM) method [78]. The R language package was used for principal component
analysis (PCA). The FDR and |log2FC| were used to screen differentially expressed genes
(DEGs). The screening conditions were FDR < 0.05 and |log2FC| ≥ 2. The co-DEGs were
screened using a Venn diagram. The heatmaps of the selected co-DEGs were drawn with
the program in Omicshare.

4.5. Enrichment Analysis, PPI Interaction Network Construction of co-DEGs

The GO enrichment analysis, KEGG pathway enrichment analysis and the interaction
networks of co-DEGs were generated by the STRING online platform (https://cn.string-db.
org/, 23 October 2022), with confidence scores higher than 0.7. In the PPI network, the hub
genes were screened by the Degree algorithm of the CytoHubba plugin in an open-source
software program, Cytoscape v 3.9.0 (https://cytoscape.org/, 6 November 2022) [79,80].
The genes with an interaction degree more than 15 were selected as hub genes in this study.

4.6. Quantitative Real-Time PCR Analysis

The PrimeScript RT reagent kit with gDNA Eraser was utilized to reverse the purified
RNA of each sample to first-strand cDNA. The Tubulin gene in cassava was used as an
internal control. All the primers used in this work were designed with Primer Premier
5. The primers are listed in Supplementary Table S5. QRT-PCR was performed with a
SYBR®Premix Ex TaqTM II Kit and a ABI 7900HT Fast Real-Time PCR System (Applied
Biosystems, Foster City, CA, USA). The relative expression levels of target genes were
calculated via 2−∆∆Ct relative quantitative analysis [76]. The data were statistically analyzed
using GraphPad Prism 8.3.0.538 to generate bar charts.

5. Conclusions

This study suggested that the longer shelf life of RYG1 may be related to the main-
tenance of lower reactive oxygen species, higher soluble sugar levels and more intact cell
wall structures. In addition, the regulation of photosynthesis and endoplasmic reticulum
protein processing, phenolic secondary metabolites and phytohormone signaling pathways
also plays an important role in the resistance to PPD. Moreover, we screened out some of
the hub genes that connected these important biological processes, including PRK, LHCA3,
PSAF, LHCA1, PETE, PSBY, PSAD-2, LHCA4, GUN4, GGR, ALDH3F1, CYP38, NR1, 2
GDH2s and LASPO. These findings provide targets for the further improvement of cassava
storage tolerance.
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