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Abstract: Different subsets of dendritic cells (DCs) participate in the development of rheumatoid
arthritis (RA). In particular, myeloid DCs play a key role in the generation of autoreactive T and
B cells. Herein, we undertook a literature review on those synthetic and natural compounds that
have therapeutic efficacy/potential for RA and act through the regulation of myeloid DCs. Most of
these compounds inhibit both the maturation of DCs and their secretion of inflammatory cytokines
and, subsequently, alter the downstream T-cell response (suppression of Th1 and Th17 responses
while expanding the Treg response). The majority of the synthetic compounds are approved for the
treatment of patients with RA, which is consistent with the importance of DCs in the pathogenesis
of RA. All of the natural compounds are derived from plants. Their DC-modulating effect has been
demonstrated both in vitro and in vivo. In addition, these natural products ameliorate arthritis in
rodents and are potential therapeutics for human RA.

Keywords: dendritic cell; drug; natural product; plant; rheumatoid arthritis; synthetic compounds; treatment

1. Introduction

Rheumatoid arthritis (RA) is a polyarticular inflammatory illness, which typically
affects the hands and feet [1]. The prevalence of RA is 1% worldwide, with a female
predominance [2,3]. The average age at the onset of RA is between 40 and 50 years, and
the male:female ratio is from 1:2 to 1:3 [4]. A variety of joints are affected by RA, such as
those of the hand, foot, wrist, knee, elbow, and ankle [5]. Patients with RA typically present
with joint swelling and pain, and this may progress to notable functional impairment,
negatively impacting the physical and mental well-being of the patients [6]. Predisposing
factors for RA are genetic predisposition, immunological dysregulation (loss of immune
self-tolerance and generation of autoantibodies), sex hormones (estrogen), infection, and
environment [5,7]. The pathological manifestations of RA include persistent inflammation
in synovial joints, pannus formation, progressive erosion of periarticular bone, and severe
destruction of joint structure [8]. Furthermore, systemic inflammation is harmful to a variety
of organ systems, including the heart, kidney, lung, vascular system, and neurological
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system [9,10]. If RA is not well treated with systemic therapies, the damage to the joints
and other organs will culminate in significant functional impairment and even death [11].

The etiology of RA remains elusive. Currently, several factors are linked to its patho-
genesis [12]. Environmental factors such as smoking contribute to the development and
severity of RA [13]. In particular, smoking interacts with the genetically determined shared
epitope alleles of human leukocyte antigen (HLA)-DR to increase the risk of developing
RA [14]. Periodontitis and its pathogens, Porphyromonas gingivalis and Aggregatibacter
actinomycetemcomitans, are involved in the breakdown of immune tolerance in RA [15,16].
Dysbiosis of the gut microbiota leads to chronic inflammation, which facilitates the gen-
eration of RA [17]. The dysregulation of the immune system, e.g., the breakthrough of
immune tolerance to self-antigens, also plays a key role [3]. Smoking induces lung inflam-
mation and facilitates the local citrullination of proteins. The resultant neoepitope could
stimulate the immune system to produce autoantibodies [18]. In line with that, circulating
autoantibodies, such as rheumatoid factors (RFs) and anti-citrullinated protein antibod-
ies (ACPAs), are detected before the onset of RA symptoms, reflecting the gradual and
progressive nature of the underlying autoimmune process [19,20]. Complex interactions
between immune cells and synovial tissue result in progressive bone erosion [19,20]. The
proliferating T and B lymphocytes, monocytes, and neutrophils together with synovial
fibroblasts contribute to joint inflammation [21]. Such inflammation causes the synovium
to thicken and results in the formation of pannus, an aberrant tissue that invades nearby
articular structures. In addition, pro-inflammatory chemokines and cytokines, as well
as matrix metalloproteinases, are produced by the pannus tissue, contributing further to
cartilage and bone degradation [21,22].

In the joint microenvironment, inflammation starts first in the synovium and pro-
gresses to the interstitial zone covered by intimal synovial fibroblasts and macrophage-like
synoviocytes (MLSs) [4,23,24]. The interstitial zone is made up of infiltrating macrophages,
mast cells, T cells, B cells, and synovial fibroblasts. B cells transform into plasma cells,
which produce RFs and ACPAs [25]. Macrophages and synovial fibroblasts produce an
abundance of pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6, and tumor necro-
sis factor (TNF)-α [26]. Moreover, synovial cells release TNF-α and tissue-degrading matrix
metalloproteinases (MMPs), and they in turn trigger the differentiation and proliferation of
osteoclasts [4]. Hence, in a vicious cycle, additional macrophages, fibroblasts, and lympho-
cytes are recruited and activated, generating an exaggerated inflammatory response [26].
Consistent with this picture, high levels of IL-1, IL-6, IL-8, IL-17, TNF-α, MMPs, and granu-
locyte colony-stimulating factor (G-CSF) have been found in the synovium and synovial
fluid of joints affected by RA. Furthermore, vascular endothelial growth factor (VEGF)
and the receptor activator of nuclear factor-κB ligand (RANKL) can regulate osteoclasts
and cause bone degradation. VEGF also promotes angiogenesis and the recruitment of
additional inflammatory leukocytes, further promoting joint inflammation [27].

Dendritic cells (DCs) are crucial in the elicitation of the inflammatory response. Numer-
ous studies have explored the potential of DC modulation in the treatment of patients with
RA. Notably, several synthetic and natural compounds have been implicated based on the
treatment strategy. Here, we summarize recent developments in regard to DC-modulating
compounds in RA treatment. Our literature review is expected to provide evidence on new
therapeutics for RA.

2. Dendritic Cells

DCs are cells that present antigens by means of their specialized function. DCs
participate in the first-line innate immune response and elicit adaptive immune reactions.
These cells collect foreign antigens and present to the immune system, and they are key
to the downstream inflammatory response. DCs are sentinels for the immune system and
resident in most organs. These cells are characterized by their distinct and unique “tree-
like” dendritic shape, in addition to high levels of expression of major histocompatibility
complex (MHC) class II molecules [28]. DCs are a heterogeneous population in terms of
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phenotypic and transcriptional profile. Such heterogeneity is shown in the development
stage, maturation status, and tissue context. DC subsets have diverse functions [29,30]:
conventional DC1 (cDC1) is capable of cross-presentation of antigen to CD8+ T cells;
cDC2 and blood monocyte-derived DCs (moDCs) can initiate CD4+ T-cell responses (e.g.,
Th1, Th2, and Th17) dependent on the inflammatory signals they receive; plasmacytoid
DCs (pDCs) rapidly produce type I interferon (IFN) once they encounter danger signals.
In particular, myeloid DCs can prime the downstream T-cell response and promote the
activation, expansion, and differentiation of CD4+ effector T cells. Infectious agents or
endogenous danger signals (e.g., extracellular DNA and RNA) interact with DCs through
pattern recognition receptors (e.g., Toll-like receptors) that are expressed on the surface
of DCs. In turn, DCs release cytokines and growth factors that pivot the downstream T-
and B-cell immune responses. In addition, DCs interact with other immune cells, such as
natural killer and innate lymphoid cells (ILCs), during the immune response [31–34].

DCs are categorized into two functional states: mature and immature. Mature and
immature DCs differ in a number of aspects. The ability of mature DCs to secrete a
myriad of cytokines and pivot the activation of different lineages of antigen-specific T
lymphocytes (e.g., Th1, Th2, Th17, and Treg cells) in secondary lymphoid organs is the most
important difference [35,36]. Pathogen-associated molecular patterns (PAMPs), or damage-
associated molecular patterns (DAMPs), and several inflammatory cytokines promote
DC maturation [37,38]. During the maturation process, DCs express CD80, CD86, and
MHC-II on the surface and downregulate their phagocytic capacity, thereby facilitating
their interaction with T cells [39]. It should be noted that researchers have already examined
the therapeutic potential of DC-based immunotherapy (e.g., regulating DC maturation) in
malignant, infectious, and autoimmune diseases [40,41]. For example, the administration
of growth factor FLT3 ligand followed by intratumoral poly I:C injection expands tumor
DCs and inhibits melanoma growth in mice [42]. The pulmonary delivery of activated DCs,
which are primed by the Mycobacteria tuberculosis antigen, could enhance vaccine-induced
protection and limit Mycobacteria growth in vaccinated mice [43]. Self-peptides without
adjuvants, delivered by antibodies targeting the c-type lectin receptor DEC205 on DCs,
lead to the generation of tolerance and effectively ameliorate autoimmune diseases, such as
experimental autoimmune encephalomyelitis, diabetes, and, colitis, in mice [41].

Our present review focuses on myeloid DCs in RA and, for simplicity, refers to myeloid
DCs as DCs in the following text.

3. The Role of Dendritic Cells in Pathogenesis of RA

DCs are key to the balance between immune activation and tolerance [44]. Dysregu-
lated DCs play a crucial role in autoimmunity. In the absence of DCs, a fatal autoimmune
phenomenon develops in mice [45,46]. On the other hand, antigen presentation by DCs
and the formation of an immunological synapse with T cells [47] require two activating
signals, which lead to T-cell activation [48,49]. The co-stimulatory molecules include lym-
phocyte function-associated antigen 1 (LFA-1)/intercellular adhesion molecule 1 (ICAM-1),
CD2/LFA-3, and CD28/B7-1 [50,51]. Some fusion proteins and monoclonal antibodies tar-
geting these co-stimulatory molecules have been developed to treat autoimmune diseases,
including RA [52]. These biological agents, including cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4)-Ig, LFA-3-Ig, and anti-CD3 monoclonal antibody, could prevent the
successful engagement of DCs by T cells, achieving significant therapeutic efficacy [53,54].
All DC subsets are known to infiltrate joints in patients with RA and even appear in lymph
nodes before arthritis development (Figure 1) [55]. In addition, monocyte-derived DCs from
patients with RA, when compared with healthy controls, secrete more pro-inflammatory
chemokines (CXCL8 and CCL3) and cytokines (IL-6 and IL-23); skew the T-cell differentia-
tion toward the Th17 lineage at the expense of regulatory T (Treg) cells; and attract more
macrophages, neutrophils, and monocytes. Meanwhile, synovial DCs in patients with RA
express activation markers, stimulate T cell proliferation, and attract effector T cells with
greater chemokine (CCL17, CXCL9, and CXCL10) secretions. An earlier study in mice
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reported that arthritis is induced by intra-articular injection of collagen-specific DCs [46].
Myeloid DCs likely contribute to the initiation and perpetuation of RA [56]. First, DCs
prime and activate T cells, leading to local and systemic inflammation in RA. Second, DCs
secrete a myriad of inflammatory mediators that drive the activation of innate immune
cells [46,57], and ectopic lymphoid structures appear in joints affected by RA [58]. Of note,
collagen II has been shown to induce DC maturation, and mature DCs, in turn, induce
collagen degradation in the joint tissue. Such a vicious cycle facilitates joint destruction [59].
In contrast to the contributory role of myeloid DCs, pDCs appear to inhibit the generation
of RA. Depleting pDCs exacerbate arthritis and the inflammatory response in mice [60].
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Figure 1. An illustration of the pathogenic role of dendritic cells in rheumatoid arthritis. ACPA, anti-
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4. DC-Targeting Strategies for the Treatment of RA

Due to the substantial contribution of DCs to RA pathogenesis, various DC-modulating
therapies have been developed. Current biological therapies of RA ameliorate the disease
by targeting downstream products of DCs [44], such as TNF-α, IL-1 (α and β), and IL-
6 [61]. Emerging RA therapies exploit the tolerogenic capacity of DCs. Tolerogenic DCs
can be generated from myeloid precursors ex vivo, loaded with antigens and manipulated
to suppress the autoimmune response in vivo. Such DCs induce T-cell anergy and/or
regulatory T cells [62,63]. To generate tolerogenic DCs, many researchers have pulsed bone-
marrow-derived dendritic cells (BMDCs) and human moDCs with rosiglitazone, vasoactive
intestinal peptide, dexamethasone/vitamin D3, nuclear factor κB (NF-κB) inhibitor, or
nuclear receptors REV-ERB inhibitor [64–68]. In the mouse model and patients with RA,
re-infusion of tolerogenic DCs alleviate their disease symptoms. Larger clinical trials to
validate these tolerance-inducing approaches are required before their application in clinical
practice [69].

5. Compounds with Therapeutic Efficacy/Potential for RA through DC Regulation

Recently, several compounds have been shown to regulate DCs and, therefore, amelio-
rate RA symptoms in animal models and humans. We herein summarized these compounds
and described their DC-modulating effects and therapeutic efficacy in RA.
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5.1. Synthetic Compounds

We present a variety of synthetic compounds with potential therapeutic efficacy for
RA through the regulation of DCs [70–83]. Most of these compounds, with the exception of
3-bromopyruvate, are currently approved for clinical use for patients with RA (Table 1).
Nevertheless, the development of these medications did not depend on their pharma-
cological effects on DCs. Rather, the beneficial effects relevant to DCs were found after
their clinical use. We noted that these approved medications, including conventional, bio-
logical, and targeted synthetic disease-modifying antirheumatic drugs (DMARDs), could
suppress DC function and downstream T-cell response based on evidence from in vitro
experiments. These findings further support the importance of DCs in the pathogenesis of
RA. Mechanistically, conventional DMARDs exert their inhibitory effects on DCs through
mechanisms other than their known pharmacological actions (Figure 2). These conven-
tional DMARDs have a variety of actions, such as downregulating the expression of TLR9
(hydroxychloroquine) [71], suppressing the formation of reactive oxygen species (ROS)
and Na+/H+ exchanger activity (involved in the regulation of cytosolic pH and migration)
(azathioprine) [75], and suppressing nuclear factor-κB (NF-κB) activation (leflunomide and
sulfasalazine) [72,76] in DCs. Biological DMARDs primarily exert their effect through the
inhibition of specific cytokines. Inflammatory cytokines, such as TNF-α and IFN-α, could
stimulate DC maturation [84]. This may partly explain their in vivo inhibitory effects on
DCs as a consequence of dampened inflammation after the administration of biological
DMARDs. The inhibitory effect of these biological DMARDs on DC function in vitro is
presumably mediated through either the autocrine pathway or reverse signaling [77]. For
targeted synthetic DMARDs, such as Janus kinase (JAK) inhibitors, intracellular signaling
of multiple cytokines can be inhibited. Particularly, type I IFN signaling through JAK1 is
suppressed, and DC function is inhibited in a way similar to that described above [83].
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Table 1. Synthetic compounds with therapeutic efficacy/potential for rheumatoid arthritis and their
pharmacological effects on dendritic cells (DCs).

Synthetic Compounds In Vitro Effect on DCs In Vivo/Ex Vivo Effect on DCs Reference Number

3-bromopyruvate
Suppressed maturation and
secretion of inflammatory
cytokines of BMDCs

Suppressed downstream Th17
response and increased Treg response [70]

Conventional DMARDs

Hydroxychloroquine

Suppressed maturation,
migration, secretion of
inflammatory cytokines in
peripheral blood DCs, and
maturation and migration
of BMDCs

Decreased number of DCs and their
maturation in lymph node of mice [71]

Sulfasalazine
Suppressed maturation of
moDCs and downstream
T-cell proliferation

N.A. [72]

Methotrexate N.A. Suppressed maturation of lymph
node and splenic DCs in mice [73]

Azathioprine

Suppressed differentiation,
activation, migration, and
secretion of inflammatory
cytokines of moDCs and
downstream
T-cell proliferation

N.A. [74,75]

Leflunomide

Suppressed maturation and
secretion of inflammatory
cytokines of moDCs
and downstream
T-cell proliferation

N.A. [76]

Biologic DMARDs

Infliximab
(an anti-TNF-α monoclonal
antibody)

Increased moDC apoptosis,
suppressed maturation of
mDCs, and downstream T-cell
proliferation and Th1
response while increasing
Treg response

Increased blood DCs [77,78]

Etanercept (a TNF-α receptor
fusion protein)

Suppressed maturation and
migration of BMDCs

Reduced number and suppressed
maturation and migration of lymph
node DCs and downstream T- and
B-cell proliferation in mice

[79]

Adalimumab (an anti-TNF-α
monoclonal antibody)

Suppressed maturation of
moDCs N.A. [80]

Tocilizumab (an anti-IL-6
receptor antibody) N.A. Decreased blood

DCs [81]

Targeted synthetic DMARDs

Tofacitinib
Suppressed differentiation,
activation, and maturation of
moDCs

N.A. [82,83]

Baricitinib Suppressed maturation of
moDCs N.A. [83]

BMDCs: bone-marrow-derived dendritic cells; DMARDs: disease-modifying antirheumatic drugs; IL: interleukin;
moDCs: monocyte-derived dendritic cells; N.A.: not available; TNF: tumor necrosis factor.
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5.2. Natural Compounds

Natural products are a rich source of potential therapies for various diseases. For
instance, cyclosporine, an immunosuppressant often used in patients with transplantation
and autoimmune diseases, including RA, is initially extracted from a fungus [85]. Pilo-
carpine, a parasympathetic agonist for the treatment of dry mouth, is found in a Brazilian
plant [86]. In addition, the side effects of these natural products are presumably mild,
particularly if they are extracted from herbs or foods, which have been consumed by
humans for thousands of years. Herein, we summarized the natural products used as
potential therapeutic agents for RA through the regulation of DCs (Table 2) [87–95]. All
these compounds are extracted from plants. Only cyclosporine has been approved for RA
treatment. These compounds suppress the maturation of DCs and, in turn, their ability to
secrete inflammatory cytokines, such as TNF-α, IL-6, etc.; to stimulate T cell proliferation; to
stimulate B cells to produce antigen-specific antibodies; and to pivot T helper cells toward
the Th1 and Th17 responses (Figure 3). Such effects are reported in both in vitro and in vivo
experiments. In rodent models, these compounds ameliorate experimental arthritis. In
terms of an underlying mechanism, these compounds inhibit mitogen-activated protein
kinase (MAPK) and NF-κB signaling (atractylodin and naringenin) [88,93], downregulate
chemokine receptor 4 (CXCR4) (apigenin) [87], and induce indoleamine-2,3-dioxygenase
(IDO) expression (epigallocatechin-3-gallate) [92] in DCs. The mechanisms of these com-
pounds appear to be different from those of synthetic compounds as mentioned above.
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Table 2. Natural compounds with therapeutic potential for rheumatoid arthritis (RA) and their
pharmacological effects on dendritic cells (DCs).

Compounds Source Animal Models of RA In Vitro Effect on DCs In Vivo Effect on DCs Reference Number

Apigenin Matricaria
chamomilla CIA in mice

Suppressed maturation,
migration, and secretion
of inflammatory
cytokines in BMDCs

Suppressed number
and maturation of
lymph node DCs

[87]

Atractylodin Atractylodis
rhizoma CIA in mice

Suppressed maturation
and secretion of
pro-inflammatory
cytokines and nitric oxide
of BMDCs,
and downstream
T-cell proliferation

Suppressed splenic DC
maturation and
downstream anti-CII
antibody production
and splenic
Th1/Th17 responses

[88]

Berberine Berberis spp. and
Coptis spp. CIA in mice

Induced apoptosis and
suppressed maturation
of BMDCs

Induced apoptosis and
suppressed maturation
of splenic and lymph
node DCs with
suppressed anti-CII
antibody production,
and downstream
collagen-specific T-cell
proliferation and Th1
and Th17 responses

[89]

Crotonoside Croton tiglium CIA in mice

Suppressed
differentiation,
maturation, production
of inflammatory
cytokines in BMDCs, and
downstream T-cell
activation and
Th1/Th17 responses

Suppressed DC
infiltration of joint,
splenic DC maturation,
and downstream Th1
and Th17 responses

[90]

Cyclosporine Tolypocladium
inflatum N.A.

Suppressed maturation
and secretion of
inflammatory cytokines
of BMDCs and
downstream T-cell
response

N.A. [91]

Epigallocatechin-
3-gallate

Camellia sinensis
(green tea) CIA in mice

Increased IDO expression
in splenic DCs
and downstream
Treg response

Increased
IDO-producing lymph
node DCs, downstream
Treg response, and
suppressed anti-CII
antibody production

[92]

Naringenin Citrus spp. CIA in mice

Suppressed maturation,
migration, and secretion
of inflammatory
cytokines in BMDCs
and downstream
T-cell proliferation

Suppressed anti-CII
antibody production
and downstream Th1
and Th17 responses in
the spleen

[93]

Paeoniflorin-6′-
O-benzene
sulfonate (CP-25)

Paeonia Adjuvant-induced
arthritis in rats

Suppressed maturation
and secretion of
inflammatory cytokines
of BMDCs
and downstream
T-cell proliferation

Suppressed maturation
of peripheral blood
DCs in patients

[94]

Total glucosides
of paeony Paeonia spp. CIA in mice

Suppressed maturation,
production of
inflammatory cytokines
of BMDCs,
and downstream
Th1/Th17 responses

Suppressed splenic DC
maturation, secretion of
inflammatory
cytokines, and
downstream Th1 and
Th17 responses

[95]

BMDCs, bone-marrow-derived dendritic cells; CIA, collagen-induced arthritis; CII, collagen type II; IDO,
indoleamine-2,3-dioxygenase; N.A., not available.
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6. Limitations

Our review is limited in several respects. First, some of these compounds, while
exerting inhibitory effects on DC function, also affect other immune cells. We could not
determine whether the suppression of DCs primarily leads to the alleviation of arthritis
symptoms, although previous animal and human studies demonstrated the therapeutic
efficacy of tolerogenic DCs in RA. Second, the toxicity of the natural compounds is not fully
addressed in these studies, though they show no cytotoxicity in DCs. For instance, adverse
effects on other organ systems, such as the liver and kidneys, should be further investigated
before clinical use. Third, there is limited examination of the therapeutic efficacy of the
natural compounds in primates and in humans. Nevertheless, it is worthwhile at this stage
to summarize the relevant research findings of these compounds and find novel agents
with therapeutic potential.

7. Conclusions

DCs represent the link between the systems of innate and adaptive immunities, and
they are critical in the aberrant immune response in patients with RA. In line with this,
most medications approved for RA treatment have been shown to suppress DC function
and downstream T-cell response. Furthermore, several natural compounds, principally
derived from plants, also inhibit the maturation and secretion of inflammatory cytokines in
DCs, and downstream T- and B-cell responses, as demonstrated by in vitro and in vivo ex-
periments. Furthermore, in the mouse model, these natural compounds are therapeutically
effective against RA symptoms. They have promising therapeutic potential for RA treat-
ment. Nevertheless, their absorption, distribution, metabolism, excretion, and potential
toxicity to major organ systems (the cardiovascular, lung, liver, kidney, hematological, and
reproductive systems) in humans should be determined. Genotoxicity and carcinogenicity
studies should be undertaken. Moreover, these natural compounds may need to undergo
modification through either chemical synthesis or biosynthetic engineering to enhance
their efficacy, obtain a better pharmacokinetic profile, and reduce their toxicity [96]. Further
human studies and even randomized controlled trials should then be implemented to
explore their clinical efficacy and toxicity.
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