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Abstract: Melilotus albus is a high-quality forage, due to its high protein content, and aboveground
biomass and salt tolerance. Rab (Ras-related protein in the brain) proteins are the largest GTPase
family which play a key role in intracellular membrane transport, and many Rab genes have been
identified in eukaryotes. The growth and distribution of M. albus are severely hampered by soil
salinization. However, little is known about candidate genes for salt tolerance in M. albus. In this
study, 27 Rab family genes were identified for the first time from M. albus, and divided into eight
groups (Groups A-H). The number of introns in MaRabs ranged from one to seven, with most genes
containing one intron. In addition, most MaRab proteins showed similarities in motif composition.
Phylogenetic analysis and structural-domain comparison indicated that Rab family genes were
highly conserved in M. albus. Members of the MaRab gene family were distributed across all eight
chromosomes, with the largest distribution on chromosome 1. Prediction of the protein interaction
network showed that 24 Rab proteins exhibited protein–protein interactions. Analysis of the promoter
cis-acting elements showed that MaRab-gene family members are extensively involved in abiotic stress
responses. RNA-seq data analysis of the MaRab-gene-expression patterns suggested that the Rab gene
family possesses differentially expressed members in five organs and under salt stress, drought stress,
and ABA (Abscisic Acid) treatment. Differentially expressed genes under drought stress, salt stress
and ABA stress were validated by quantitative real-time PCR. Furthermore, heterologous expression
in yeast was used to characterize the functions of MaRab1 and MaRab17, which were upregulated
in reaction to salt stress. In summary, this study provided valuable information for further research
into the molecular mechanism of the response of M. albus to saline stress, as well as the possibility of
developing cultivars with high salt-resistance characteristics.

Keywords: Rab genes; salt tolerance; heterologous expression; expression pattern; Melilotus albus

1. Introduction

The agriculture and animal-product industry plays a very significant role in the world,
and is increasingly developing as a modern area of economic activity [1]. However, forage
plants often suffer from abiotic stress as a primary challenge. Soil salinization is a major
problem in global agricultural production [2]. Usually, abnormal climate conditions, such as
extreme drought or excessive application of chemical fertilizers, allow a high accumulation
of salts on the soil surface, interfering with the ability of plant roots to function properly in
nutrient uptake and thus undermining the ability of plants to accumulate or even maintain
their current biomass, ultimately causing imbalanced agroecosystems [3]. There is a direct
link between salinity stress and dysregulation of the plant cell-cycle, and it leads to a low
proliferation rate of cells [4]. Salt stress is a fatal challenge for forage-plant production, and
reduces profit in global agriculture year after year. In response to saline stress, plants could
develop several strategies to survive and maintain biomass; for example, by regulating the
expression of genes that control levels of cytoplasmic salt-ion concentration [5].
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M. albus is an annual or biennial herb of the Meadowsweet genus (Melilotus) in
the family Fabaceae [6]. It can be used as green fertilizer and as forage. M. albus has
a well-developed root system that penetrates deep into the soil and grows well in clay
soil, sandy soil, and other infertile soil [7]. M. albus is widely distributed, and has strong
stress-resistance [8–10]. M. albus has strong vitality and adaptability, with excellent char-
acteristics, such as drought tolerance, cold tolerance, infertile-soil tolerance, and salinity
tolerance [11,12]. As long as the salt content does not exceed 0.30%, M. albus can grow and
develop very well [13].

Rab proteins, as a part of the Ras superfamily of small GTPases, have essential at-
tribute characteristics similar to those of small GTPases in other subfamilies [14]. The Rab
protein is a small GTP-binding protein composed of approximately 200 amino acids [15].
Rab proteins are present in all eukaryotes. Sequence analyses of Rab genes in different
species have indicated that the Rab protein was highly conserved in eukaryotic evolution,
although it shows quantitative diversity and functional differentiation among different
organisms [16]. Rab proteins are very conserved throughout species, characterized by a
conserved G-domain and highly varied N- and C-terminal sections [17]. Rab proteins
interact with upstream regulators and specific downstream-effectors, and are coupled with
GTP binding and hydrolysis processes acting at different stages of vesicle transport [18].

The plant endomembrane system does not only participate in the regulation of cell
walls, plasma membranes, and vesicle biosynthesis, but also plays a crucial role in multiple
stress responses [19]. McRab5b, of the Rab5 family in Mesembryanthemum crystallinum, has
been induced in response to 400 mmol/L NaCl treatment [20]. Rice OsRab7, Arabidopsis
AtRab7, wolfsbane PgRab7, and salt plant (Aeluropus logophiles) AlRab7 have been induced to
be expressed in reaction to cold, salt, drought, and ABA (Abscisic Acid) treatments [21–24].
Thus, the induced expression of Rab7 in different stress-environments indicates that this
gene is involved in adaptation to stresses. When the four major Arabidopsis RabA1 mem-
bers were knocked out together, these RabA1B-dominant inactivating mutants exhibited a
hypersensitive response to salt [25]. Furthermore, experimental results show that RabA1
proteins are closely related to salt-stress responses of plants, by mediating the transport of
substances between the plasma membrane and the trans-Golgi. [26]. Overexpression of the
AtRab7 gene in Arabidopsis increased plant tolerance to salt stress, and the buildup of reac-
tive oxygen species was minimized under salt stress. Transgenic plants with Arabidopsis
AtRab7 overexpression exhibit higher aboveground sodium levels and Na+ accumulation
in their vesicles, thereby maintaining low cytoplasmic toxicity and increasing plant toler-
ance to salinity stress [22]. Moreover, overexpression of the constitutive activation-mutant
PtRabE1b(Q74L) confers salt tolerance in poplar [27].

In this study, we analyzed the evolutionary relationships, structural features, and
expression patterns of MaRab, using bioinformatics and transcriptomic data concerning Rab
proteins in M. albus. The functions of the MaRab1 and MaRab17 genes in the development
and stress response of M. albus were verified using the validation of heterologous expression
in yeast.

2. Results
2.1. Identification and Sequence Analysis of Rab Genes in M. albus

We initially obtained 29 candidate MaRab genes. After filtering, in total, 27 MaRab
family members were discovered in the M. albus genome (Figure S1). MaRab genes coded
for proteins with molecular weights of 202 aa (22.43 kDa) to 235 aa (25.87 kDa) (Table S1).
Their hydrophilicity ranged from −0.441 to −0.145, while isoelectric points (pIs) of MaRab
proteins ranged from 4.85 to 6.84. Twenty-two MaRab proteins (81%) were most likely
found in the cytoplasm, according to the anticipated subcellular localizations based on
the presence of a signaling domain in the amino acid sequence of the MaRab proteins,
while 2, 2 and 1 Rab proteins were most likely found in the chloroplast, extracellular space,
and Golgi apparatus, respectively.
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The predicted chromosome localization of MaRab genes was assigned differentially
to the eight chromosomes. Seven MaRab genes were mapped to Chr (Chromosome) 1
(Figure 1), and MaRab27 was the only one that was mapped to Chr 7. The 27 MaRab
proteins associated with the genes were given names according to the predicted positions
of all proteins on Chr 1–8 (from top to bottom).
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The phylogenetic tree indicated that all Rab gene members were classified into eight
phylogenetic groups. The 27 Rabs from M. albus were unevenly clustered into eight groups.
There were twelve, four, two, two, two, two, two and one members in Groups A, G, B, C, D,
F, H and E, respectively.

To study the evolution of the MaRab gene family, we constructed a phylogenetic tree
with the Rab proteins of M. albus, M. truncatula, O. sativa, A. thaliana, G. max, C. arietinum
and L. corniculatus. All Rab proteins were divided into eight groups, A-H (Figure 2). The
genetic evolutionary-distances between these genes are listed in Table S2. Evolutionary
analysis of Rab genes from seven plant species revealed that Arabidopsis was the species
with the highest number of members in group A (25), followed by O. sativa and G. max
(14 members each), while M. albus, C. arietinum and L. corniculatus had 12 members and
M. truncatula was the species with the fewest members in group A (10). Seven species had a
similar number of Rab members in Group B, C, D, E and F. In contrast, A. thaliana possessed
a higher number of Rab members in Group G and Group H than was the case with the other
six species. This result seems to suggest that the numbers of members in Group A, Group
G and Group H shrunk to a greater extent for Arabidopsis than for the other six species.

2.2. MaRab-Protein-Sequences Analysis

Potential motifs were predicted, to better understand the structural properties of
MaRab, and 15 different motifs were found (Figure 3A). The complete PSPG-box motif was
present in motif 1, which was shared by all members. Motif 15 was only found in Group
A, which had only two members; motif 6 was present in 25 members; motif 8 was present
in 26 members; and motifs 1, 2, 3, 4, and 5 were noticeable in all members. Phylogenetic
research revealed that groups have a similar conserved motif, as shown in Table S3. These
particular patterns could, in part, result in distinct functional properties of the Rab genes in
M. albus. Additionally, the structure of 27 MaRab gene was examined in terms of intron and
exon organization (Figure 3B). According to the research, MaRab genes had two to eight
exons, and various numbers of introns (Table S3). The closely related clustering of MaRab
genes in the same group showed close resemblance in intron number and exon length,
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which was analogous to the phylogenetic relationship in Figure 1. With twelve members,
Group A of the Rab groups had the most genes with intron deletion, followed by Group G,
with four individuals. Twelve of the Rabs in Group A had one intron in total.
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Figure 2. Phylogenetic analysis of Rab genes among M. albus, A. thaliana, M. truncatula, O. sativa,
G. max, C. arietinum and L. corniculatus. The phylogenetic tree was constructed using the MEGA7
program with 1000 bootstrap replicates. The clusters of different colors in the figure represent different
groups. These members were clustered into 8 groups (A–H). The number on the branch indicates the
degree of reliability of this branch.

To clarify the MaRa- gene transcriptional regulation, the promoter region of 27 MaRabs
was analyzed for cis-acting elements (Figure 4). In total, 401 cis-acting elements were
found in this analysis, and could be grouped into 24 sets according to their described
roles in the bibliography (Table S4). Among all the cis-acting elements of the promoters in
MaRab genes, the three sets with the highest numbers of elements were associated with
MeJA (Methyl Jasmonate)-responsiveness (80, 20%), light responsiveness (55, 13.7%) and
anaerobic induction (54, 13.7%). On the other hand, the promoter of the MaRab7 gene
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contained the largest number of cis-acting elements (34). These findings suggested that
MaRab gene members in M. albus play a crucial role in hormone regulation, and may
be implicated in multiple stress-responses. Among all groups of the MaRab gene family,
the promoters of Group A genes contained the highest number of cis-acting elements,
at 172 (42.9%) (Table S5). Promoters of the Group A gene also contained the highest
number and percentage of cis-acting elements associated with MeJA responsiveness
(36, 45%), anaerobic induction (34, 63%), light responsiveness (16, 29.1%), ABA responsive-
ness (15, 34.1%), salicylic acid responsiveness (10, 58.8%), and low-temperature responsive-
ness (10, 43.5%), although Group H contained only one cis-acting element for flavonoid
biosynthetic gene-regulation. From the prediction of potential cis-acting elements, we
also found that Group H contained a gibberellin-responsiveness cis-acting element. In
addition, there were 51 and 48 cis-acting elements of the Group C genes and Group D genes,
respectively. In the promoters of Group C genes, there were seven, nine and ten cis-acting
elements related to anaerobic induction, light responsiveness and MeJA-responsiveness. In
the promoters of Group D genes, there were ten, ten and sixteen cis-acting elements which
were associated with ABA responsiveness, light responsiveness and MeJA-responsiveness.
In the promoters of Group F genes, there were eleven, eight and six cis-acting elements
related to light responsiveness, ABA responsiveness and MeJA-responsiveness. The pro-
moters of Group E genes had the lowest number of cis-acting elements with only six.
However, cis-acting elements contained in the promoters of the other groups were not
centrally associated with any of the stresses.
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We also processed the protein 3D-structure prediction for the Rab proteins from
M. albus (Figure S2). The comparison revealed that, for the most part, MaRab-gene-family
members shared similar 3D structures, and the similarity was even higher among gene
family members within the same group. For example, MaRab11, MaRab 22, MaRab 24 and
MaRab 27, which belonged to Group G, had very high similarity of 3D structure among the
four gene-family members. In addition, we also found a large number of protein interaction
cues in the MaRab gene family, by constructing a protein interaction network (Figure S3). As
observed, all 24 members of the MaRab family, except MaRab11, MaRab14 and MaRab15, had
mutual interactions, with MaRab21 and MaRab23 having the highest number of interactions,
23 pairs of interactions, while 45.8% of the other MaRab gene family members had 13 pairs
of interactions, 33.3% had 22 pairs of interactions, and 12.5% had 21 pairs of interactions.

To clarify the sequence characteristics of the MaRab proteins, we performed multiple
sequence alignments. We identified the Rab domain with five Rab-specific motifs, I–V,
which were identical in at least 80% of the 27 Rab proteins (Figure 5). This finding suggests
that the protein sequences of the MaRab-gene family members identified in this study are
highly conserved at certain amino acid sites.

2.3. Evolutionary Analysis of the MaRab Gene Family

To clarify the evolutionary progression of MaRab-gene family members, we performed
synteny analysis. There were 13 syntenic pairs in M. albus, one of which was a homologous
gene pair, MaRab24/MaRab2 (Table S6). Moreover, 12 syntenic pairs were nonhomolo-
gous gene pairs, and MaRab25 participated in two gene pairs (Figure 6). To determine
if Darwinian positive selection participated in the divergence of MaRab genes following
duplication, the nonsynonymous to synonymous substitution-rate ratios (Ka/Ks) were
determined. The Ka/Ks were much less than one, indicating that purifying selection is
important in the duplication of MaRab gene pairs (Table S6).
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2.4. Expression-Pattern Analysis of MaRab Genes

Plant organs typically have varying amounts of gene expression, and diverse functions
for various metabolites. RNA-seq data from M. albus showed different expression patterns
for Rabs in each of the organs studied (Figure 7A). Except for eight genes, nineteen MaRab
genes had expression values (FPKM) above one in at least one of the organs studied. The
analysis of differentially expressed genes revealed that some genes were highly expressed
in some specific organs, such as six MaRab genes that were preferentially expressed in roots
(Figure S4). Each Rab gene displayed a distinct expression-pattern, which was linked to the
evolutionary groups.
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Figure 7. Expression pattern of MaRab genes: (A) patterns of MaRab gene expression in root, leaf,
flower, stem and seed. Data were extracted from transcriptome datasets and clustered using TBtools.
(B) Response of 27 MaRab genes to salt, drought and ABA treatments. Data were extracted from
transcriptome datasets and clustered using TBtools. The heatmap depicts the relative levels of
MaRab transcripts during salt, drought and ABA stress. Normalized expression values (FPKM)
were obtained.

The MaRab gene family was found to respond to salt, drought and ABA stresses,
based on the number of all the upregulated, and the expression of MaRab genes was
downregulated in roots and shoots when exposed to salt, drought, and ABA treatment.
(Figure S5). As observed, a comparison of the number of upregulated DEGs (differential
gene expressions) with the number of downregulated DEGs revealed greater upregulated
DEGs than downregulated DEGs in both the shoot and root organs. Among those in
the shoots, 22% of the upregulated MaRab genes were co-expressed under ABA, salt
and drought stresses. Those specifically expressed under ABA, salt and drought stresses
accounted for 15%, 22% and 22% of the upregulated MaRab genes, respectively. This
finding indicates that MaRa-gene family members are extensively involved in abiotic-
stress-response processes in M. albus. The heatmap shows the expression of Rab members
matching the previous grouping at diverse time-points under salt, ABA, and drought
stresses (Figure 7B).
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MaRab11, MaRab13, MaRab17, MaRab22 and MaRab25 were significantly increased
after 3 h of 250mM NaCl-irrigation in the shoots, and MaRab1, MaRab5, MaRab6, MaRab12,
MaRab19 and MaRab23 were significantly downregulated after 3 h of NaCl treatment in
the shoots. In addition, MaRab1, MaRab5, MaRab6, MaRab11, MaRab17 and MaRab22 were
significantly increased after 3 h of NaCl treatment in the roots, and MaRab12, MaRab13,
MaRab19, MaRab23 and MaRab25 were significantly downregulated after 3 h of NaCl
treatment in the roots. These genes are assumed to be associated with salt stress. To explore
the expressions of MaRab genes under salt stress, we studied the gene expression in the
leaves of JiMa46 under NaCl stress, using qRT-PCR data. The qRT-PCR results showed
comparable expression patterns to the RNA-seq data. The change trends in MaRab gene
expression at different times were consistent (Figure 8).
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values (FPKM) from RNAseq data, and the values given are the mean ± standard deviations of
three replicates.

2.5. MaRab1 and MaRab17 Improve Salt Tolerance in Yeast

An analysis of qRT-PCR after 250 mM NaCl-treatment for 3 h showed that the expres-
sion of MaRab1 in shoot and root increased 3.6 times and 12.1 times, respectively, and the
expression of MaRab17 in shoot and root increased 2.4 times and 8.2 times, respectively,
compared with CK. We expected that the proteins encoded by these two genes would be
critical in the salt stress response of M. albus. The effects of MaRab1 and MaRab17 on yeast
growth and stress resistance (NaCl) were investigated in yeast cells using pYES2−MaRab1
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and pYES2−MaRab17 constructs. Under normal culture conditions, there was no diver-
gence between the transformed lines and the empty vector lines. Treatments with 5 M
NaCl had a significant impact on the development of transformed yeast, and we found
that changed yeast cells demonstrated prominent resistance under 5 M NaCl treatments,
particularly at 10−4 dilution (Figure 9).
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Figure 9. Analysis of NaCl treatment of MaRab1 and MaRab17 genes in yeast heterologous expression
compared to the blank pYES2 line. After 36 h of resuspension under control and 5 M NaCl, consecutive
dilutions (100, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6) of yeast were spotted onto SC−Ura solid medium.
Sterile water was used as the control.

3. Discussion

Rabs have important roles in expansion, maturation and abiotic-stress responsive-
ness [28]. They play a significant role in controlling interactions with vesicular traffic, and
they are essential for secondary metabolite biosynthesis, collection, and transportation [29].
Even though Rabs have been discovered in some species, the classification and protein char-
acterization of Rab gene members in M. albus has never been published [30,31]. Arabidopsis
Rab was the primary species utilized to investigate evolution in an earlier study. Its Rab
phylogenetic tree was classified into eight families (A-H) [32]. In our research, we discov-
ered 27 Rab genes. A total of 27, 30, 27 and 28 Rab genes were discovered in M. truncatula,
G. max, C. arietinum and L. corniculatus, respectively. According to an evolutionary study,
27 Rabs from M. albus could also be grouped into eight groups. There were a larger number
of members in Group A than in the other groups. During plant development, Group A
seems to have expanded more than the other groups. In a previous study, A. thaliana con-
tained 25 Rab members of Group A, accounting for 45% of the total number of AtRabs [32].
Group A is the largest group of the Rab family. Thus, we speculated that a similar situation
could occur in M. albus. Our research also revealed that Group A was a sizable group,
comprising 12 members of the Rab family, and accounting for 44% of the Rab proteins in
M. albus. In a previous study, 67 Rab members were identified in poplar [27]. The number
of Rab proteins in the five plants identified in this study, including M. albus, was smaller
than the numbers in Arabidopsis and Populus. This indicated that the Rab genes did not
expand in M. albus.

Intron gain- and loss-events, along with intron locations and phases relative to protein
sequences, provide essential insights into evolution [33]. In a previous study, the intron
numbers of most Rab genes from the same group in Gossypium were nearly identical,
with only several genes representing exceptions [34]. In our study, intron mapping of the
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27 MaRabs revealed that the number of introns was significantly different among MaRab
genes. A total of 12 (44%) of the Rabs in Group A contained one intron, indicating that
the bulk of preserved introns were ancestral elements with stable phases, as deletion and
insertion of tiny DNA sequences that produce a phase transition might lead to alterations in
gene expression, and thus be deleted by biological evolution [35]. In a previous study, some
cis-acting elements that played a crucial role in plant growth and maturation were identified
during the promoter analysis of genes. TCP promoters, for example, have been revealed to
contain cis-acting elements implicated in hormone response, signal transduction, and light
response, as well as growth- and maturation-regulation and metabolism regulation [36]. In
our study, the promoter-regions analysis revealed that some of the Rab promoters contained
stress-related elements, including cell-cycle regulation, defense, auxin, gibberellin, light,
low-temperature, salicylic acid, abscisic acid responsiveness, and MeJA-responsive cis-
acting elements. Protein-interaction-network prediction is important for studying gene
regulation in response to various stresses, as well as growth and maturation in species [37].
We also performed protein-interaction prediction and found 24 protein interactions between
members of the MaRab gene family. This prediction was based on information from curated
databases, experimentally determined findings, gene neighborhoods, gene co-occurrence,
text mining, coexpression and protein homology. These interaction relationships may
facilitate progress in the study of the Rab-gene-family-related regulatory networks.

The patterns of gene expression can also provide information for screening target
genes, and can help predict gene function. Recent research discovered considerably distinct
expression patterns in every category of the Rab family in cotton, suggesting that cotton
Rabs may participate in the plant stress-responsiveness mechanism [34]. In our study,
the analysis of Rab expression patterns in various organs revealed that the expression
patterns of MaRab were linked with the phylogenetic groupings. Expression levels of many
MaRab genes changed in reaction to stress treatment, and these genes were mostly from
Group A. In the response to salt stress, MaRab1, MaRab5, MaRab11, MaRab13 and MaRab17
were significantly upregulated, and MaRab19, MaRab23 and MaRab25 were significantly
downregulated by salt treatment, in the roots after 3 h. These MaRab genes are most likely
linked to salinity stress.

Plants are exposed to numerous stresses throughout their lives, and have expanded
their capacity to cope with adverse external conditions [38]. A previous study showed
that several Rab family members participated in the reaction to environmental stresses [39].
For example, it has been observed that RabA1 members are essential for resistance to
salinity stress when performing salt-stress assays of transgenic plants, and A. thaliana
RabA1 quadruple mutants and organs from A. thaliana producing the dominant deletion
mutant of RabA1b were sensitive to salt stress with 15 mM NaCl [26]. In this study, we
discovered that the altered yeast cells were highly resistant to 5 M NaCl, especially under
10−4 dilution, suggesting that MaRab1 and MaRab17 play a significant role in the salt
responsiveness. To further understand the function of Rab genes, we found that Rab11a, a
homologue of MaRab1 and MaRab17, primarily participated in cytosolic vesicular transport
and endocytosis [40]. The Rab protein is a vital particle regulator inside the cell, regulating
vesicle trafficking in a variety of ways to promote the formation as well as maintenance of
apical polarity [41,42]. In addition, many plant Rab-gene members have been functionally
identified, including interactions with vesicular transport. For example, members of
RabA1 regulate traffic around the plasma membrane and the trans-Golgi network [26],
indicating that Rab contributes significantly to metabolite transport in reaction to sodium
stress [20,43,44]. Therefore, we speculated that MaRab1 and MaRab17 can be involved in
the cellular vesicular transport and endocytosis that are part of the regulatory activities of
plants in response to salt stress.
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4. Materials and Methods
4.1. Materials, Growth Conditions, Treatment, and Sampling

M. albus (line JiMa46) seeds were treated with sulfuric acid for 4 min to break the
seed coat and sterilized in 5% NaClO solution for 10 min and then placed in a sterilized
solid medium with half Murashige and Skoog (1/2 MS). They were placed in growth
chambers with the environment of 16 h light photoperiod, 25 ◦C temperature, and 30%
relative humidity, after 4 days of vernalization at 4 ◦C. After a 14-day germination period,
the seedlings were transplanted to plastic pots (peat soil/vermiculite = 3:1) in a green-
house for growth with the environment of 16 h light photoperiod and 25 ◦C temperature.
We performed all of the experimental treatments 6 weeks after germination. Plants were
irrigated with 250 mmol/L NaCl, to imitate salt stress. Samples were collected in three
biological replicates from seedling leaves and roots at three time-intervals (0, 3, and 24 h).
All samples were promptly placed in liquid nitrogen and later stored in an ultra-low
temperature refrigerator at −80 ◦C.

4.2. Genome-Wide Identification of Rab Genes in M. albus

The Phytozome 13 database was used to obtain protein sequences of Rab proteins of
Arabidopsis and Oryza sativa [45]. In addition, the NCBI database was used to obtain gene
sequences and coding sequences (CDSs) [46]. To identify the candidate MaRab members,
local BLASTN and BLASTP searches were conducted, using the CDS and protein sequences
of Arabidopsis and O. sativa as queries, and an e-value cutoff of 1 × 10−5 was used
for homologue recognition. Similarly, the Rabs of Medicago truncatula, Glycine max, Cicer
arietinum and Lotus corniculatus were identified. Protein sequences were uploaded to the
Pfam website to verify the candidate Rab genes with default parameters [47]. Rab candidate
proteins that lack the Rab structural domains were dropped manually. M. albus protein
sequences, gene sequences, and coding sequences (CDSs) were obtained from a previous
study [48]. Local BLAST searches were carried out, with an e-value cutoff of 1e−5 utilized
for Rab-homologous-sequence recognition. In this study, Rabs of Arabidopsis, O. sativa,
M. truncatula, G. max, C. arietinum and L. corniculatus were used to construct a phylogenetic
tree with MaRabs. The databases and websites mentioned above are listed in Table S7. The
evolutionary tree was constructed using MEGA software [49].

4.3. Chromosomal Location, Motif Analysis, Protein 3D-Structure Prediction, Gene Structure and
Protein-Interaction Analysis of the Rab Genes in M. albus

Using TBtools and R with default parameters, each of the MaRab genes was marked
on the genome of M. albus to indicate its position on the chromosome [48]. MEME was
used to upload protein sequences of Rab family members, and was utilized to identify
conserved motifs of Rabs with the default parameters [50]. WebLogo was utilized to create
Rab sequence logos from the multiple alignment sequences [51]. The protein sequences of
MaRab-gene family members were analyzed in this study using five Rab-specific conserved
structural-domains discovered in previous Rab protein-related studies [52,53]. On the
Swiss-Model website, 3D structures of Rab proteins were predicted [54]. In addition,
the GeneStructure Display Server was used to compare CDSs with gene sequences of
Rab, to establish and visualize all gene structures [55]. A protein-interaction network was
generated by STRING for MaRab genes [56]. The databases and websites mentioned above
are listed in Table S7.

4.4. Characteristics of Rab Proteins, Analysis of Promoter Cis-Acting Elements and Synteny
Analysis of Rab Genes

The Protsacle tool was utilized to predict the primary structure of Rab proteins [54]. To
predict the subcellular localization of Rab proteins, the CELLO website was used [57]. The
PlantCARE website and the 2kb sequence of the MaRab promoter were used to recognize
the cis-acting elements [58]. BLAST (e-value < 1 × 10−10) was utilized to align genes
within families, and the closest matching-gene match was considered as a homozygous pair.
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TBtools was utilized to calculate nonsynonymous substitution rates (Ka) and synonymous
substitution rates (Ks) for the gene pairs [59]. MCScanX in TBtools with the default parame-
ters was utilized to determine syntenic pairs of M. albus genes. Following that, TBtools was
used to visualize the syntenic relationships. The databases and websites mentioned above
are listed in Table S7.

4.5. Transcriptomic Data Analysis and Quantitative Real-time PCR Analysis

Transcriptome data of MaRab genes in M. albus under ABA, drought and salt stresses
and in different organs (roots, leaves, seeds, flowers and stems) were obtained from our
previous studies [6,60]. The accession numbers of the transcripts corresponding to the
27 MaRab genes in these transcriptomic datasets are consistent with the gene ID numbers
in Table S1. The heatmap of MaRab gene expression in different organs and treatments was
obtained from TBtools [59]. Total RNA was extracted from the roots and shoots of salt-treated,
ABA-treated, drought-treated and control seedlings, by applying TransZol reagent (TransGen
Biotech, Beijing, China). Using a TIANScript II RT Kit, cDNA synthesis and reverse transcrip-
tion were conducted on 1 µg of the amount of total RNA (Tiangen, Beijing, China). Hieff®

qPCR SYBR® Green Master Mix (No Rox) was used to perform qRT-PCR assays on each
cDNA template (Yeasen Biotech Co., Ltd., Shanghai, China). The 2−∆∆CT method was used to
determine the calculation of expression levels for the control group [61]. In this experiment,
the tubulin gene was utilized as an internal control. The primers listed in Table S8 were used
for this experiment. Three technical replicates were utilized for each biological triplicate.
The significance analysis of relative expression levels was conducted by using the ANOVA
function in IBM SPSS Statistics software (version 20). Multiple tests were performed using the
Duncan method through variance analysis of different comparison groups.

4.6. Validation of Heterologous Expression in Yeast

First, we amplified all the coding sequences of MaRab1 and MaRab17 from JiMa46
to generate pYES2−MaRab1 and pYES2−MaRab17 constructs. The recombinant pYES2−
MaRab1 and pYES2−MaRab17 plasmids produced using ClonExpress® MultiS One Step
Cloning Kit (Vazyme Biotech Co., Ltd., Nanjing) as well as the empty pYES2 plasmid were
then transformed into Saccharomyces cerevisiae strain INVSc1, after sequence confirmation.
After being grown separately for 36 h at 30 ◦C, both yeast cultures were collected separately
in synthetic complete (SC)−Ura liquid medium containing 2% (m/v) galactose. Next,
the yeast collection was incubated with SC−Ura containing 2% galactose and adjusted
to A600 = 1 for stress analysis. Subsequently, the cells were resuspended in 5 M NaCl h at
30 ◦C for 36. At the same time, equal amounts of yeast cells were resuspended in 200 µL of
sterile water at 30 ◦C for 36 h, to serve as a control. The cells were subsequently incubated
in serial dilutions (100, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6) and finally spotted on SC-Ura
agar plates [62]. Then, the yeast was allowed to grow for 2−3 days at 30 ◦C on this plate.
Yeast solutions treated and diluted to 1:10 were grown on SC−U/2% (w/v) glucose agar
plates at 1 cm intervals. After 3 days, pictures were taken to check colony formation
and growth.

5. Conclusions

In total, 27 MaRab genes were discovered in M. albus. The phylogenetic, intron–
exon and motif analysis revealed discrepancies between MaRab family groups. MaRab
members were exposed to purifying selection, as well as several that were functionally
redundant. Studies of the MaRab promoter region found that it may be involved in stress,
maturation, and hormone responsiveness. The levels of gene expression in various organs
were measured, and some MaRab members showed organ-specific expression. Furthermore,
we expected that MaRab1 and MaRab17 would be involved in the regulation of salt stress
via vesicular transport, based on the validation of heterologous expression in yeast. These
findings offer a helpful framework for comprehending the development, biological function,
and possible biological function of the MaRab gene family, under salt stress.
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