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Abstract: In this work, a finite periodic superlattice is studied, analyzing the probability of electronic
transmission for two types of semiconductor heterostructures, GaAs/AlGaAs and InSe/InP. The
changes in the maxima of the quasistationary states for both materials are discussed, making varia-
tions in the number of periods of the superlattice and its shape by means of geometric parameters.
The effect of a non-resonant intense laser field has been included in the system to analyze the changes
in the electronic transport properties by means of the Landauer formalism. It is found that the highest
tunneling current is given for the GaAs-based compared to the InSe-based system and that the intense
laser field improves the current–voltage characteristics generating higher current peaks, maintaining
a negative differential resistance (NDR) effect, both with and without laser field for both materials
and this fact allows to tune the magnitude of the current peak with the external field and therefore
extend the range of operation for multiple applications. Finally, the power of the system is discussed
for different bias voltages as a function of the chemical potential.

Keywords: GaAs/AlGaAs–InSe/InP superlattice; transmission probability; Landauer formalism;
intense laser field

1. Introduction

The study of semiconductor systems has advanced significantly during the last fifty
years, particularly in systems based on superlattices (SLs) of GaAs, InSe, among other
materials. Modern experimental techniques have allowed us to understand the behavior of
charge carriers within these heterostructures in a much more precise way, and theoretical
models with a high degree of precision have been developed hand in hand with theoretical
models. A significant motivation for the study of heterostructures based on these materials
is the novel applications in fields such as the development of field-effect transistors or high
electronic mobility, systems in which the effects of impurities, pressure, and applied fields
have been analyzed to improve optical absorption; these devices are candidates for the
advancement of future technologies in the electronics field [1–5]. Likewise, in this field,
there are switching devices capable of working at high speed [6]. In the optoelectronics field,
the development of solar cells that can provide strong absorption in a much wider range
of the electromagnetic spectrum stands out, which considerably improves the efficiency
of usable energy [7–16]. A typical application of semiconductor systems is in detectors,
which, depending on the type of material or the geometric arrangement, can be tuned
to detect ultraviolet, infrared, and even up to the terahertz range [17–23]. In this field,
it is also necessary to mention the cascade laser [24]. Finally, various applications such
as biosensors to detect some types of cancer cells or Zeno-logical applications [25,26] are
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worth mentioning. In some of these applications, low-dimensional semiconductor devices
such as quantum dots, quantum wires, or quantum wells are implemented [27,28].

Some of the first studies on SLs based on semiconductor systems were developed
around the 1970s in works such as those by Esaki and Chang [29] in which the properties
of electronic transport in systems with a periodic structure of GaAs/AlAs were experi-
mentally analyzed. By means of the molecular-beam epitaxy technique, in their work,
the evidence of the system oscillatory conductance behavior increasing voltage was found.
Later, using the same growth technique for the heterostructures, Dingle et al. [30] experi-
mentally demonstrated the formation of a GaAs/AlGaAs SL at low temperatures using
optical-absorption measurements on ultra-thin layers. Later, in the 1990s, Fedirko and
Eremtchenko [31] analyzed the SLs based on GaAs/AlGaAs by means of scanning probe
microscopy, finding a pretty good periodic structure.

In more recent years, the SLs of semiconductor materials continue to be studied either
to understand excitations in the system or to analyze the response under external fields.
In works such as that of Komatsu et al. [32], the authors analyzed the intensity of exciton
photoluminescence in the presence of an external magnetic field in a GaAs SL. In this type of
material, the study of structural properties is of great importance, since it is possible to tune
electronic properties that lead to the optical response of the system. In 2004, Jeong et al. [33]
studied these properties in a GaAs/AlGaAs SL layer on InAs quantum dots by means of
photoluminescence, photoreflectance spectroscopy, and transmission electron microscopy.
Their results showed that the wavelength of the quantum dots was effectively tailored
by the high potential barriers. The effect of the interface on the modulation-doped of the
SL-type heterostructures can considerably modify the electronic properties in n-doped and
p-doped systems. This effect was studied by Bezerra et al. [34], finding that the presence
of graded interfaces modifies the carrier confinement inside of the GaAs quantum well.
When the semiconductor system is subjected to the action of an external magnetic field, it is
possible to modify the properties of electronic transport, in particular, the current–voltaget-
voltage curves, or to generate the appearance of Magnetoresistance oscillations [35,36].

Currently, there are numerous experimental works on SL systems grown mainly
using methods such as molecular beam epitaxy (MBE) that lead to potential applications.
To mention some of these works, in 2021, Kesaria et al. [37] developed an InAs/GaSb and
InAs/InAsSb SL using MBE to improve performance and optimize NOx detection systems.
Another of the common applications of SL systems based on semiconductor materials is
high harmonic multipliers. This type of system can be optimized by means of the geometric
modifications developed in this work. As a reference to this application the manuscripts of
Apostolakis et al. [38] and Pereira et al. [39] that use a SL for harmonic multiplication in
the Gigahertz–Terahertz range. To mention one last application, in 2022, Ting et al. [40]
explored an InAs/InAsSb SL for potential NASA land-imaging applications.

One way to characterize the semiconductor structures is by analyzing the transport proper-
ties, whether thermal or electrical, depending on if the system is put in contact with electronic
reservoirs at different temperatures or if the system is subjected to a potential difference. These
properties can be analyzed by means of the Landauer–Buttiker formalism [41,42].

In this article, we are interested in studying the electronic transport properties of a
finite periodic lattice. We are particularly interested in studying the tunneling current
considering geometric variations of the heterostructure for two different combinations of
the semiconductor materials, GaAs/AlGaAs and InSe/InP. The appearance of NDR in the
current–voltage characteristics for all systems is discussed, which is of particularity high
importance when it comes to practical applications in devices. It should be noted that the
appearance of NDR zones is not exclusive to systems SLs; this behavior is also evidenced
in molecular devices [43]. Using the Landauer formalism, the current due to the tunneling
of electrons from the emitter to the collector, generated by a potential difference between
the terminals of the device, is calculated. The power due to the diffusion of charge carriers
and the effects of a non-resonant intense laser field (ILF) on the conduction band profile
and, therefore, on the conduction current are also studied. The solution of the differential
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equations and the calculation of the electronic transmission probability have been carried
out using the finite element method (FEM). The paper is organized as follows: Section 2
contains the theoretical framework; Section 3 is devoted to the results and corresponding
discussion; finally, in Section 4, the main conclusions are presented.

2. Theoretical Model

The system under study corresponds to a SL with InSe (GaAs) well regions and InP
(AlGaAs) barrier regions. As shown in Figure 1, each well has a w-width and is made
of InSe (GaAs) and the left and right barriers of the first period have b1 and b2 lengths,
respectively, and are of InP (AlGaAs) material, as shown in Figure 1c. The full length of the
first period is a and remains fixed for all three figures (see Figure 1a–c). The total length of
the barriers inside the first cell is b. From the above explanations, it is possible to define
the additional parameters, the γ-parameter that sets the relationship between the total
barrier length and the length of the first SL period, and the β-parameter that can modify
the geometry of the complete periodic system, with 0 ≤ β ≤ 0.5:

a = b1 + b2 + w ,

b = b1 + b2 ,

γ = b/a ,

β = b2/b .

(1)

As we see in Figure 1, depending on the β-value, the first SL period will have an
established form: (i) for β = 0.0, the barriers will have the same width as the wells; (ii) for
β = 0.2, the system will be asymmetric regardless of the number of periods, and the well
on the right side will always be thinner than the one on the left side, and finally, (iii) for
β = 0.5, the system will be symmetric for all periods, but the two lateral barriers will
always be smaller than the central barriers. Depending on the number of calculated periods
and each β-value, Figure 1a–c will be repeated periodically.

InSe
(GaAs)

InP        
(AlGaAs)

w

b2

a

 = 0.0

(a)

a

a

b1

x

 = 0.2

(b)

 = 0.5

(c)

Figure 1. (a–c) Scheme corresponding to a single period of the superlattice for β = 0.0, β = 0.2,
and β = 0.5, respectively. These parameters are entered in Equations (1) and (2) and Table 1.

From the above explanations, it is possible to write expressions for the barrier and
well widths in terms of the γ, β, and a parameters, i.e.,

b1 = γ a (1− β) ,

b2 = γ a β ,

w = a (1− γ) .

(2)
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Table 1 shows the particular case with β = 0.0, 0.2, and 0.5,

Table 1. Geometric parameters for different values of β.

β a (nm) w (nm) b1 (nm) b2 (nm)

0.0 10 5 5 0
0.2 10 5 4 1
0.5 10 5 2.5 2.5

The shape of each potential can be modified by means of variations in the geometric pa-
rameters according to Equation (2) and Table 1, to later be replaced in the time-independent
Schrödinger equation to obtain a set of eigenfunctions and eigenvalues (ψβ

n,i(~r) and Eβ
n,i),[

~∇ ·
(
−h̄2

2 m∗(x)
~∇
)
+ Uβ

n (x)

]
ψ

β
n,i(~r) = Eβ

n,i ψ
β
n,i(~r) , (3)

where m∗(x) is the x-dependent electron effective mass (note that in this work, we deal
with different values of the electron effective mass at the well and barrier regions). Uβ

n (x)
is the SL-potential (the SL is grown along the x-direction), which depends directly on the
n-parameter (number of SL periods, i.e., the number of times that each panel of Figure 1 is
repeated for each β-parameter value). Additionally, ψ

β
n,i(~r) is the electron wavefunction

corresponding to the i-th quasi-stationary state and of course, it depends on both n and β.
Finally, Eβ

n,i is the corresponding energy; in general, the eigenvalues have real and imaginary
parts since the states are not stationary. Consequently, the electrons have a lifetime inside
the wells to later leave these by quantum tunneling effect.

Using the separation of variables method, we can write ψ
β
n,i(~r) = ei ~k⊥ ·~ρ Ψβ

n,i(x), where
~k⊥ and ~ρ are the wavevector and electron coordinate along the yz-plane, perpendicular
to the growth direction of the heterostructure. With the previous wavefunction inserted
in Equation (3), and taking into account that we are dealing with the bottom of all energy
sub-bands (meaning ~k⊥ = 0), we can obtain a 1D differential equation for the x-coordinate,
whereby imposing the open boundary conditions, the Ψβ

n,i(x) function can be written as a
linear combination of plane waves, as follows

Ψβ
n,i(x) = Aβ

n(x) e+i kβ
n,i x + Bβ

n(x) e−i kβ
n,i x . (4)

The Aβ
n(x) and Bβ

n(x) functions are the probability amplitudes of the system. The first
term on the right-hand side in Equation (4) corresponds to an electron moving from left to
right with probability amplitude Aβ

n(x), whereas the second term is an electron moving
from right to left (reflected wave) with probability amplitude Bβ

n(x); the complete wave
function for any region of the system is a superposition of these plane waves. It is clear that
these amplitudes must depend on the x-point, at which they are being calculated, as well
as on the (n, β) geometric parameters of the SL. kβ

n,i is the magnitude of the wave vector

and is given by kβ
n,i = (2m∗(Eβ

n,i −Uβ
n (x))/h̄2)1/2.

The x-dependent differential equation associated with the Equation (3) when the
wave function represented by Equation (4) has been considered solved through the FEM
with the COMSOL-Multiphysics licensed software (5.4, COMSOL AB, Stockholm, Swe-
den) [44–46] by implementing the semiconductor module (“Semiconductor Module User’s
Guide” COMSOL Multiphysics®) [47–50]. In this way, the values of the probability ampli-
tudes are found in any region of the system. After that, it is possible to calculate the electron
transmission function Tβ

n,i(E) through the device as the quotient between the amplitude of
the transmitted wave and the amplitude of the incident wave,
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Tβ
n (E) =

|Aβ
n(x f )|2

|Aβ
n(xi)|2

, (5)

where Aβ
n(xi) represents the amplitude of the wave that propagates from left to right

evaluated at the emitter and Aβ
n(x f ) is the amplitude of a wave that propagates from left

to right but evaluated in the collector. This function is proportional to the probability of
electron tunneling through the system.

Once the transmission probability has been calculated, it is possible to calculate the
voltage–current characteristics in the SL using Landauer’s theory, which tells us that
employing a connection of the system with two electronic reservoirs, it is possible to obtain
the electronic tunneling current through the system, given by [51–53],

I(Λ) = I0

∫ ∞

−∞
Tβ

n (E, Λ)[ fL(E, Λ)− fR(E, Λ)]dE , (6)

where e is the electron charge, h̄ is the reduced Planck constant, and I0 = e/πh̄. The terms
fL(E, Λ) and fR(E, Λ) correspond to the Fermi functions evaluated at the emitter and
collector, respectively. They are given by fL(E, Λ) = (1 + e(E−EF)/kBT)−1 and fR(E, Λ) =
(1 + e(E−EF+Λ)/kBT)−1, where Λ is the bias voltage applied between both terminals of the
device. By means of the transmission function, it is also possible to calculate the heat flux
and the power in the system, given, respectively, by

Θβ
n(l) =

2
h

∫ ∞

−∞
Tβ

n (E, Λ)(E− E f (l))( fL(E, Λ)− fR(E, Λ))dE , (7)

and
Pβ

n = Θβ
n(L)−Θβ

n(R) . (8)

The term Tβ
n (E, Λ) represents the transmission probability for a fixed voltage. E f (l) is

the Fermi energy for l = L (l = R); that is, for the emitter (collector).
At this stage of our work, we must present some comments on the approaches and

model that we have used. Our system corresponds to a SL with a small conduction region
connected to two electronic reservoirs. When the confinement in this region is strong,
the rigorous treatment of quantum effects becomes crucial. The Landauer formalism is a
well-known method for describing these systems, which is based on an energy-dependent
transmission probability for the region of interest. This method has been successfully
applied to ballistic transport [54]. The effects of ballistic conduction are typically of 1D
structures, in particular in SL semiconductors, because they present an extreme quantization
effect. The small size of the SL (nanometer-scale) and the mean free path which can be longer
than that for example in a metal, which allows neglecting the effects of impurities, geometric
defects, thermal fluctuations of ions, etc. In other words, ballistic transport implies a
problem without scattering. In the study by Gruss et al. [55], an extension of the Landauer
formalism is presented to consider the electronic properties of transport; they developed
an open system approach to transport that includes a finite electron lifetime representing
the presence of these relaxation mechanisms. Additionally, in 2015, N. Sano [56] derived
theoretical expressions of the impurity-limited resistance in the nanowire under the linear
response regime from the Landauer formula and from the Boltzmann transport equation
(BTE) with the relaxation time approximation. Currently, there are a variety of works
in which the Landauer formalism is addressed, including impurity effects; that is, in a
non-ballistic approach, some of these works are included in the Refs. [57,58].

In our study, we consider the effects of an x-polarized non-resonant intense laser
field (ILF) applied to the SL structure, which can be modeled as a monochromatic plane
wave with angular frequency φ. Due to the presence of this non-resonant laser field,
a modification occurs in the potential profile that enters Equation (3). So, the transformation
Uβ

n (x)→ 〈Vβ
n (x, α0)〉 is obtained through the relation
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〈Vβ
n (x, α0)〉 =

φ

2π

∫ 2π/φ

0
Uβ

n [x + α0 sin(φ t)] dt . (9)

The 〈Vβ
n (x, α0)〉 potential is known as the laser-dressed potential [59,60], where the

ILF-parameter is defined as α0 = (eA0)/(m∗φ) (here, A0 is the strength of the laser field).
Equation (9) is obtained by applying an intense, high frequency laser field to an atomic
system [61–63]. The corresponding time-dependent Schrödinger equation has the form,

ih̄
∂

∂t
ψ

β
n,i(~r, t) =

[
(~̂p− e ~A(~r, t))2

2 m∗(x)
+ V(~r)

]
ψ

β
n,i(~r, t) , (10)

where ~̂p is the momentum operator, e is the electron charge, ~A(~r, t) is the magnetic vector
potential associated with the external laser field, and V(~r) is the confinement potential of the
system. Using the Coulomb gauge, the dipole approximation for the magnetic vector potential,
and the Kramers–Henneberger transformations [64], the last equation obtains the form,

ih̄
∂

∂t
ψ

β
n,i(~r, t) =

[
~∇ ·
(
−h̄2

2 m∗(x)
~∇
)
+ V(~r +~α(t))

]
ψ

β
n,i(~r, t) , (11)

where~α(t) = α0 sin(φt) x̂, with x̂ the system growth direction, and α0 is the ILF-parameter
previously defined. Equation (11) indicates that the effect of the non-resonant ILF generates
an effective displacement~α(t) on the system potential. Considering only a high-frequency
laser field in Equation (11), performing a Fourier expansion and using Floquet theory [65]
at the V(~r +~α(t)) term, Equation (9) is obtained for the time-independent total potential.
From the above, the time-independent Schrödinger equation is finally obtained, including
the effect of the intense non-resonant laser field in the growth direction of the structure.
In this way, the time-independent Schrödinger equation is derived, which includes the
laser effect, [

~∇ ·
(
−h̄2

2 m∗(x)
~∇
)
+ 〈Vβ

n (x, α0)〉
]

Ψβ
n,i(x) = Eβ

n,i Ψβ
n,i(x) . (12)

3. Results and Discussion

For the calculations, the following input parameters were used at 300 K: m∗ = 0.067 m0
(m∗ = 0.0879 m0) for the GaAs (AlGaAs) electron effective mass (where m0 is the mass of
the free electron) and Uβ

n (x) = 0 (Uβ
n (x) = 0.261 eV) in the GaAs (AlGaAs) material [66,67].

Additionally, m∗ = 0.023 m0 (m∗ = 0.08 m0) is the InSe (InP) and Uβ
n (x) = 0 (Uβ

n (x) =
0.57 eV) in the InSe (InP) material [68]. Geometric parameters: unit cell length a = 10 nm,
γ = 0.5, and angular laser frequency φ = 1 THz. The equations were solved through
the FEM considering the following parameters: 5000 elements, 2 edge elements, a 1.0
element-length radius, and 5001 mesh vertices.

Figure 2 shows the bottom of the conduction band for a GaAs-Al0.3Ga0.7As lattice
(for the InSe-InP system, it would be an equivalent figure, only the value of the band offset
changes) varying from one to four periods and three values of the β-parameters. The red
solid lines indicate the potential without the ILF effect, whereas the black solid curved
regions show the potential modified by an ILF-parameter of α0 = 1.0 nm. As we can see in
Figure 2, when β = 0, the number of barriers is equal to the n-parameter, whereas, for β 6= 0,
the number of barriers is equal to n + 1. Each region shaded with light blue or light red
color corresponds to a SL period. Note that depending on the n and β values, in the union
of two or more periods, an overlap of the barrier regions may occur; for example, for n = 2
and β = 0.5, which corresponds to Figure 2(c2), the union of two periods generates the
appearance of a central barrier of 5 nm wide. This is wider than the two lateral barriers that
each measure 2.5 nm. Note how applying an ILF to the system can significantly modify the
shape of the potential barriers; this variation is more significant for the barriers of smaller
width, as can be seen, for example, in Figure 2(b1–b4) for β = 0.2; when comparing this
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effect on the right barrier with the other barriers, a clear decrease in the height of the barrier
on the right is seen. This effect is not observed for β = 0 and β = 0.5.

 = 0.0
en

er
gy

 (e
V)

n = 1
(a1)

n = 1
 = 0.2

(b1)

en
er

gy
 (e

V)

n = 1
 = 0.5

(c1)

en
er

gy
 (e

V)

x (nm)

en
er

gy
 (e

V)
en

er
gy

 (e
V)

en
er

gy
 (e

V)

x (nm)

n = 2
 = 0.0

n = 2
 = 0.2

n = 2
 = 0.5

(a2)

(b2)

(c2)

en
er

gy
 (e

V)

 = 0.0
n = 3

en
er

gy
 (e

V)

n = 3
 = 0.2

n = 3
 = 0.5

en
er

gy
 (e

V)

x (nm)

(a3)

(b3)

(c3)

en
er

gy
 (e

V)

(a4)

(b4)

(c4)

en
er

gy
 (e

V)
en

er
gy

 (e
V)

x (nm)

n = 4
 = 0.0

n = 4
 = 0.2

n = 4
 = 0.5

Figure 2. x-dependent potential profile of a GaAs-Al0.3Ga0.7As lattice varying from n = 1 to n = 4
periods. The shape of the periods is also modified with the β = 0.0, 0.2, and 0.5 parameters. In (ai),
β = 0.0 and n = {1–4} for i = {1–4} respectively. In (bi), β = 0.2 and n = {1–4} for i = {1–4} respectively. In
(ci), β = 0.5 and n = {1–4} for i = {1–4} respectively. The red solid lines indicate the potential with α0 = 0,
whereas the black solid line shows the potential modified with α0 = 1.0 nm. The different-color
shadow regions indicate the SL periods for every system.

Figure 3 shows the energy dependence of the electronic transmission function for the
GaAs-Al0.3Ga0.7 as-well-barrier system presented in Figure 2 for the lower states. Results
are for α0 = 0; that is, without ILF effect on the system ((a) panels), and α0 = 1.0 nm
((b) panels). The different colors indicate the number of periods calculated as indicated in
Figure 3(a3). Figure 3(a1,b1) correspond to β = 0, Figure 1(a2,b2) correspond to β = 0.2,
and finally Figure 3(a3,b3) are for β = 0.5; therefore, each column corresponds to a different
structure. As we can see in Figure 3(a1), the system for n = 1 does not present a transmission
peak; this is an approximately constant continuous function for this range of energies. This
is expected behavior since, for β = 0, only one potential barrier is present; the transmission
is due solely to the tunneling effect. For Figure 3(a2), with n = 1, the system already has
two potential barriers (as can be seen in Figure 2); however, the transmission still does not
reach a maximum peak for the depicted energy range. This is because, despite the existence
of a resonant state in the central well region, the non-symmetry of the barriers does not
allow maximum transmission of one. Furthermore, the right barrier is only 1 nm thick, so
the tunneling is almost complete. Already for β = 0.5 and n = 1 in Figure 3(a3), the system
reaches a maximum transmission value that is presented by the effect of resonant tunneling
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with the state inside the central well. In addition, due to the symmetry of the barriers, for a
given energy value, the maximum transmission probability value is reached.
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Figure 3. Energy dependence of the electronic transmission probabilities for a GaAs-Al0.3Ga0.7As
finite lattice, according to Figure 2, i.e., varying the n-number of periods and the shape according to
the structural β-parameter. Results are without ILF effects ((a) panels) and with α0 = 1 nm ((b) panels).
In (a1), α0 = 0 nm and β = 0.0. In (a2), α0 = 0 nm and β = 0.2. In (a3), α0 = 0 nm and β = 0.5. In (b1),
α0 = 1 nm and β = 0.0. In (b2), α0 = 1 nm and β = 0.2. In (b3), α0 = 1 nm and β = 0.5. (c) Comparison
between the transfer matrix method and the FEM.

Despite the above, it should be clarified that not having a perfect resonance for the
case n = 1 and β = 0.2 in which there is a system of non-symmetric barriers does not imply
that this is true for all types of non-symmetric systems. In fact, for n = 2 and β = 0.2 a
perfect transmission is observed, even though the system is not symmetric. Currently, there
are numerous works in which the problem of perfect resonances in non-symmetric systems
has been studied. These resonances can be explained in terms of local symmetries within
the SL, and occur despite having a global asymmetry. Just to mention some of these works,
in 2009, Nava et al. [69] studied the total transmission in Fibonacci arrays of dielectric
multilayers, and found that the mirror symmetry in the SL is sufficient but not necessary
for the generation of perfect resonances. Further on, Kalozoumis et al. [70] evidenced
a similar behavior in one-dimensional optical media; related works can be found in the
references [71–73].

For n = 2, a well-defined peak is evidenced for the system with and without laser.
In this case, the average width of the peak is greater for β = 0.2 compared to β = 0. Note
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that for β = 0.5, the transmission presents a plateau-type structure, an energy range in
which the transmission probability is equal to or very close to one. For n = 3 and n = 4,
the transmission probability presents two and three peaks, respectively, for both β = 0 and
β = 0.2. Finally, for β = 0.5, the transmission probability functions present flat regions for
values close to transmission equal to one. By comparing (a1–a3) with (b1–b3) in Figure 3,
we note that the effect of the ILF on the system does not significantly modify the shape
or average width of the electronic transmission peaks. However, there is an evident blue
shift in the position of all transmission peaks for all calculated periods, independent of
the value of the β-parameter. For example, the red peak in Figure 3(a1,b1), corresponding
to n = 2 with β = 0, goes from 78.2 meV to 88 meV solely due to the laser effect. We
have to highlight that the variation in the average width of each transmission peak is of
fundamental importance for the response of the electric current through the device. It
should be mentioned that the transmission curves presented have been calculated by means
of the FEM; however, the same result is obtained by means of the transfer matrix method
(TMM) [74]. A comparison is presented in Figure 3c for a GaAs-based double-well, triple-
barrier system of equal well and barrier widths 5 nm; the black solid curve corresponds
to the result using FEM and the red dots are obtained through TMM. Evidently, similar
results are observed for both methods. Additionally, the reason why this transmission band
is selected in the energy window presented is due to the fact that in the calculated range of
geometric variations, there are no more quasi-stationary states inside the wells of the SL,
and therefore only said transmission band is different from zero.

Figure 4 shows the electronic transmission function of the well-barrier system pre-
sented in Figure 2 for the InSe-InP lattice. The upper row is for zero ILF-parameter, whereas
the lower row is for α0 = 1.0 nm. The different colors indicate the number of calculated
periods calculated in a similar way to Figure 3. The transmission functions present a
trend very similar to that of the GaAs-Al0.3Ga0.7As well-barrier system; however, for the
InSe-InP based system, the average width of each transmission peak for β = 0 and β = 0.2
presents a small but appreciable decrease concerning the GaAs-Al0.3Ga0.7As system. These
differences can change the area under the transmission curve and modify the properties of
electronic transport. Due to the different band offsets for both materials, clearly, the position
of the maximum probability peaks is not the same. To highlight one, in Figure 3(a1) for
GaAs-Al0.3Ga0.7As, the maximum probability for the system with n = 1 and β = 0 is
given for 78.2 meV, while in the InSe-InP system with the same parameters, the resonant
energy value is 145.6 meV. Finally, in Figure 4(b1–b3) we see how once again the ILF effect
generates a shift towards the blue for all transmission maxima. The value of the resonance
in the red curve of Figure 4(b1) appears at 171.5 meV; this indicates that the effect of the
ILF on the quasi-stationary states for the InSe-InP based system is more significant than
in the GaAs-Al0.3Ga0.7As one. Note that for both materials with and without laser effect,
the system with β = 0.5 (Figures 3(a3,b3) and 4(a3,b3)) presents approximately flat regions
for the transmission profile and a point at which it takes the same value regardless of the
number of periods of the device. For example, for the InSe-InP based system, this value is
145.8 meV when the laser is off and 170.9 meV when the laser is on.

To understand why the curves in Figures 3(a3–b3) and 4(a3–b3) lose their symmetrical
shape and are so different from the other figures in the rest of the panels, in Figure 5a, we
have calculated the transmission probability for the GaAs-Al0.3Ga0.7As system as a function
of the electron energy for n = 3 and different values of the β-parameter. In Figure 5b,c,
the real and imaginary parts of the lattice eigenvalues (Eβ

n,i), respectively, as a function of
the β-parameter, have been calculated. In Figure 5a we see that for the lowest values of the
β-parameter, the transmission probability presents two clearly defined peaks, such as β = 0.02
and β = 0.2 highlighted in red and blue, respectively. However, as the β-value is increased,
the average width of these peaks, corresponding to resonant states within the SL, increases.
For β = 0.5 (green curve), which is the highest value, the transmission probability has a peak
around 0.08 eV and a region where the transmission probability shows an approximately
flat behavior between 0.076 eV and 0.078 eV. When the Schrödinger equation is solved with
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open boundary conditions, a set of eigenvalues Eβ
n,i (where i is the order of the eigenvalue) is

obtained for each pair of (n, β) values. These eigenvalues generally have real and imaginary
parts. In Figure 5b, the real part of the eigenvalues for n = 3 is presented as a function of the
β parameter in the range (0.0, 0.6). The vertical axis is in the same energy range in which the
transmission probability depicted in Figure 5a has been calculated. The vertical dotted lines
indicate the particular positions of β = 0.02, β = 0.2, and β = 0.5 that correspond to the same
values for the red, blue, and green curves of Figure 5a, respectively. The numbers (labels)
indicate the order of the eigenvalue (i-parameter). The red circles in Figure 5b correspond to
the value of the two eigenvalues that are presented for β = 0.0; that is, these values coincide
with the two maxima that are shown in the red curve of Figure 5a. As we see in Figure 5b,
for β = 0.2 in the range of energies presented, the system shows three eigenvalues; however,
in Figure 5a the blue curve only shows two resonant peaks corresponding to the eigenvalues
8 and 10 marked by the blue circles; that is, there does not appear a to be peak associated with
the eigenvalue 9 that is around 0.079 eV. The reason for this resonance not appearing can be
found by analyzing Figure 5c, in which the imaginary part of the eigenvalues is presented.
As we see for β = 0.2, the imaginary part of eigenvalues 8 and 10 is very low compared to
the imaginary part associated with eigenvalue 9. On the other hand, this imaginary part is
inversely proportional to the average lifetime of the electrons in each state inside each well.
From the above, it is obtained that the lifetime of the electrons in state 9 is very low compared
to states 8 and 10, which implies a probability density equal to zero at the interior of the wells
of the SL for this state (this energy does not coincide with a quasi-state inside the wells), which
disables it for the resonant tunneling process, and for this reason, that third peak does not
appear in the blue curve of Figure 5a.
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Figure 4. Energy dependence of the electronic transmission probabilities for an InSe-InP finite lattice,
according to Figure 2, i.e., varying the n-number of periods and the shape according to the structural
β-parameter. Results are without ILF effects (upper panels) and with α0 = 1 nm (lower panels). In
(a1), α0 = 0 nm and β = 0.0. In (a2), α0 = 0 nm and β = 0.2. In (a3), α0 = 0 nm and β = 0.5. In (b1),
α0 = 1 nm and β = 0.0. In (b2), α0 = 1 nm and β = 0.2. In (b3), α0 = 1 nm and β = 0.5.

Analogous behavior happens for β = 0.5; in Figure 5b, we see that four eigenvalues
appear in the range of energies presented; three of them very close between 0.075 eV and
0.078 eV and one more close to 0.08 eV. When we analyze the imaginary part of each of
these states by means of Figure 5c, it is found that the imaginary part associated with state
8 is very large compared to the other states for this value of β. Additionally, the probability
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density associated with this state is zero inside the wells; in other words, this energy does
not correspond to a quasi-steady state. From the above, it is concluded that the green
curve in Figure 5a corresponds to the contribution of states 7, 9, and 10, where state 10,
highlighted in Figure 5b with a green circle, corresponds to the resonance around 0.08 eV,
as shown in Figure 5a.
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Figure 5. In (a), transmission probability for the GaAs-Al0.3Ga0.7As lattice for n = 3 as a function
of the electron energy for different values of the β-parameter. In (b,c), lattice eigenvalues real and
imaginary parts Eβ

n,i, respectively, as a function of the β-parameter.

The geometry modifications of the system, particularly for large values of β, generate
an increase in the barrier further to the right of the SL. This fact allows the emergence of an
additional state inside the system, generating a transmission profile that passes off clear
resonances towards a band structure. From these results, we can say that the plateaus on
the green curve are caused by an increase in the width of the resonant peaks at the same
time as a superposition of three states, when initially for small β, there were only two states.
It is worth mentioning that similar behavior was evidenced by Barra and Gaspard in the
spectrum of scattering resonances in spatially extended open-quantum systems [75].

Figure 6 shows the schematic diagram of the SL made up of a system of GaAs (InSe)
wells and Al0.3Ga0.7As (InP) barriers. The lower part represents the device connected to
two (hot and cold) reservoirs. The top represents the bottom of the conduction band of the
system. The width of the wells and the two central barriers have been set at 5 nm and the
end barriers at 2.5 nm. The system can be brought out of equilibrium through a potential or
temperature difference between the electronic reservoirs. This would induce a flow of the
charge carriers, which implies an electric or thermal current between the device terminals.
An external ILF can be applied to this well-barrier arrangement and can analyze how the
electronic probability changes; this is represented in Figures 7 and 8.

Figure 7 shows the transmission probability for the GaAs-Al0.3Ga0.7As system without
ILF effect for different bias voltages concerning the incident electron energy, Figure 7a.
Figure 7b shows the scheme of the potential profile for the barrier-well lattice system—see
Figure 2(c3)—where the black curve corresponds to α0 = 0 and the shaded region for
α0 = 1.0 nm. In Figure 7c, it is depicted the same as in Figure 7a, but for α0 = 1.0 nm.
In Figure 7a, we can see how as the bias voltage increases, the flat peak at the left side
becomes narrower; that is, more defined, and moves towards higher energies; this can be
seen by comparing the corresponding red curve at zero bias—see Figure 3(a3) blue curve—
with the blue curve corresponding to 5.0 mV. Additionally, it is observed that the peak
located at higher energies loses intensity in a systematic way as the bias voltage increases.
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In summary, at zero bias voltage, the transmission probability presents two structures, a flat
low-energy structure and a narrow and well-defined high-energy structure, which collapse
into a single, much more defined structure with a probability of 1.0 and localized at 80.5
meV when the bias voltage is 5.0 mV. According to Landauer’s theory, the area under each
probability curve must be proportional to the electric current due to the flow of electrons
through the system for this voltage. For the calculations presented in Figure 7a, the profile
of the bottom of the conduction band shown in Figure 7b (black curve) has been used.
Figure 7c shows the transmission probability for the GaAs-Al0.3Ga0.7As system calculated
for the potential profile of Figure 7b (shaded region) including the ILF effects. As we see in
Figure 7b, the non-resonant ILF induces a decrease in the width of the well-bottom; this
causes the quasi-stationary levels to rise, which corresponds to a blue shift, as evidenced in
Figure 7c. In Figure 7c, the zero bias curve corresponds to the Figure 3(b3) blue plot, and
shows similar behavior to that presented in Figure 7a as the bias voltage is increased in the
system; that is, there is a decrease in the intensity of the extreme peaks and the emergence
of a single central peak of maximum probability (one) attached to two external peaks of
less intensity. However, there is clearly a notable difference in the area under each curve
compared to the ILF effects as the voltage increases. These differences in transmission
probability profiles cause changes in electronic transport properties.

GaAs
  InSe

AlGaAs
    InP

Cold
  R

Hot
  L

Figure 6. Schematic diagram of the SL made up of a system of GaAs (InSe) wells and Al0.3Ga0.7As
(InP) barriers. The lower part represents the device connected to hot-left and cold-right reservoirs
that also act as emitters and collectors. The top represents the bottom of the conduction band of the
system. The width of the wells and the two central barriers have been set at 5 nm, and the barriers at
the left and right are set at 2.5 nm (see Figure 2(c3)).
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Figure 7. Corresponds to the system shown in Figure 2(c3). (a) the transmission probability for
the GaAs-Al0.3Ga0.7As lattice without laser effect for different bias voltages concerning the incident
electron energy; (b) the scheme of the potential profile for the barrier-well lattice system; the black
curve corresponds to the system without laser effect and the shaded region including an ILF parameter
strength of α0 = 1.0 nm; (c) the same as in (a), but with an ILF effect, α0 = 1.0 nm. The width of the
wells and the two central barriers have been set at 5 nm and the two lateral barriers at 2.5 nm.
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The results depicted in Figure 8 follow the same scheme as Figure 7, but for the InSe-
InP system. In Figure 8a, we can see how the system goes from having three peaks all
associated with maximum probability 1, the red curve for zero bias voltage (see Figure 4(a3)
without laser effect and Figure 4(b3) with intense laser effects) having a single central
peak with the probability of one and two shoulders of smaller amplitude on each side
(blue curve). If we compare Figures 7a and 8a, we see that for both materials, there is a
blue shift in the position of the transmission peaks with the increase in voltage; however,
the average width of the peaks is greater in the case of the GaAs-Al0.3Ga0.7As structure
than in the InSe-InP one. Analogous behavior occurs when an intense non-resonant laser
is applied to the system; see Figures 7c and 8c. From Figures 7 and 8, it has been found
that the transmission profile of the well-barrier lattice system can be modified by applying
an external non-resonant laser field and modifying the materials that make up each layer
of the system, and of course, applying a bias voltage between the emitter and collector,
maintaining fixed geometric parameters. This indicates that this system is a good candidate
for an electronic device, since it is possible to tune the electronic transmission through
which physical quantities such as electric current, heat flow, conductance, and power,
among others, can be modeled.
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Figure 8. In (a), the transmission probability for the InSe-InP lattice without laser effect for different
bias voltages concerning the incident electron energy; (b) the scheme of the potential profile for the
barrier-well lattice system; the black curve corresponds to the system without laser effect and the
shaded region including an ILF parameter strength of α0 = 1.0 nm; (c) the same as in (a), but with an
ILF effect, α0 = 1.0 nm. The width of the wells and the two central barriers have been set at 5 nm and
the two lateral barriers at 2.5 nm.

Figure 9a shows the electronic tunneling current for the well-barrier lattice system as
a function of the bias voltage. Analyzing the current for both materials without including
laser effects (full symbols), it is found that the system based on GaAs-Al0.3Ga0.7As reaches
a value of 5.4 mI0 for the maximum current peak that occurs at 0.3 mV, and on the other
hand, for InSe-InP-based material, the maximum current value is 2.9 mI0, which occurs for
the same bias voltage. It should be noted that, for both materials, the geometric parameters
have remained unchanged. Both materials present an abrupt increase in the current
between zero and 0.3 mV to later present a monotonous decreasing behavior, reaching up
to 3.9 mI0 for GaAs-Al0.3Ga0.7As and up to 1.1 mI0 for InSe-InP. These differences between
the currents of both materials are due to the differences in the heights of the potential
barriers generated by the different band offsets. The above generates changes in the area
under the curve of the electronic transmission probability, which can be evidenced by
comparing Figures 7a and 8a, where we see that the area under the curve is greater for the
GaAs-Al0.3Ga0.7As system and according to Landauer’s theory, the tunneling current is
proportional to this area. With the application of the ILF (α0 = 1.0 nm), as found in previous
figures, there is a shift in the quasi-stationary states inside the wells; in the same way, there
is a small increase in the area under the curve of electronic transmission for both materials.
This fact implies that the tunneling current also shows an increase. For the system based
on GaAs-Al0.3Ga0.7As, the maximum current peak is now 6.2 mI0 at 0.3 mV and that of
InSe-InP is 3.8 mI0 at 0.4 mV. The behavior is similar to the system without ILF effects,
presenting an abrupt increase for low voltages and a subsequent decrease. Lattices based
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on GaAs-Al0.3Ga0.7As and InSe-InP reach the values of 4.9 mI0 and 2.1 mI0, respectively, for
5 mV. This indicates that both by changing the materials and through the application of an
external laser field, it is possible to modify the properties of electronic transport, such as the
electric current in the wells and barriers system. It should be noted that, for both materials,
a NDR effect appears, which can be controlled in magnitude with the external laser field.
This generates a great advantage when it comes to implementation in a device, since it is
possible to control the current–voltage characteristics in the heterostructure without the
need to make geometric changes that are much more complex from the experimental point
of view.

Figure 9b shows the power for the GaAs-Al0.3Ga0.7As system (black curves) and InSe-
InP (red curves) for five different bias voltages concerning the chemical potential of the hot
reservoir. The GaAs system shows close to flat power curves, having an increasing slope
for low values of the chemical potential, going through a maximum, and decreasing slowly.
The InSe system shows almost a lineal behavior, starting from low chemical potential values
and increasing to larger magnitudes. As the bias voltage is increased, the value of the
power in each system decreases. On the other hand, for 1 mV, the power is maximum for
the GaAs-Al0.3Ga0.7As system only for µH < 0.15 eV, since after this value, the power is
now maximum in the InSe-InP system. This indicates that for the chemical potential of the
hot reservoir at 0.15 eV, both materials present the same power value of 5.8 (10−4 W) for a
bias voltage of 1 mV; similarly, each crossing of the red curves with the black ones indicates
points in which the power is equivalent for both materials and at different bias voltages.
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Figure 9. In (a), the electronic tunneling current for the well-barrier lattice system as a function of
the bias voltage, in units of I0 = 2 e/h, for zero ILF-parameter (full symbols) and α0 = 1.0 nm (open
symbols). In (b), the power for five different bias voltages concerning the chemical potential of the hot
reservoir. The width of the wells and the two central barriers has been set at 5 nm and the two lateral
barriers at 2.5 nm (see Figure 2(c3)). Calculations are for GaAs-Al0.3Ga0.7As and InSe-InP lattices.

When the potential difference between the terminals of the system is increased, an ad-
ditional asymmetry in the potential profile is generated, which leads to a decrease in the
probability of electronic transmission (area under the curve in the band of transmission) as
evidenced in Figures 7 and 8. This behavior also occurs when the system is subjected to
the effect of an intense non-resonant laser field. This decrease in transmission implies a
decrease in the tunneling current that is evidenced through the Landauer formalism and
the result presented in Figure 9a. This behavior can also be understood as an increase in
the electric current when the energy of the incident electrons (coming from the emitter)
coincides with the energy of the quasi-stationary states inside the SL; in this case, these
states are known as resonant states. When this resonance does not exist, there is a decrease
in the electric current. There is a relationship between NDR and negative differential
conductance (NDC), since both transport properties can be studied from the Landauer
formalism and the physical origin of both phenomena is identical; that is, a decrease in
electrical current generated from an increase in external voltage. More clearly referring to
the relations Gdi f f = 1/Rdi f f = dI/dV, where Gdi f f is the NDC, Rdi f f is the NDR, I is the
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current, and V is the applied voltage. This effect not only arises in semiconductor systems;
it also occurs in molecular systems; see Refs. [76–78].

4. Conclusions

The finite SL systems based on GaAs-Al0.3Ga0.7 and InSe-InP have been studied by
analyzing how the probabilities of electronic transmission change for both materials by
varying the geometric parameters that allow changes in the number of periods in the
lattice, as well as the well and barrier widths. By applying an external non-resonant ILF,
it is possible to modify the lattice potential profile, which leads to a blue shift in quasi-
stationary states. A four-barriers-three-wells arrangement was undertaken to analyze the
electronic transport properties by means of Landauer’s theory for both semiconductor
materials, including the laser effects. It was found that, for the same geometry, the tunneling
current was higher for the GaAs-Al0.3Ga0.7As based system than that of InSe-InP based
system; in the same way, the point of maximum current was practically unchanged for both
materials for the calculated bias voltages. By applying the external laser field, an increase
in the tunneling current was found for both materials but maintained the same trend
of the I-V curves. For both materials, a NDR effect appeared that can be controlled in
magnitude with the external laser field. This generates a great advantage when it comes to
implementation in a device, since it is possible to control the current–voltage characteristics
in the heterostructure without the need to make geometric changes that are much more
complex from the experimental point of view.

Finally, the power for the same arrangement was calculated concerning the chemical
potential, finding higher values for the system based on GaAs-Al0.3Ga0.7As for small values
of the chemical potential. For high values, the power was more significant in the InSe-
InP system. It should be noted that, for a set of points, the power for both systems took
the same value. A four-barriers-three-wells arrangement was undertaken to analyze the
electronic transport properties by means of Landauer’s theory for both semiconductor
materials, including the laser effects. It was found that, for the same geometry, the tunneling
current was higher for the GaAs-Al0.3Ga0.7As based system than for the InSe-InP based
system. In the same way, the point of maximum current was practically unchanged for
both materials for the calculated bias voltage. It is worth mentioning that high harmonic
multipliers are among the most recent applications of SL based on semiconductor materials.
Considering the geometric modifications analyzed in this work, it is possible to characterize
these systems that are widely studied today.
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