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Abstract: Uveal melanoma (UM), the most common primary intraocular cancer in adults, is among
the tumors with poorer prognosis. Recently, the role of the oncometabolite lactate has become
attractive due to its role as hydroxycarboxylic acid receptor 1 (HCAR1) activator, as an epigenetic
modulator inducing lysine residues lactylation and, of course, as a glycolysis end-product, bridging
the gap between glycolysis and oxidative phosphorylation. The aim of the present study was
to dissect in UM cell line (92.1) the role of lactate as either a metabolite or a signaling molecule,
using the known modulators of HCAR1 and of lactate transporters. Our results show that lactate
(20 mM) resulted in a significant decrease in cell proliferation and migration, acting and switching
cell metabolism toward oxidative phosphorylation. These results were coupled with increased
euchromatin content and quiescence in UM cells. We further showed, in a clinical setting, that
an increase in lactate transporters MCT4 and HCARL is associated with a spindle-shape histological
type in UM. In conclusion, our results suggest that lactate metabolism may serve as a prognostic
marker of UM progression and may be exploited as a potential therapeutic target.
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1. Introduction

Uveal melanoma (UM) has been classified as a rare disease, but it is still the most common
intraocular cancer in adults, with about 7095 new cases per year worldwide [1-4]. UM and
cutaneous melanoma (CM) are both characterized by an aberrant growth of melanocytes,
even if UM retains a typical biological and genetic signature. While CM is often char-
acterized by mutations on BRAF, NRAS, or KIT, UM patients usually carry the mutated
GPCR alpha subunits GNAQ or GNA11. Further evaluations reported the inactivating
somatic mutations in the gene encoding for BRCA-1-associated protein 1 (BAP1) [5-9].
As a result, 84% of BAP1-mutated patients are prompted to develop liver (89%), lung
(29%), and bone (17%) cancer, with a prognosis of ~15% upon 5 years [7,10]. Therefore,
the current estimation is that 40-50% of UM patients will die of metastatic disease, even
with early diagnosis and proper treatment [11]. A number of clinical, histopathological,
and cytogenetic features have been reported to be valuable prognostic factors predicting
UM progression [12-15]. However, there is still a lack of proper treatments aiming at
counteracting tumor progression [16]. For this purpose, previous studies reported pro-
grammed cell death as an outstanding factor related to tumorigenesis, progression, and
metastasis processes [17-19]. In addition, the tumor microenvironment (TME) turned
out to also be a key player in such processes. Indeed, the milieu in which tumors are
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located contains numerous non-tumor cell types, such as immune cells, inflammatory cells,
mesenchymal cells, and endothelial cells, exerting physiological functions, but eventually
acting as pro-tumoral players [20-23]. It is worth noting that bystander cell populations
also act by reshaping the phenotype of the malignant cells without altering their ge-
netic signatures [24]. In this context, cancer cells exhibited an increased glycolytic rate,
the so-called Warburg effect, resulting in a strong lactate production, in turn serving as
an oncometabolite prompting tumor progression and metastasis [25,26], while suppressing
both innate and adaptive immune cell response [27,28]. In this regard, lactate has been
reported to act via hydroxycarboxylic acid receptor 1 (HCAR1) in synergy with monocar-
boxylate transporters 1-4 (MCT 1-4). Corroborating the role of lactate as an oncometabolite,
several studies reported HCARI1 targeting as one of the main factors leading to pancreatic
and breast cancer progression [29-31]. Further studies also uncovered an epigenetic trait
covered by lactate, which may modify lysine residues by lactylation, or it may modulate
histone deacetylases (HDACs) and histone acetyl transferases (HATs) activity [32-35]. As
a result, lysine lactylation or acetylation disrupts the electrostatic interaction standing
between histones and DNA, triggering a permissive chromatin, eventually promoting
DNA damage repair (DDR) [36-39]. This body of evidence points to lactate metabolism
modulation as a potential strategy toward the development of efficient drugs leading the
path against tumor [40].

In this study, we aimed at investigating the accumulation of lactate within UM TME,
thus dissecting its role as a oncometabolite and eventually uncovering new targets toward
the development of more effective UM drugs.

2. Results
2.1. Lactate and HCAR1 Targeting Exerts Opposite Effects in Uveal Melanoma Cell Line

In order to assess how lactate accumulation affects UM progression, we supplemented
lactate 20 mM on a 92.1 UM cell line model. We observed a significant decrease in the
normalized cell index after lactate exposure confirmed by a decrease in the total AUC
compared to untreated cells (Figure 1A). We then compared the effect of increased levels of
extracellular lactate with the selective stimulation of the lactate receptor GPR81 (HCAR1)
mediated by 3,5-DHBA, at the final concentration of 150 uM. Interestingly, we detected
that a selective stimulation of the HCARI receptor produced an opposite effect compared
to lactate treatment, resulting in an increase in the normalized cell index compared both
to lactate and untreated cells, confirmed also by an increase in the total AUC (Figure 1A).
Subsequently, we analyzed the effect of lactate and receptor stimulation on cell migration.
Our results show a significant increase in the percentage of wideness in the scratch assay at
24 and 48 h in lactate-treated cells (Figure 1B,C). HCARI stimulation, on the other hand,
significantly decreased the percentage of wideness in the scratch assay at 24 and 48 h in
treated cells as compared to untreated and lactate-treated cells (Figure 1B,C). Overall, these
data indicate a prominent role of lactate as a metabolite in inhibiting cell proliferation rather
than as a signaling molecule acting on HCAR1.

2.2. Inhibition of Lactate Uptake Induces Uveal Melanoma Growth

In order to further investigate how lactate affects UM progression, we analyzed the
effect of the MCT1 inhibitor (AZD3965, 10 mM) and the HCAR1 antagonist (3-OBA, 3 mM)
on 92.1 UM cell proliferation and migration.

Our results show that treatments with both AZD3965 and 3-OBA had no effect on
cell proliferation, as indicated by the normalized cell index and AUC values compared to
untreated control cells (Figure 2A-D). On the one hand, cultures cotreated with lactate and
AZD3965 resulted in an increased normalized cell index value and AUC value as compared
to untreated control cells and to lactate or AZD3965 single treatment (Figure 2A). On the
other hand, cultures exposed to lactate and 3-OBA in cotreatment showed a decreased nor-
malized cell index and AUC value as compared to untreated control cells and significantly
increased as compared to lactate single treatment (Figure 2D).
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Figure 1. Effect of lactate and 3,5-dihydroxybenzoic acid (3,5-DHBA) on uveal melanoma cell prolifer-
ation and migration. (A) Real-time cell proliferation monitoring in 92.1 cells, using the xCELLigence
system following treatments with lactate (20 mM) and 3,5-DHBA (150 uM). The cell index values
were normalized at the time of pharmacological treatments in order to obtain a normalized cell index.
Each dot expresses the average of four different experiments and the area under curve (AUC) is also
reported. (B,C) Representative micrograph (B) and quantification (C) of human uveal melanoma
cell migration analysis with the wound-healing assay following treatments with lactate (20 mM)
and 3,5-DHBA (150 mM). Data are mean of five independent experiments + SD (one-way ANOVA).
**p <0.01; *** p < 0.001; *** p < 0.0001.

These results were confirmed by wound-healing assay (Figure 2B,C,E F), showing that
the cotreatment with lactate and AZD3965 resulted in a significant decrease in the per-
centage of wideness as compared to lactate alone (Figure 2B,C), as well as the cotreatment
with lactate and 3-OBA resulted in a significant decrease in the percentage of wideness as
compared to lactate-treated cells (Figure 2E,F).

2.3. Lactate Treatment Increases HCAR1 and Lactate Transporters in Uveal Melanoma

We previously reported that lactate supplementation affects the expression of its
transporter proteins [41]. Corroborating these data in a different in vitro model, our results
show that lactate treatment was able to induce a significant increase in mRNA expression
levels of SLC16A1 (gene encoding MCT1) and HCARI, and that these effects were reverted
by AZD3965 (Figure 3A,B). These data were further confirmed by Western blot analysis,
showing an increase in the protein expression levels of MCT1 and HCARI in lactate-
treated cells and a reduction in their expression in lactate and AZD3965 cotreated cultures
(Figure 3C-E). Given the effect of lactate as a metabolite, on the expression of MCT1
and HCARI, we subsequently analyzed its effect as a signal molecule through receptor
inhibition. Interestingly, our data showed that a lactate and 3-OBA cotreatment resulted in
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a significant reduction in HCARI protein expression as compared to lactate-treated cells
(Figure 3H-]). Taken together, these results support the hypothesis that lactate may prompt
its own import, promoting the expression of lactate transporters.

A @ Untreated @ Lactate 20 mM D @ Untreated @ Lactate 20 mM
@ AZD396510 M @ Lactate + AZD3965 @ 3-0BA3mM O Lactate + 3-OBA
20 XK 6 e
5 800 0 5 150+ —
[} )
o o 1
£ 159 600 | * £ 4 *
= | ] *%
[0 [0} a
o 10 Q o 8} 100
g 109 400 3
E 2 g 2 Bz
‘© . w© 2 .
E 54 200 £ %0
<} S
z z
0 T T T T T T T T T T T T 1 0- 0 T T T T T T T T T T T T 1 0-
0 4 8 12 16 20 24 28 32 36 40 44 48 Lactate - + - 0 4 8 12 16 20 24 28 32 36 40 44 48 Lactate + -+
) AZD3965 - -  + ' X B
Time (hours) Time (hours) 3-OBA &
B E
\ Untreated ][ Lactate20mm ][ 3-0BA3mM || Lactate +3-OBA

Untreated

Lactate 20 mM

AZD3965 10 uM | [ Lactate + AZD3965

i

24h

48h

F

. Untreated . Lactate 20 mM

c [l untreated ] Lactate 20 mM
] Azpsges 10um [l Lactate + AZD3965 [ 3-0BA 3mM [] Lactate +3-08A
24 hrs 48 hrs 24hrs  yyx 48 hrs
80 X% 80 o 70~ 70~ o
KXX* 607 *Ke¥
- RERK —
) 180 0 23 80 1 @ 40 2 50
2 2 P S 2
£ o e £ § 4o
= 404 = 404 KXXX = 50 O =
s Q = = 0 2 30
e e — —
S) S S S
R 20 R 20 = 40 R 201
10
0- 0- 30- 0-
Lactate + - + Lactate - + - + Lactate - + - Lactate - + -
AZD3965 - - + o+ AZD3965 - - + o+ 3-OBA - - + 3-0BA - - +

Figure 2. Effect of AZD3965 and 3-hydroxy-butyrate acid (3-OBA) on uveal melanoma cell prolifera-
tion and migration. (A) Real-time cell proliferation monitoring in 92.1 cells, using the xCELLigence
system following treatments with lactate (20 mM) and AZD3965 (10 uM); the cell index values were
normalized at the time of pharmacological treatments in order to obtain a normalized cell index. Each
dot expresses the average of four different experiments. (B,C) Representative micrograph (B) and
quantification (C) of human uveal melanoma cell migration analysis with the wound-healing assay
following treatments with lactate (20 mM) and AZD3965 (10 uM). Data are mean of three independent
experiments + SD. (D) Real-time cell proliferation monitoring in 92.1 cells, using the xCELLigence
system following treatments with lactate (20 mM) and 3-OBA (3 mM); the cell index values were
normalized at the time of pharmacological treatments in order to obtain a normalized cell index. Each
dot expresses the average of four different experiments. (E,F) Representative micrograph (E) and
quantification (F) of human uveal melanoma cell migration analysis with the wound-healing assay
following treatments with lactate (20 mM) and 3-OBA (3 mM). Data are mean of five independent
experiments & SD (two-way ANOVA). * p < 0.05; ** p < 0.01; ** p < 0.001; **** p < 0.0001.
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Figure 3. Effect of lactate and 3,5-dihydroxybenzoic acid (3,5-DHBA), AZD3965 and 3-hydroxy-
butyrate acid (3-OBA) in expression of monocarboxylate transporter 1 (MCT1) and HCART1 in uveal
melanoma cell line. (A,B) MCT1 and HCARI mRNA expression levels following 24 h of lactate
(20 mM) and AZD3965 (10 uM) treatment. (C-E) MCT1 and HCAR1 protein expression levels
following 24 h of lactate (20 mM) and AZD3965 (10 uM) treatment. (F,G) HCAR1 mRNA expres-
sion levels following 24 h of 3,5-DHBA (150 uM), lactate (20 mM), and 3-OBA (3 mM) treatment.
(H,I) HCART1 protein expression levels following 24 h of 3,5-DHBA (150 uM), lactate (20 mM), and
3-OBA (3 mM) treatment. Values represent the mean £ SD of experiments performed in quadrupli-
cate. The figures presented are representative of four independent experiments, and values represent
the mean + SD of experiments performed in quadruplicate (Mann-Whitney U test or two-way
ANOVA). *p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

2.4. Lactate Rewires Uveal Melanoma Metabolism Increasing mRNA Levels of Genes Involved in
Mitochondrial Metabolism

Since lactate supplementation inhibits cellular growth, we thought to investigate
whether this effect may be related to changes in cell metabolism. For this purpose, we ana-
lyzed a panel of mRNAs of genes involved in mitochondrial activity and energy metabolism.
Our results show that lactate treatment, both upon 24 and 48 h, increased by about four-
fold the relative mRNA levels of PPARG coactivator 1 alpha (PGCla), sirtuin 1 (SIRT1), and
transcription factor A, mitochondrial (TFAM), associated with an overall increase in ATP
synthase (ATP syn), cytochrome c oxidase subunit 4 (COX IV), COX II, and mitochondrial
NADH-ubiquinone oxidoreductase chain 4 (ND4) (Figure 4A). Interestingly, we also observed
a significant increase in mRNA expression levels of lactate dehydrogenase (LDHA) and
MCT4 in lactate-treated cells compared to untreated cells (Figure 4B). Given the effect on
cell migration and proliferation of HCARI1 receptor stimulation, we analyzed the mRNA
expression of the same genes even after treatment with the 3,5-DHBA agonist. Our analysis
revealed that HCARI activation induced a significant increase in mRNA expression levels
of SIRT1, PGCla, TFAM, ATPsyn, COXIl, COX IV, ND4, and LDHA (Figure 4C,D), but pro-
duced an opposite effect on MCT4 expression compared to lactate (Figure 4D), suggesting
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that the activation of the HCAR1 receptor causes the metabolic switch of the UM cells
toward oxidative metabolism.
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Figure 4. Effect of lactate, 3,5-dihydroxybenzoic acid (3,5-DHBA), and 3-hydroxy-butyrate acid
(3-OBA) in the expression of genes involved in mitochondrial metabolism. (A,B) mRNA expression
levels of SIRT1, PGC1a, TEAM, ATPsyn, COX 1I, COXIV, ND4, LDHA, and MCT4 following 24 h and
48 h of lactate (20 mM) treatment. (C,D) mRNA expression levels of SIRT1, PGCla, TEAM, ATPsyn,
COX 1I, COX1V,ND4, LDHA, and MCT4 following 24 h and 48 h of 3,5-DHBA (150 uM) treatment
(one-way ANOVA). (E,F) mRNA expression levels of SIRT1, PGCla, TFAM, ATPsyn, COX II, COXIV,
ND4 LDHA, and MCT4 following 24 h of lactate (20 mM) and 3-OBA (3 mM) treatment. Data are
shown via standard box-and-whiskers plot (two-way ANOVA). * p < 0.05; *** p < 0.001; *** p < 0.0001.
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Finally, we analyzed the genes involved in mitochondrial metabolism after receptor
blockade via the 3-OBA antagonist (Figure 4E,F) to link HCAR1 stimulation with the effects
on mitochondria observed in UM cell lines. Interestingly, our results show that the lactate
and 3-OBA co-treatment reverts the lactate-mediated effect, eventually decreasing LDHA
and MCT4 mRNA levels, along with SIRT1, PGCla, TFAM, COX 1I, COX IV, and ND4
(Figure 4E,F).

2.5. Lactate Supplementation Increases Euchromatin Rate and Quiescence in Uveal Melanoma Cells

Since lactate supplementation seems to impair UM progression, we thought to dis-
sect a possible mechanism by which lactate may exert its effect. For this purpose, we
analyzed by Operetta the chromatin relaxation index of 92.1 UM cells supplemented by
lactate (Figure 5A). Quantification displayed a significant decrease in percentage of hete-
rochromatin upon lactate supplementation (Figure 5B). Moreover, nuclei characterized by
a relaxed chromatin also showed enlarged nuclei (Figure 5C). To further corroborate the
role of lactate in promoting an euchromatic state, we thought to assess the level of histone
lactylation in our sample. We found a significant increase in the H3K18lac level in UM
cells treated with lactate as compared to untreated control cells (Figure 5D). An increased
euchromatic rate along with a decreased cell growth and enlarged nuclei are three of the
fingerprints associated with cellular quiescence. To corroborate this hypothesis, we tested
the expression, by qPCR, of five quiescence markers, namely p53, p21, CYTC, FOXO3, and
EZH2, which were all overexpressed upon lactate supplementation (Figure 5E). Overall,
our results provide a mechanism behind lactate supplementation and cell growth blockage.
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Figure 5. Lactate treatment reshaped 92.1 chromatin architecture. (A) Representative images showing
Operetta analysis on UM cells untreated (top left) or under lactate (20 mM) treatment (bottom left).
(B) Quantitative analysis of NucBlue coefficient of variance (CV) following lactate (20 mM) treatment.
(C) Correlative analysis relating NucBlue %CV and Nuclear morphology area. (D) H3K18lac protein
expression level following 24 h of lactate (20 mM) treatment. (E) mRNA expression levels of cellular
senescence markers (P53, P21, CYTC, FOXO3, and EZH?) following 24 h of lactate (20 mM) treatment.
Values represent the mean + SD of experiments performed in quadruplicate. Data are represen-
tative of four independent experiments, and graphs are mean + SD of experiments performed in
quadruplicate (Mann-Whitney U test). * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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2.6. Patients Characterized by Spindle-Shape Histological Type Shows Increased MCT4 and
HCAR1 Accumulation

To further corroborate our data indicating lactate as a metabolite able to inhibit cell
proliferation, we assessed MCT4 and HCAR1 expression levels on epithelioid cells versus
spindle cells of UM patients. Our results show a stronger signal in MCT4 and HCAR1 in
spindle cells as compared to epithelioid UM sections, showing diffuse and weak staining
for MCT4 and virtually absent HCAR1 (Figure 6). This evidence correlates with a less
aggressive tumor phenotype.

Epithelicid cells UM

] ¢

bt SN -&
L
\_‘H.._ F

. e T

Figure 6. Lactate transporter MCT4 and lactate receptor HCARI are overexpressed in advanced UM.
Representative pictures of the MCT4 and HCARI1 expression in human biopsies of patients with
epithelioid and spindle UM. Arrowheads indicate dark-brown pigmentation and arrows indicate
positive staining. Scale bars: 50 um.

3. Discussion

Despite its classification as a rare disease, UM is still the most common adult in-
traocular cancer. To date, valuable prognostic markers and a proper treatment aiming at
counteracting its progression are still missing [42,43]. For this purpose, understanding the
molecular mechanisms underlying UM progression may unveil new factors potentially
serving as prognostic or targetable factors. Our previous reports showed how macroH2A1,
an epigenetic factor involved in cell differentiation and the establishment of a heterochro-
matic state, may be an outstanding factor marking UM progression [44,45]. Furthermore,
it is well established that cancer may rewire its metabolism in order to promote its pro-
gression and cell fate [46,47]. Such a phenomenon is strongly affected by intercellular
communication, exchanges, and milieu conditioning of bystander cell populations, which
may significantly interfere with differentiation and regenerative processes, sustaining tu-
morigenesis and cell invasion [48-54]. Indeed, the milieu in which tumors are located
contains numerous non-tumor cell types, such as immune cells, inflammatory cells, mes-
enchymal cells, and endothelial cells, exerting physiological functions, but eventually
acting as pro-tumoral players [20,21,55].

In this work, we provided new insights on the role of lactate as a metabolite potentially
regulating UM progression. In this regard, we previously reported that lactate accumula-
tion may drive glioblastoma progression, serving as an oncometabolite promoting tumor
progression [41]. Interestingly, our results show that in UM, lactate supplementation im-
pairs tumor growth. In particular, evidence have been provided on how lactate behaves
either as signaling molecule by HCAR1-mediated cascade, and as a proper metabolite
through its import and export channels, namely MCT1 and MCT4, respectively [41,56].
Our results depict a scenario in which lactate impairs the growth of UM acting via MCT1,
rather than modulating HCARI1 cascade. These data are further supported by our re-
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sults, showing a strong increase in UM cell growth upon treatment with MCT1 selective
inhibitor AZD3965, eventually impairing lactate uptake. Interestingly, ours and other
groups already investigated the role of MCT1 in predicting tumor progression, using dif-
ferent cancer models [41,57-59]. However, while in these systems a positive correlation
between MCT1 expression and cancer progression has been reported, our data on UM
cells display the opposite trend, possibly relating to the role played by MCT1 on the tumor
context. Furthermore, MCT1 and MCT4 expression are strictly related to an increased
lactate level [41,60-63]. Interestingly, these data are supported by recent evidence showing
that lactate supplementation boosts the expression of its transporters, along with a boost
in OXPHOS activity [64,65]. Corroborating these data, our RT-qPCR results also show
an increase in OXPHOS-related genes. Of note, cancer cells relying on an OXPHOS-based
metabolism usually decrease their metastatic potential, as also supported by our scratch
assay analysis and recently reviewed [66]. These data are also corroborated by our ex
vivo analysis on UM tissue. Here, we showed that epithelioid cells, associated with
a better prognosis, display enhanced MCT4 accumulation compared to the more aggressive
spindle-cell specimens, as also supported by our GEO dataset analysis [67]. To dissect
the mechanism by which lactate decreases cell proliferation, we show here for the first
time that its supplementation enhances H3K18 lactylation on UM cells, a phenomenon
by which lactate promotes an euchromatin state, also characterized by enlarged nuclei.
Therefore, it has been reported that quiescent cells display a reduced proliferation, a more
relaxed chromatin, and they may rely on oxidative phosphorylation over glycolysis [68,69].
Conversely, our data showed an increased expression of quiescent-related markers, corrobo-
rating our model and depicting a scenario in which lactate impairs UM growth, prompting
cellular quiescence.

Overall, this work highlighted how lactate plays a role strongly dependent on the
tumor context (Figure 7). In the UM cellular model, we showed that increase in MCT4 and
HCARI1 expressions were strictly related to the spindle-shaped histological type.

Glucose
GLUT1

l Cell proliferation

Glycolitic Cancer Cells

Oxidative TME Ceﬂi 0
/"‘”
Glucose
IMMUNE - ESCAPE
TUMOR
Lactate s | PROLIFERATION

Tumor Microenvironment (TME) cells © ‘ MIGRATION

I OXPHOS
I Quiescence

Glyr:ohtrc TME Cells Oxidative Cancer Cells

Figure 7. Lactate reshapes the metabolic reprogramming and induces quiescence phenotype in uveal
melanoma cells.
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4. Materials and Methods
4.1. Cell Culture and Pharmacological Treatments

Human uveal melanoma cells (92.1) were purchased from ATCC Company (Milan,
Italy). Briefly, cells were cultured in RPMI1640 medium with 10% fetal bovine serum (FBS)
(cat. no. 10082147), 100 U/mL penicillin, and 100 U/mL streptomycin (cat. no. 15070063;
all from Gibco, Waltham, MA, USA) and expanded once they reached 80% confluency
using trypsin-EDTA solution (0.05% trypsin and 0.02% EDTA). Lactate (Sigma-Aldrich,
Milan, Italy), AZD3965, 3,5-dihydroxybenzoic acid (3-5-DHBA) (Sigma-Aldrich, Milan,
Italy), and 3-hydroxybutyric acid (3-OBA) (Sigma-Aldrich, Milan, Italy) were added to
cell culture at final concentrations of 20 mM, 10 uM, 150 uM, and 3 mM, respectively,
when needed.

4.2. RNA Extraction and RT-gPCR

Total RNA extraction was performed as previously described [70], using Trizol®
reagent (category no. 15596026, Invitrogen, Carlsbad, CA, USA). cDNA was synthesized
by High-Capacity cDNA Reverse Transcription kit (category no. 4368814, Applied Biosys-
tems, Foster City, CA, USA). RT-qPCR was performed using Step-One Fast Real-Time
PCR (Applied Biosystems, Foster City, CA) and SYBR Green PCR MasterMix (category
no. 4309155, Life Technologies, Monza, Italy).(primers’ sequences are shown in Table 1).
Primers (Table 1) were purchased from Metabion International AG (Planneg, Germany).

Table 1. Primers’ list.

Primer Forward (5 —3) Reverse (5 —3) Accession Number
PGClalpha ATGAAGGGTACTTTTCTGCCCC GGTCTTCACCAACCAGAGCA NM_001330751.2
SIRT1 AGGCCACGGATAGGTCCATA GTGGAGGTATTGTTTCCGGC NM_012238.5
COX 1V CAGCTCTCGGAAGCGTTGTA GATAACGAGCGCGGTGAAAC NM_001318802.2
SLC16A1 TGTTGTTGCAAATGGAGTGT AAGTCGATAATTGATGCCCATGCCAA NM_003051.4
SLC16A3 TATCCAGATCTACCTCACCAC GGCCTGGCAAAGATGTCGATGA NM_001206950.2
HCARI1 TTCGTATTTGGTGGCAGGCA TTTCGAGGGGTCCAGGTACA NM_032554.4
LDHA GGATCTCCAACATGGCAGCCTT AGACGGCTTTCTCCCTCTTGCT NM_005566.4
ATP5F1A CCGCCTTCCGCGGTATAATC ATGTACGCGGGCAATACCAT NM_001001937.2
P53 CTACAGTACTCCCCTGCCCT GGGGCCAGACCATCGCTA NM_001276697.3
P21 GTCAGTTCCTTGTGGAGCCG GCCATTAGCGCATCACAGTC NM_001374511.1
CYTC CCGCCAATAAGAACAAAGGCATC ATAAGGCAGTGGCCAATTATTACTC NM_018947.6
FOXO3 GTGTTCCAGGGGAAGCACAT GCTCTTGCCAGTTCCCTCAT MK390615.1
EZH2 GACTGCTTCCTACATCGTAAGTG CTTTGCTCCCTCCAAATGCT XM_011515892.2
B-Actin CCTTTGCCGATCCGCCG AACATGATCTGGGTCATCTTCTCGC NM_001101.5

4.3. Western Blot Analysis

Protein detection was performed by incubating MCT1 (1:1000; AB90582, Abcam,
Cambridge, UK) and 3-actin (1:1000; anti-mouse, cat. no. 49675; Cell Signalling Technology,
Milan, Italy) overnight at 4 °C. For histone protein extraction, we used Abcam histone
extraction kit (AB113476, Abcam, Cambridge, UK) according to manufacturer’s protocol.
For protein detection, rabbit primary H3K18Lac (1:1000; PTM-1406, PTM-biolabs, IL, USA)
and H3 (1:1000; AB18521, Abcam, Cambridge, UK) were used. The next day, the membranes
were washed three times in PBS for 5 min and incubated with secondary infrared anti-
mouse IRDye800CW (1:5000) in PBS/0.5% Tween-20 for 1 h at room temperature. All
antibodies were diluted in Odyssey Blocking Buffer. Protein bands intensity was quantified
and normalized to (3-actin levels [71-74].

4.4. Real-Time Monitoring of Cell Proliferation

xCELLigence experiments were performed using the Real-Time Cell Analysis (RTCA)
dual plate (DP) instrument (Roche Applied Science, Mannheim, Germany, and ACEA
Biosciences, San Diego, CA, USA) as previously described [75]. Briefly, the optimal seeding
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number was determined by cell titration and growth experiments. After seeding the optimal
cell number (3000 cells/well), the cells were treated with lactate, AZD3965, 3,5-DHBA, and
3-OBA, and automatically monitored every 15 min for 24 h.

4.5. Effects of Pharmacological Treatments on Cell Migration

Cell migration was examined by employing the wound-healing assay [76]. Briefly,
cells were seeded in 24-well dishes and cultured until confluence. At this stage, lactate,
AZD3965, 3,5-DHBA, or 3-OBA were added where needed and cell culture was scraped
with a 200 mL micropipette tip. Wound closure was detected at 0, 24, and 48 h. The
uncovered wound area was measured and quantified at different intervals with Image]
v1.37 (NIH, Bethesda, MD, USA).

4.6. Immunocytochemistry Analysis

Immunocytochemistry was carried out as previously reported [77]. Briefly, mitochon-
dria were stained with 200 nM MitoTracker Red CMXRos probe (Thermo Fisher Scientific,
Milan, Italy) for 30 min at 37 °C, according to the manufacturer’s instructions. Cells were
treated with the dye for 30 min at 37 °C, and it was removed after 30 min. At this stage,
cells were washed 3 times in phosphate-buffered saline (PBS) to remove the unbound probe.
Nuclei were stained by NucBlue (two drops per mL) (Thermo Fisher Scientific, Milan, Italy)
for 15 min at 37 °C, according to the manufacturer’s instructions. Finally, cells were treated
with lactate 20 mM. For image acquisition, we used Operetta (Perkinelmer, MA, USA),
where cells were maintained at 37 °C and images were captured at 24 h after treatment.
Data collected were analyzed by Harmony software (Perkinelmer, MA, USA).

4.7. Patients” Cohort

Primary UM samples were retrospectively collected after they were surgically enu-
cleated from October 2009 to October 2019 at the Ophthalmologic Clinic of the University
of Catania. For all of them, enucleation was the only treatment option. As previously
described [67], the corresponding clinical pathological data were retrieved from the original
pathological reports. The present research complied with the Helsinki Declaration and
all experiments were approved by the local Ethics Committee, Comitato Etico Catania 1,
University of Catania (ID: 003186-24). The previously reported criteria of exclusion were
used for case selection [78].

4.8. Immunohistochemical Analysis

Immunohistochemical analysis was performed as previously described [79]. Briefly,
deparaffinized and pretreated slides were incubated for 30 min at 37 °C with MCT4 and
HCART1 (1:1000; AB90582, Abcam, Cambridge, UK) antibody. Immunostaining specificity
was assayed omitting antibodies.

4.9. Statistical Analysis

Statistical analysis was performed using Prism Software using Mann-Whitney U
test for comparison of n = 2 groups. For comparison of n > 3 groups, one-way or
two-way analysis of variance (ANOVA) with Holm-Sidak post hoc test for multiple com-
parisons were used where appropriate (Graphpad Software Inc., California, USA, RRID:
rid_000081). Data are expressed as mean + SD, unless otherwise stated. For all statistical
tests, p-values < 0.05 were considered statistically significant.
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