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Abstract: An approach using multivariate adaptive regression splines (MARSplines) was applied for
quantitative structure–activity relationship studies of the antitumor activity of anthrapyrazoles. At
the first stage, the structures of anthrapyrazole derivatives were subjected to geometrical optimization
by the AM1 method using the Polak–Ribiere algorithm. In the next step, a data set of 73 compounds
was coded over 2500 calculated molecular descriptors. It was shown that fourteen independent
variables appearing in the statistically significant MARS model (i.e., descriptors belonging to 3D-
MoRSE, 2D autocorrelations, GETAWAY, burden eigenvalues and RDF descriptors), significantly
affect the antitumor activity of anthrapyrazole compounds. The study confirmed the benefit of using
a modern machine learning algorithm, since the high predictive power of the obtained model had
proven to be useful for the prediction of antitumor activity against murine leukemia L1210. It could
certainly be considered as a tool for predicting activity against other cancer cell lines.

Keywords: anthrapyrazoles; antitumor activity; multivariate adaptive regressions splines; quantitative
structure-activity relationships (QSAR)

1. Introduction

Anthrapyrazoles are synthetic anticancer drugs, synthesized in order to retain high levels
of the wide spectrum of antitumor activity in anthracyclines (e.g., doxorubicin), while at the
same time, diminishing cardiotoxicity by reducing the potential to generate semiquinone
free radicals in cardiac cells [1,2]. Although there was a broad range of antitumor activity in
model tumors [1,3], they revealed diversified activity in doxorubicin-resistant cells [4]. The
action mechanism of these planar compounds is based on DNA intercalation, topoisomerase
II inhibition of DNA synthesis, and DNA strand breaks [2]. Structurally, anthrapyrazoles are
similar to mitoxantrone, but their structure has to be modified to reduce the abovementioned
side effect. Attempts to reduce the toxicity of anthracyclines have led to the development
of various anthrapyrazole derivatives, including teloxantrone (Ci-937, DUP-937, molecule
a-60, which is studied in this work), piroxantrone (CI-942, DUP-492, molecule a-58, which is
studied in this work), and finally losoxantrone (CI-941, DUP-941), with reduced side effects
and increased efficacy in patients with breast cancer. Those three anthrapyrazoles even
underwent clinical trials, and in phase II trials, they exhibited significant response rates in
women with metastatic breast cancer [3]. Losoxantrone has shown impressive cytotoxic

Int. J. Mol. Sci. 2022, 23, 5132. https://doi.org/10.3390/ijms23095132 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23095132
https://doi.org/10.3390/ijms23095132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-9176-7108
https://orcid.org/0000-0001-8123-3882
https://orcid.org/0000-0003-4573-3614
https://orcid.org/0000-0003-0623-1443
https://orcid.org/0000-0002-4492-4796
https://doi.org/10.3390/ijms23095132
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23095132?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 5132 2 of 18

activity on a wide range of tumor cell lines (virtually the same spectrum of antitumor activity
as mitoxantrone) with predicted potential to replace anthracyclines through a more favorable
therapeutic index [1]. What is more, is that a response rate of 63% in women with metastatic
breast cancer was observed in the study conducted by Talbot et al. [5].

The multivariate adaptive regression splines (MARSplines) were presented by Fried-
man as a method for flexible regression modeling of high dimensional data [6]. This modern
machine learning algorithm was successfully applied in a quantitative structure–activity
relationship (QSAR), and a quantitative structure–retention relationship (QSRR) modeling
approach was applied in studies for drug activity prediction. A MARSplines procedure
was used for the development of predictive QSAR models of various compounds with
diverse pharmacological activities, such as antitrypanosomal 4-thiazolidinones [7], anti-
spasmodial artemisin compounds [8], pyridine N-oxide derivatives against human severe
acute respiratory syndrome [9], or anticancer acridone derivatives [10]. The advantages of
the MARS technique were shown, among others, in the case of artemisinin compounds.
Namely, it was found that QSAR models determined by the MARS procedure are the most
satisfactory predictive models in comparison with some other methods such as multiple
linear regression [8]. For abovementioned reasons, the MARSplines algorithm was chosen
as a promising tool for a prediction of the antitumor activity of anthrapyrazoles in the
present study.

A large set of anthrapyrazole compounds (about 119 derivatives, 73 of which have
been studied in the present work) was tested against L1210 murine leukemia in vitro,
and P388 leukemia in vivo, by Hollis Showalter et al. [11] In subsequent studies, some of
the abovementioned compounds were tested in eight different mouse tumor systems [1].
Moreover, it was found in another study that 12 different anthrapyrazole derivatives
inhibited the growth of K562 and K/VP.5 cells [12]. In light of the constant need to develop
new anticancer drugs, as well as the high potential of such a large group of anthrapyrazole
derivatives studied in the present work, structure–activity studies using modern machine
learning algorithms may contribute to achieving better levels of predictivity, thus indicating
a potential candidate for further research. The goal of the present work is to create a model
predicting the antitumor activity of 73 anthrapyrazole derivatives, as well as to evaluate
the usefulness of the MARSplines procedure for QSAR studies.

2. Results

More than 2500 molecular descriptors were obtained using Hyperchem and Dragon
software, which were used as independent variables to create a model predicting the
antitumor activity of 73 anthrapyrazole derivatives ().

2.1. Geometry Optimization

Molecular modeling was performed with 73 derivatives, which were first geometrically
optimized. Examples of three-dimensional particle structures with defined geometries are
shown in Figure 1.
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Figure 1. Geometrically optimized structures of selected anthrapyrazole derivatives: (a) a-01; (b) a-
08; (c) a-18; (d) a-30; (e) a-50; (f) a-60. 
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ATSC1e, SpMax8_Bh(s), Mor21e, Mor13s, R5p, ATSC1s, ATSC8s, RDF135e, and HATS5s) 
presented in Table 1. 
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Figure 1. Geometrically optimized structures of selected anthrapyrazole derivatives: (a) a-01; (b) a-08;
(c) a-18; (d) a-30; (e) a-50; (f) a-60.

2.2. Statistical Analysis

Completion of an optimal model describing the structure–activity relationship allowed
the selection of relevant variables (Mor05s, Mor19m, MATS8e, H1e, ATSC7vk, ATSC1e,
SpMax8_Bh(s), Mor21e, Mor13s, R5p, ATSC1s, ATSC8s, RDF135e, and HATS5s) presented
in Table 1.

Table 1. Values of significant molecular descriptors for the tested anthrapyrazole derivatives.

Compound Set
Descriptors

Mor05s Mor19m MATS8e H1e ATSC7v ATSC1e SpMax8_Bh(s) Mor21e Mor13s R5p ATSC1s ATSC8s RDF135e HATS5s

a-01 training −23.248 0.14 0.071 1.868 8.747 0.089 3.701 −1.038 −3.106 0.355 10.915 24.843 3.716 0.885
a-02 test −24.151 0.35 0.086 2.449 10.376 0.063 3.729 −1.668 −2.011 0.431 7.562 17.708 2.312 0.888
a-03 test −25.044 0.312 0.088 1.887 10.229 0.072 3.805 −1.273 −3.232 0.352 9.636 26.817 4.833 0.696
a-04 training −26.013 0.527 0.093 2.415 11.909 0.062 3.826 −1.909 −1.983 0.42 7.486 19.947 2.33 0.731
a-07 training −28.355 0.374 0.136 2.266 12.334 0.108 3.868 −1.422 −3.935 0.34 14.861 70.152 8.044 0.59
a-08 training −29.427 0.556 0.173 2.494 14.042 0.067 3.892 −1.992 −2.491 0.393 9.462 63.182 6.066 0.623
a-14 test −27.108 0.38 0.081 2.352 13.021 0.09 3.868 −1.49 −4.166 0.356 12.928 53.706 7.109 0.56
a-15 training −24.585 0.405 0.087 2.499 10.664 0.072 3.731 −0.942 −2.711 0.462 9.69 34.523 0 1.068
a-16 test −27.47 0.41 0.104 2.485 12.554 0.108 3.93 −1.01 −5.516 0.43 14.861 50.769 2.714 0.979
a-17 training −26.332 0.399 0.045 2.651 13.246 0.09 3.91 −0.998 −4.039 0.463 12.928 48.529 2.581 0.748
a-18 training −27.16 0.354 0.051 2.486 14.206 0.117 4.11 −1.333 −4.656 0.372 15.025 49.723 9.628 0.857
a-19 training −27.182 0.593 0.084 2.453 15.132 0.071 3.913 −1.856 −4.49 0.397 10.351 43.961 5.776 0.78
a-20 training −30.264 0.711 0.074 2.685 16.896 0.084 3.943 −2.188 −2.689 0.513 10.256 41.257 8.767 0.675
a-21 training −30.336 0.887 −0.015 2.454 18.916 0.093 3.892 −2.927 −1.602 0.439 9.089 37.67 14.127 0.535
a-23 training −28.063 0.473 0.052 2.395 15.141 0.079 3.892 −1.916 −3.363 0.473 9.555 42.176 3.359 0.664
a-24 training −28.566 0.547 0.075 2.397 16.123 0.079 3.892 −2.428 −2.117 0.456 8.749 39.386 6.171 0.6
a-25 training −28.039 0.772 0.062 2.431 17.093 0.084 3.892 −1.927 −3.76 0.447 10.256 40.357 5.936 0.665
a-26 test −28.873 0.779 0.086 2.44 18.887 0.093 3.892 −2.847 −1.14 0.526 9.581 35.763 10.198 0.721
a-27 training −32.526 0.886 0.054 2.46 20.027 0.099 3.892 −3.152 −2.312 0.496 10.073 41.721 15.563 0.608
a-28 training −31.513 0.772 −0.034 2.59 21.69 0.105 3.892 −3.454 −0.694 0.575 10.551 43.578 19.845 0.613
a-29 training −35.189 1.108 0.022 2.504 25.218 0.122 3.941 −4.494 0.073 0.54 11.901 44.571 23.851 0.586
a-30 test −29.895 0.984 0.074 2.711 18.211 0.069 3.892 −2.825 −3.798 0.571 7.221 34.729 4.623 0.685
a-31 test −32.648 1.182 0.088 2.692 18.629 0.09 3.892 −2.855 −1.78 0.566 8.368 34.604 4.618 0.639
a-32 training −37.679 0.603 0.07 2.84 23.509 0.063 4.302 −3.52 −2.193 0.555 10.118 61.697 2.066 0.602
a-33 training −31.756 0.295 −0.15 1.854 7.964 0.15 3.907 −0.585 −6.758 0.325 19.422 68.778 0 0.778
a-34 training −32.952 0.272 −0.084 1.962 9.944 0.173 4.222 −0.896 −7.17 0.355 21.396 65.841 4.312 0.899
a-35 training −34.132 0.496 −0.082 2.486 11.745 0.09 3.942 −1.561 −5.943 0.429 12.554 50.107 5.362 0.949
a-36 training −36.292 0.493 −0.047 2.613 14.261 0.089 4.279 −1.313 −5.809 0.423 13.378 57.153 3.503 0.845
a-38 training −35.884 0.327 0.03 2.49 13.45 0.186 4.35 −1.215 −7.443 0.375 21.7 96.608 7.612 0.876
a-40 training −35.247 0.336 −0.005 2.396 10.119 0.194 4.342 −0.67 −7.823 0.364 27.496 130.412 0 0.885
a-41 training −36.566 0.293 0.019 2.379 12.094 0.218 4.352 −1.021 −7.791 0.354 29.098 127.386 7.555 0.807
a-42 training −36.299 0.373 0.052 2.445 12.008 0.152 4.281 −1.172 −7.005 0.324 19.476 115.944 1.162 0.692
a-43 training −37.466 0.485 0.052 2.58 13.9 0.128 4.279 −1.574 −6.836 0.419 18.037 111.512 4.311 0.833
a-44 training −38.067 0.711 0.036 2.823 13.123 0.178 4.346 −1.597 −7.37 0.535 20.604 115.411 0 1.067
a-46 training −40.983 0.422 0.034 2.466 16.838 0.191 4.376 −1.732 −7.572 0.369 26.156 131.348 11.288 0.83
a-47 test −34.614 0.389 −0.101 2.466 10.872 0.166 4.339 −0.836 −7.493 0.38 24.127 106.027 0 0.873
a-48 training −34.595 0.45 −0.09 2.484 12.098 0.155 4.343 −1.003 −7.772 0.37 23.038 115.094 0 0.866
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Table 1. Cont.

Compound Set
Descriptors

Mor05s Mor19m MATS8e H1e ATSC7v ATSC1e SpMax8_Bh(s) Mor21e Mor13s R5p ATSC1s ATSC8s RDF135e HATS5s

a-49 test −34.259 0.372 −0.064 2.438 11.805 0.147 4.281 −1.068 −7.085 0.368 18.738 96.646 0.712 0.82
a-50 training −37.076 0.338 −0.056 2.383 12.827 0.189 4.351 −0.811 −7.866 0.355 25.724 102.909 8.225 0.782
a-51 test −38.93 0.529 −0.085 2.593 14.213 0.177 4.35 −0.971 −7.42 0.451 24.541 110.401 2.928 1.43
a-52 test −39.941 0.441 −0.064 2.404 15.776 0.126 4.331 −1.487 −6.097 0.372 16.891 97.497 10.951 0.628
a-53 test −36.787 0.433 −0.133 2.481 14.405 0.177 4.354 −1.006 −8.223 0.363 24.541 84.423 7.287 0.858
a-54 test −39.871 0.503 −0.151 2.419 17.328 0.116 4.336 −1.735 −6.213 0.358 16.214 74.598 13.241 0.756
a-55 training −36.81 0.361 −0.043 2.5 14.185 0.169 4.308 −1.119 −7.462 0.376 20.409 83.802 6.619 0.863
a-56 training −34.217 0.218 −0.08 2.735 13.043 0.189 4.354 −0.752 −9.059 0.476 25.724 93.711 2.594 0.994
a-57 training −36.624 0.562 −0.074 2.586 14.298 0.177 4.356 −0.99 −10.128 0.414 24.541 102.629 3.705 1.362
a-60 training −33.756 0.421 −0.054 2.572 14.011 0.169 4.302 −0.952 −8.742 0.416 20.409 84.468 4.29 1.368
a-62 training −37.503 0.552 −0.048 2.772 15.019 0.212 4.359 −1.275 −8.56 0.43 27.21 90.663 3.006 0.789
a-63 training −41.791 0.386 −0.072 2.813 16.385 0.199 4.358 −1.074 −9.141 0.5 25.97 97.975 2.933 0.898
a-64 test −41.408 0.429 −0.024 2.67 17.542 0.234 4.447 −1.311 −9.127 0.436 32.045 92.108 8.337 1.114
a-65 training −42.394 0.647 −0.069 2.737 18.936 0.22 4.445 −1.996 −8.813 0.484 30.676 102.443 9.966 0.994
a-66 training −35.171 0.471 −0.031 2.571 14.998 0.149 4.297 −1.291 −8.145 0.405 18.91 79.856 7.264 1.18
a-67 training −37.34 0.443 −0.033 2.746 16.838 0.126 4.296 −2.132 −8.091 0.507 17.382 73.971 5.859 0.842
a-68 training −37.247 0.848 −0.033 2.849 16.092 0.172 4.356 −1.65 −8.684 0.512 19.233 77.96 2.225 0.842
a-69 training −35.64 0.589 −0.089 2.618 15.742 0.14 4.267 −1.564 −7.446 0.426 17.569 78.636 7.216 0.946
a-70 test −36.907 0.519 −0.048 2.682 15.457 0.186 4.358 −1.247 −8.227 0.395 24.211 85.133 10.285 0.744
a-71 training −39.599 0.429 −0.055 2.558 17.935 0.146 4.348 −1.844 −6.618 0.381 18.312 84.952 13.548 0.808
a-73 training −39.446 0.471 −0.062 2.605 18.474 0.129 4.297 −1.592 −7.497 0.415 17.763 82.352 4.101 0.769
a-74 training −38.284 0.554 −0.131 2.505 15.558 0.165 4.353 −1.035 −8.24 0.401 23.364 100.733 11.198 0.861
a-76 training −38.074 0.387 −0.038 2.597 16.406 0.191 4.357 −1.39 −6.331 0.411 25.148 83.897 8.133 0.984
a-77 training −35.23 0.447 −0.064 2.558 13.577 0.128 4.285 −0.952 −6.533 0.464 17.289 79.755 0 0.918
a-78 training −36.941 0.529 −0.06 2.475 14.84 0.117 4.289 −1.303 −7.397 0.416 16.659 88.64 2.311 1.377
a-79 test −32.38 0.413 −0.033 2.727 15.563 0.149 4.303 −1.113 −7.931 0.463 18.91 77.174 7.047 0.88
a-80 test −35.172 0.604 −0.18 2.487 13.832 0.117 4.312 −1.267 −7.558 0.463 16.659 74.551 2.789 1.292
a-81 test −38.719 0.681 −0.169 2.511 15.108 0.108 4.315 −1.611 −7.898 0.415 15.991 82.931 4.808 1.146
a-82 test −35.243 0.672 −0.127 2.766 15.826 0.137 4.323 −1.786 −8.211 0.488 18.164 72.004 0.053 0.897
a-83 training −36.32 0.495 −0.062 2.546 15.014 0.108 4.286 −1.608 −8.139 0.532 15.974 73.76 0.419 0.896
a-84 test −36.382 0.473 −0.039 2.465 16.024 0.089 4.26 −1.908 −6.312 0.465 12.755 67.073 5.692 0.813
a-86 training −38.16 0.486 −0.034 2.499 17.02 0.126 4.301 −1.772 −7.501 0.447 17.382 71.601 6.725 0.797
a-87 test −38.523 0.577 −0.021 2.535 18.877 0.089 4.257 −2.65 −5.673 0.481 13.34 61.78 18.608 0.73
a-88 test −39.825 0.429 −0.048 2.644 17.927 0.146 4.353 −2.036 −7.398 0.406 18.312 82.663 18.698 0.771
a-90 training −39.406 0.784 0.02 2.675 18.546 0.166 4.352 −1.824 −6.002 0.486 24.308 118.33 17.894 0.78
a-91 training −40.792 1.003 0.048 2.645 20.3 0.095 4.302 −2.484 −5.435 0.529 17.575 106.766 18.072 0.75

2.2.1. Model Construction and Prediction of pIC50 Values

The MARS model, using a considerable set of descriptors as possible predictors, was
developed using a training set to describe the antitumor activity denoted as a negative
logarithm of the half maximal inhibitory concentration (pIC50). The degree of interaction
was set at 3, which led to linear, second, and third order splines being incorporated into the
model, whereas the maximum number of basis functions was set at 40. Finally, the optimal
MARS model was selected on the basis of three validation parameters (R2,Q2 and MAE).
All fourteen descriptors incorporated into the model are characterized in Table 2.

Table 2. Selected descriptors and the number of times they appeared in the basis functions of the
MARS model.

Symbol Definition Block Dimensionality Number in the Basis
Function

Mor05s signal 05/weighted by I-state 3D-MoRSE descriptors 3D 9
Mor19m signal 19/weighted by mass 3D-MoRSE descriptors 3D 6

MATS8e Moran autocorrelation of lag 8 weighted
by Sanderson electronegativity 2D autocorrelations 2D 4

H1e H autocorrelation of lag 1/weighted by
Sanderson electronegativity GETAWAY descriptors 3D 3

ATSC7v Centred Broto–Moreau autocorrelation of
lag 7 weighted by van der Waals volume 2D autocorrelations 2D 2

ATSC1e
Centred Broto–Moreau autocorrelation of

lag 1 weighted by Sanderson
electronegativity

2D autocorrelations 2D 2

SpMax8_Bh(s) largest eigenvalue n. 8 of Burden matrix
weighted by I-state Burden eigenvalues 2D 2

Mor21e signal 21/weighted by Sanderson
electronegativity 3D-MoRSE descriptors 3D 2

Mor13s signal 13/weighted by I-state 3D-MoRSE descriptors 3D 2

R5p R autocorrelation of lag 5/weighted by
polarizability GETAWAY descriptors 3D 2

ATSC1s Centred Broto–Moreau autocorrelation of
lag 1 weighted by I-state 2D autocorrelations 2D 1

ATSC8s Centred Broto–Moreau autocorrelation of
lag 8 weighted by I-state 2D autocorrelations 2D 1

RDF135e
Radial Distribution

Function—135/weighted by Sanderson
electronegativity

RDF descriptors 3D 1

HATS5s leverage-weighted autocorrelation of lag
5/weighted by I-state GETAWAY descriptors 3D 1
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The MARS model is based on several interactions between molecular properties. All of
the abovementioned molecular descriptors treated as predictor variables appear in 38 basis
functions, which form 23 splines (high-order basis functions) (Bm). The model starts with
the constant function B1, and then, in subsequent steps, functions giving the best learning
system fit for the current residual are added to the model according to Equation (1):

pIC50 =
22

∑
m=1

amBm (1)

The optimal model contains eight single basis functions (B2, B3, B8, B9, B10, B21, B22,
B23), twelve splines that are second-order interactions of two molecular properties (B4, B5,
B6, B7, B11, B12, B13, B14, B17, B18, B19, B20), and finally two splines that are third-order
interactions of three molecular properties (B15, B16). All basis functions (B1. B2 . . . B23) and
their coefficients am that comprise the model are shown in Table 3.

Table 3. The functions of the basis splines.

Bm Definition am

B1 1 7.00228
B2 (Mor05s + 28.56600)+ −0.41345
B3 (−28.56600 −Mor05s)+ −0.10460
B4 (ATSC7v − 12.33400) + (Mor05s + 28.56600)+ 0.29808
B5 (12.33400 − ATSC7v) + (Mor05s + 28.56600)+ 0.11583
B6 (−28.56600 −Mor05s) + (R5p − 0.37500)+ 0.98096
B7 (−28.56600 −Mor05s) +(0.37500 − R5p) + 3.57380
B8 (Mor19m − 0.42100) + −1.63111
B9 (0.42100 −Mor19m)+ −5.67335
B10 (MATS8e − 0.07400)+ −14.65355
B11 (15.99100 − ATSC1s)+ (0.07400 −MATS8e)+ −6.03111
B12 (70.15200 − ATSC8s)+ (0.07400 −MATS8e)+ 0.92668
B13 (−28.56600 −Mor05s)+ (H1e − 2.54600)+ −0.53694
B14 (MATS8e − 0.07400)+ (RDF135e − 7.04700)+ −8.31766

B15
(SpMax8_Bh(s) − 4.32300)+ (−28.56600 −

Mor05s)+ (0; 2.54600 − H1e)+
−16.59500

B16
(4.32300 − SpMax8_Bh(s))+ (−28.56600 −

Mor05s)+ (2.54600 − H1e)+
−0.64411

B17 (Mor19m − 0.42100)+ (Mor21e + 1.26700)+ −19.90208
B18 (Mor19m − 0.42100)+ (−1.26700 −Mor21e)+ −0.88179
B19 (Mor19m − 0.42100)+ (Mor13s + 6.31200)+ 0.33453
B20 (Mor19m − 0.42100)+ (−6.31200 −Mor13s)+ 0.65372
B21 (0.85700 − HATS5s)+ 1.71725
B22 (ATSC1e − 0.11600)+ 6.68741
B23 (0.11600 − ATSC1e)+ 6.15634

As an example of a linear basis function, B9 can be considered:

(0.42100−Mor19m)+ =

{
(0.42100−Mor19m) if Mor19m < 0.42100

0 otherwise
, (2)

What this means, is that the ninth term of Equation (1) is—5.67335 (0.42100−Mor19m)
when Mor19m is lower than 0.42100, and zero when it is smaller than 0.42100. As for an
exemplary two-order interaction between molecular properties, B14 may be reviewed:

(MATS8e− 0.07400) + (RDF135e− 7.04700)+ =

{
(MATS8e− 0.07400)(RDF135e− 7.04700) if MATS8e > 0.07400 and RDF135e > 7.04700

0 otherwise
(3)
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What this means is that the fourteenth term of Equation (1) is—8.31766 (MATS8e− 0.07400)
(RDF135e− 7.04700) when MATS8e is higher than 0.07400 and RDF135e is higher than 7.04700,
but otherwise it is zero.

As mentioned above, 14 of more than 2500 descriptors were incorporated into the
MARS model. Their relevance to the MARS model expressed as the number in the basis
functions, as well as in their definition, block, and dimensionality which are presented in
Table 2. Descriptors describing the molecule’s 3-D geometrical properties (3D-MoRSE de-
scriptors, GETAWAY descriptors, RDF descriptors) emerge in the foreground in the present
molecular modeling. The other descriptors are two-dimensional burden eigenvalues and
autocorrelations, namely ATS descriptors, which describe how a property is distributed
along the topological structure. Out of all the descriptors present in the model, Mor05s and
Mor19m descriptors belong to the class of 3D-MoRSE descriptors, and contribute the most
to the model, as they appear in the basis functions nine and six times, respectively. The next
descriptor is MATS8e, which appears four times in the model, and belongs to the class of
2D autocorrelations, and finally, H1e presents three times as a representative of GETAWAY
descriptors. Other descriptors of minor importance for the model (i.e., occurring twice),
include ATSC7v, ATSC1e, SpMax8_Bh(s), and R5p. The contributions of ATSC1s, ATSC8s,
RDF135e, and HATS5s are much less significant.

2.2.2. Validation of Models and Selection of the Optimal One for Prediction

Using the Multivariate Adaptive Regression Splines nonparametric procedure, 11 QSAR
models were created using a different degree of interactions, as well as a different maximum
number of basis functions. The coefficients included in the models were determined on the
basis of the training group (see Table 1). Following the calculated validation parameters of
all models, an optimal model was selected showing the structure–activity relations (degree
of interaction 3, number of basis functions 38) with the highest determination coefficient
(R2) (a perfect correlation was obtained), a cross-validated R2 (Q2) threshold greater than
0.5 (checking R2 for internal validation), and the lowest mean absolute error (MAE). The
values of the aforementioned parameters are presented in Table 4.

Table 4. Values of validation parameters of models obtained with the MARSplines procedure (the
optimal model marked in yellow).

Degree of
Interaction

Number of
Basis Functions R2 Q2 MAE

1

6 0.5291 −0.1525 0.2622
16 0.8288 0.5787 0.1709
21 0.9277 0.8706 0.1133
21 0.9185 0.8807 0.1230

2
6 0.4691 0.1343 0.2819

16 0.8649 0.7480 0.1616
33 0.9328 0.9311 0.1096

3

6 0.4691 0.1343 0.2819
26 0.8649 0.7480 0.1616
38 0.9617 0.9016 0.0772
40 0.9532 0.9033 0.0897

Moreover, for the optimal MARS model, the extended validation procedure that is
typical for QSAR models was applied according to Roy et al. [13] (see Table 5) Considering
the above characteristics, the reasonably high predictive power of the established MARS
model should be emphasized.
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Table 5. Values of validation parameters of the optimal MARS model.

Parameter [13] Value Threshold [13] Meaning [13]

R2 = 1− ∑ (Yobs−Ycal)
2

∑ (Yobs−Ytraining)
2

0.9617
~1

(1 means perfect
correlation)

It measures the variation of
observed

data with the predicted ones.

Q2
(

orQ2
LOO

)
=

1− ∑ (Yobs(training)−Ypred(training))
2

∑ (Yobs(training)−Y(training))
2

0.9016 ≥0.5
Cross-validated R2 (Q2)

checked for internal
validation.

Q2
F1 = 1− ∑ (Yobs(test)−Ypred(test))

2

∑ (Yobs(test)−Y(training))
2

0.9119 ≥0.5

A measure of correlation
between the observed and

predicted
data of the test set.

Q2
F2 = 1− ∑ (Yobs(test)−Ypred(test))

2

∑ (Yobs(test)−Y(test))
2

0.90163 ≥0.5

Almost equal or closer values
of Q2

(F2) and Q2
(F1) infer that

the training set mean lies in
the close propinquity to that

of the test set.

Q2
F3 = 1− [∑ (Yobs(test)−Ypred(test))

2
]/ntest[

∑ (Yobs(train)−Y(train))
2
]
/ntrain

0.7959 ≥0.5 It measures the model
predictability.

CCC =
2 ∑n

i=1(xi−x)(yi−y)
∑n

i=1(xi−x)2+∑n
i=1(yi−y)+n(x−y)

0.9496 ~1

Concordance correlation
coefficient (CCC) measures
both precision and accuracy,
detecting the distance of the
observations from the fitting

line and the degree of
deviation of the regression

line from that passing through
the origin, respectively.

r2
m =

(r2
m+r′2m)

2 and ∆r2
m =

∣∣∣r2
m − r′2m

∣∣∣,
where r2

m = r2 ×
(

1−
√

r2−r2
0

)
r′2m = r2 ×

(
1−

√
r2−r′20

)
and parameters r2 and r2

0 are denoted as
follows:

r2
0 = 1− ∑ (Yobs−k×Ypred)

2

∑ (Yobs−Yobs)
2 and

r′20 = 1− ∑ (Ypred−k′×Yobs)
2

∑ (Ypred−Ypred)
2

The terms k and k
′

are explained as
follows:

k =
∑ (Yobs×Ypred)

∑ (Ypred)
2 and k′ = ∑ (Yobs×Ypred)

∑ (Yobs)
2

0.0173 and 0.9181
∆r2

m < 0.2 provided that
the value of r2

m 2 > 0.5

They reflect the overall
predictability of the model

for the entire data set.

PRESS = ∑
(

Yobs − Ypred

)2 0.3446
It evaluates the model using
the predicted residual sum of

squares.

SDEP =
√

PRESS
n

0.1252
Standard deviation of error of

prediction (SDEP) is
calculated from PRESS.

MAE =
∑ |Yobs−Ypred|

n
0.0772

Index of errors in the context
of predictive modeling

studies.
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2.3. Values of Predicted Data

Values of pIC50 (pIC50calc) obtained on the basis of the constructed model were
compared with the experimental data (pIC50exp) (see Table S1) and in the scatter plot,
where a strong positive relationship is shown (see Figure 2). Moreover, analysis of residuals
showed that the residual plot represents a normal distribution (see Figure 3). An elaborated
MARS model was also employed for the prediction of antitumor activity against murine
leukemia L1210 out of the seven other anthrapyrazole derivatives. This external set was
adopted from the literature [1]. It should be noted that the antitumor activity against
murine leukemia L1210 has not been reported so far. For more details, see Table S2.
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3. Discussion

On the basis of the abovementioned validation parameters, namely R2, Q2, and
MAE [13], the optimal predictive and applicative model was selected from the eleven
proposed MARS models elaborated in this study, differing in terms of independent variables
included, as well as the degree of interactions, and maximum number of basis functions.
The interpretation of obtained results begins with a focus on the number and the nature
of molecular descriptors present in the model. Fourteen selected descriptors appear in
38 basis functions, which form 23 splines. Predictive descriptors can be divided into the
following groups: 3D-MoRSE descriptors, 2D autocorrelations, GETAWAY descriptors,
Burden eigenvalues, and RDF descriptors. Descriptors derived from the three-dimensional
structure of anthrapyrazole compounds have the highest frequency in repetition (and, in
this way, the largest share) in the model (over 68%). This class of geometrical descriptors,
which is calculated based on optimized molecular geometry that is obtained by the method
of computational chemistry in the current study, comprises 3D-MoRSE descriptors and
GETAWAY descriptors. The remaining 32% of the descriptors are calculated from the 2D
structure of a molecule (molecular topology).

The 3D-MoRSE Molecular Representation of Structures’ (based on electronic diffrac-
tion) descriptors, which have contributed the most to the model percentage-wise (50%),
and they comprise the most prominent block of descriptors in the present study. The
3D-MoRSE structure was introduced in 1996 by J.H. Schuur, P. Selzer, and J. Gasteiger
in order to encode the 3D structure of a molecule by a fixed number of variables. Each
representative of this descriptor block combines the information about the whole molecule
structure and its final value, which is derived mostly from short-distance atomic pairs [14].
The 3D-MoRSE descriptors, which are representations of the 3D structure of a molecule,
encode features such as molecular weight, van der Waals volume, electronegativities and
polarizabilities. In this study, 3D-MoRSE descriptors, weighted by I-state, weighted by
mass, and weighted by Sanserson electronegativity, are distinguished. The 3D-MoRSE
descriptors cannot describe complex atomic groups or regions with a high or low electron
density, or some quantum-chemical properties, but they result in a good model perfor-
mance when activity variation coincides with variation in interatomic distances due to
changes to the bonds’ order and the introduction of new atoms [14].

It was shown that other important factors in predicted antitumor activity (MATS8e,
ATSC7v, ATSC1e, ATSC1s, ATSC8s) are 2D autocorrelation descriptors. In general, they
explain how the considered property is distributed along the topological structure. An
autocorrelation descriptor is a topological descriptor encoding both the molecular structure
and physicochemical properties of a molecule [15,16]. The 2D autocorrelations have a share
in the optimal model with a percentage of 26.30%.

The next important variables selected belong to GETAWAY (Geometry, Topology, and
Atom–Weights Assembly) descriptors (H1e, R5p and HATS5s), which are the block of
descriptors that contribute 15.80%. GETAWAY tries to match the 3D molecular geometry
provided by the molecular influence matrix and atom relatedness, using topology and
chemical information, with the use of various atomic weighting schemes [15].

Another important variable, which is representative of burden eigenvalues with two
repetitions in the MARS model, is denoted as SpMax8_Bh(s), which occurs two times in
the elaborated MARS model. It belongs to the block of molecular descriptors based on the
assumption that the lowest eigenvalues contain contributions from all atoms, and thus,
they reflect topology of the molecule [15].

The last parameter, which has been used for modeling and has the smallest frequency,
represents RDF (Radial Distribution Function) descriptors, which are based on a radial
distribution function. It can be interpreted as the probability distribution of finding an
atom in a spherical volume of a radius [15,17].

Efforts to establish mathematical equations for the prediction antitumor activity of an-
thrapyrazoles also prompt a closer examination and understanding of the mechanism action of
these compounds. First of all, anthrapyrazoles with their planar structure can intercalate into
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DNA. It is well known that compounds that intercalate into DNA stabilize the DNA double
helix and increase the temperature at which the DNA is denatured. It is worth noticing that,
for a small set of anthrapyrazoles examined in the study, some anthrapyrazole compounds
were bound to DNA even more strongly than doxorubicin, the drug hoped, as mentioned
before, to be replaced with anthrapyrazoles due to its cardiotoxicity. Anthrapyrazoles not only
target DNA, but also interfere with one of the enzymes processing DNA. More specifically,
anthrapyrazoles inhibit the decatenation activity of human topoisomerase IIα. This enzyme
alters DNA topology by catalyzing the passing of an intact DNA double helix through a
transient double-stranded break, which is made in a second helix. Topoisomerase IIα activity
is critical for relieving torsional stress that occurs during replication and transcription, and for
daughter-strand separation during mitosis. Not only anthrapyrazoles, but also most of the cur-
rently used anticancer agents, such as anthracyclines (for instance doxorubicin, mitoxantrone,
and etoposide), act as topoisomerase II inhibitors, and their cytotoxicity is a result of the stabi-
lization of a covalent topoisomerase II-DNA intermediate (the cleavable complex). Finally,
docking studies on several compounds revealed that the inhibitory activity of anthrapyrazoles
is due, in part, to their ability to bind to DNA and structurally similar anthrapyrazoles that
can be docked into the doxorubicin-binding pocket on DNA. Moreover, increased binding is
associated with increased anthrapyrazole-DNA van der Waals interactions [12].

In the study by Showalter et al. [11] which incorporates the activity data subjected to
the current study, the antitumor activity against murine L1210 leukemia in vitro, as well as
against P388 leukemia in vivo, was tested over one hundred anthrapyrazole derivatives.
Findings of the study indicate that basic side chains at N-2 and C5two to three carbon spaces
between proximal and distal nitrogen atoms of the side chain, and A-ring hydroxylations,
especially at C-7, contribute to the activity against P388 leukemia growth [11]. Those
findings were confirmed by Hartley et al. [18] but the obtained results were not always
consistent. On the one hand, the side chains had a greater effect on DNA binding, but on
the other hand, the intercalation was affected more by hydroxylation of the A-ring. DNA
binding was increased by hydroxylation at C-7 and decreased by hydroxyl groups at any
position on the A-ring [18]. Interestingly, in the study by Begleiter et al. [3] anthrapyrazole
derivatives showed a broad range of activity for inhibiting topoisomerase II decatenation
activity; however, there was no significant correlation with the cytotoxic activity observed.
All of the anthrapyrazole analogues examined in this study inhibited the growth of the four
cell lines with IC50 values that ranged from 0.1 to 45.2 µM, but losoxantrone was the most
potent molecule. Structure–activity studies revealed an increase in the cytotoxic activity
with the presence of a tertiary amine in the basic side chain at N-2, in comparison with a
secondary amine in the same position for the majority of examined derivatives, but only in
the case of the absence of a basic side chain at the C-5 position. Other structural alternations,
such as a chlorine substituent on the basic side chain at N-2, moving the position of a
chlorine substituent from C-5 to C-7, or introducing a basic side chain at C-5, did not have
a consistent effect on cytotoxic activity. The authors of this study suggested that the ability
of the analogues to bind to DNA by alkylation does not contribute significantly to the
antitumor activity of the anthrapyrazoles [3]. A study by Liang et al. [12] confirmed the
abovementioned results. Namely, cell growth inhibition by anthrapyrazoles was not well-
correlated with the inhibition of topoisomerase IIα catalytic activity, which suggests that
the anthrapyrazole derivatives examined in this study did not act solely by inhibiting the
catalytic activity of topoisomerase II. Moreover, the authors showed that hydrogen-bond
donor interactions and electrostatic interactions with the protonated amino side chains of
the anthrapyrazoles led to high cell growth inhibitory activity [12].

The abovementioned studies demonstrated that structural changes on the basic side
chain at N-2, and at C-5, C-7, can have a considerable impact on the cytotoxic activity
of anthrapyrazoles as well as on topoisomerase II inhibition. Those results that are still
inconsistent, may even, to small extent, help to understand the role of descriptors incor-
porated into the optimal MARS model. In the present study, descriptors derived from
the three-dimensional structure of anthrapyrazole compounds comprise the largest share
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in the model, alongside the most prominent 3D-MoRSE descriptors, with values that are
very sensitive to any conformational change in the molecule, and GETAWAY descriptors
encoding information about the influence that each atom has in determining the whole
shape of the molecule. In this light, the antitumor activity difference of the anthrapyrazoles
studied, is presumably a result of the interatomic distances’ changes, or the introduction of
new atoms at N-2 and C-5, C-7. The obtained data indicate that parameters based on the
molecular geometry and physicochemical properties, the reflection of molecular topology,
and finally, the distance distribution of the compounds, are of the greatest importance for
the antitumor activity of the anthrapyrazole derivatives.

It should be emphasized that the MARS model has been expanded upon in the present
study, in order to predict the antitumor activity of 73 anthrapyrazole compounds, so that it is
able to describe more than 96% of the variance in the experimental activity. Good predictive
properties of the model were confirmed by an extensive validation procedure, which is
characteristic of QSAR models. Several validation parameters were calculated. Among others,
cross-validated R2 was checked for internal validation, mean absolute error was calculated,
and predictability, as well as precision and accuracy, were also assessed. It should be noted that
all tested parameters met the acceptance criteria [13] listed in Table 5. Moreover, the MARS
model that was created may be successfully employed for the prediction of the antitumor
activity of anthrapyrazole compounds. Its applicative value was confirmed by an external set
of seven molecules with the predicted pIC50 listed in Table S2.

Searching the literature, it is still easier to come across QSAR analysis based on multiple
linear regression than multivariate adaptive regression splines. Nevertheless, MARSplines
procedure is one of the modern machine learning algorithms with numerous advantages
that are emphasized in this work. Its usefulness was confirmed for QSAR studies for predict-
ing the antimalarial activity of dihydroartemisinin derivatives by Nguyen-Cong et al. [8],
antitumor activity of acridone derivatives by Koba and Bączek [10], or anti-HIV activities of
thiazolylthiourea derivatives by Alamdari et al. [19]. The present study strongly supports
the idea of promoting the MARSplines technique in QSAR analysis; however, it should be
considered that, given the multitude of possible datasets and descriptors available, various
options for MARSplines analysis, as well as other modern machine learning algorithms
with their numerous advantages, in a particular case or other regression procedure, may
show a better performance. This trend is visible in the study by Kryshchyshyn et al. [7]
where four machine learning algorithms, namely, Random forest regression, Stochastic
gradient boosting, Multivariate adaptive regression splines, and Gaussian processes regres-
sion, were studied to reach better levels of predictivity. Finally, in the case of predicting the
antitrypanosomal activity of 4-thiazolidinones, a model developed only with the Random
forest and Gaussian processes regression algorithms had good predictive ability. In light
of this, there is no universal regression method, but different studies prove that modern
machine algorithms are worth exploring.

In sum, the obtained model can be successfully used for in silico studies in order to find
new compounds with promising antitumor activity. On the one hand, it can be assumed
that the presented approach has some limitations as a restriction to the chemical domain of
the training set, especially A-ring hydroxylation at C-7,10, and a necessity to follow whole
procedure of geometry optimization and descriptor calculation; however, on the other hand,
it should be taken into consideration that there are a multitude of combinations of different
possible substituents at N-2 and C-5 in the anthrapyrazole ring (some of them were tested so
far and some of them were considered promising). What is more, is that the semi-empirical
method AM1 for geometry optimization and the overall process of descriptor generation
are fast, which speaks for a routine application of a presented MARSplines approach for
QSAR studies. For the abovementioned reasons, the expanded MARSplines procedure
may become a part of the process of drug design, largely as it may be useful in the selection
of the new anticancer compounds of anthrapyrazoles for the synthesis and in vitro testing
on various cancer cell lines.
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4. Materials and Methods
4.1. Anthrapyrazole Derivatives

The conducted analyses were founded on 73 compounds of anthrapyrazole derivatives
(Anthra [1,9-cd]pirazol-6(2H)-on), differing in both chemical structure and antitumor
activity, as shown in Table 6. The data concerning the antitumor activity of anthrapyrazoles
against the L1210 murine leukemia cell line, tested in vivo, and expressed as IC50, were
obtained from the literature [11].

Table 6. Chemical structures and antitumor activity of the anthrapyrazoles studied.
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a-19 training H CH2CH2NHCH2CH2OH NHCH2CH2NMe2 3.2 × 10−8 
a-20 training H CH2CH2NHCH2CH2OH NHCH2CH2NEt2 6.0 × 10−8 
a-21 training H CH2CH2NEt2 NH(CH2)5CH3 2.0 × 10−6 
a-23 training H CH2CH2NEt2 NHCH2CH2NH2 4.6 × 10−8 
a-24 training H CH2CH2NEt2 NHCH2CH2NHMe 2.7 × 10−8 
a-25 training H CH2CH2NEt2 NHCH2CH2NHCH2CH2OH 3.2 × 10−8 
a-26 test H CH2CH2NEt2 NHCH2CH2NEt2 3.9 × 10−7 
a-27 training H CH2CH2NEt2 NH(CH2)3NEt2 5.2 × 10−7 
a-28 training H CH2CH2NEt2 NH(CH2)4NEt2 6.2 × 10−7 
a-29 training H CH2CH2NEt2 NH(CH2)7NEt2 6.3 × 10−7 
a-30 test H CH2CH2NEt2 NHCH2CH2N(CH2CH2)2O 4.8 × 10−7 
a-31 test H CH2CH2NEt2 NHCH2CH2N(CH2CH2)2NH 5.0 × 10−7 

a-32 training H CH2CH2NEt2 
NHCH2CH2N(CH2CH2)2NCO

OCH2Ph 3.9 × 10−7 

a-33 training 7,10-(OH)2 CH3 NHCH2CH2NH2 2.4 × 10−7 
a-34 training 7,10-(OH)2 CH3 NHCH2CH2NHCH2CH2OH 1.5 × 10−7 

Compound Set X R1 NR2R3

L1210
Leukemia
In Vitro:
IC50,M

a-01 training H H NHCH2CH2NHCH2CH2OH 2.2 × 10−6

a-02 test H H NHCH2CH2NEt2 1.5 × 10−6

a-03 test H CH3 NHCH2CH2NHCH2CH2OH 7.1 × 10−7

a-04 training H CH3 NHCH2CH2NEt2 6.7 × 10−7

a-07 training H CH2CH2OH NHCH2CH2NHCH2CH2OH 1.8 × 10−6

a-08 training H CH2CH2OH NHCH2CH2NEt2 8.8 × 10−6

a-14 test H CH2CH2NH2 NHCH2CH2NHCH2CH2OH 8.0 × 10−8

a-15 training H CH2CH2NHCH2CH2OH NHCH3 7.4 × 10−7

a-16 test H CH2CH2NHCH2CH2OH NHCH2CH2OH 7.5 × 10−7

a-17 training H CH2CH2NHCH2CH2OH NHCH2CH2NH2 6.9 × 10−8

a-18 training H CH2CH2NHCH2OH NHCH2CH2NHCH2CH2OH 7.4 × 10−8

a-19 training H CH2CH2NHCH2CH2OH NHCH2CH2NMe2 3.2 × 10−8

a-20 training H CH2CH2NHCH2CH2OH NHCH2CH2NEt2 6.0 × 10−8

a-21 training H CH2CH2NEt2 NH(CH2)5CH3 2.0 × 10−6

a-23 training H CH2CH2NEt2 NHCH2CH2NH2 4.6 × 10−8

a-24 training H CH2CH2NEt2 NHCH2CH2NHMe 2.7 × 10−8

a-25 training H CH2CH2NEt2 NHCH2CH2NHCH2CH2OH 3.2 × 10−8

a-26 test H CH2CH2NEt2 NHCH2CH2NEt2 3.9 × 10−7

a-27 training H CH2CH2NEt2 NH(CH2)3NEt2 5.2 × 10−7

a-28 training H CH2CH2NEt2 NH(CH2)4NEt2 6.2 × 10−7

a-29 training H CH2CH2NEt2 NH(CH2)7NEt2 6.3 × 10−7

a-30 test H CH2CH2NEt2 NHCH2CH2N(CH2CH2)2O 4.8 × 10−7

a-31 test H CH2CH2NEt2 NHCH2CH2N(CH2CH2)2NH 5.0 × 10−7

a-32 training H CH2CH2NEt2 NHCH2CH2N(CH2CH2)2NCOOCH2Ph 3.9 × 10−7

a-33 training 7,10-(OH)2 CH3 NHCH2CH2NH2 2.4 × 10−7
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Table 6. Cont.

Compound Set X R1 NR2R3

L1210
Leukemia
In Vitro:
IC50,M

a-34 training 7,10-(OH)2 CH3 NHCH2CH2NHCH2CH2OH 1.5 × 10−7

a-35 training 7,10-(OH)2 CH3 NHCH2CH2NEt2 4.5 × 10−7

a-36 training 7,10-(OH)2 CH2Ph NHCH2CH2NMe2 8.6 × 10−7

a-38 training 7,10-(OH)2 CH2CH2OMe NHCH2CH2NHCH2CH2OH 1.6 × 10−6

a-40 training 7,10-(OH)2 CH2CH2OH NHCH2CH2NH2 4.8 × 10−7

a-41 training 7,10-(OH)2 CH2CH2OH NHCH2CH2NHCH2CH2OH 7.8 × 10−7

a-42 training 7,10-(OH)2 CH2CH2OH NHCH2CH2NMe2 1.5 × 10−8

a-43 training 7,10-(OH)2 CH2CH2OH NHCH2CH2NEt2 7.3 × 10−7

a-44 training 7,10-(OH)2 CH2CH2OH NHCH2CH2N(CH2CH2)2O 1.1 × 10−6

a-46 training 7,10-(OH)2 CH2CH(OH)CH2OH NHCH2CH2NHCH2CH2NMe2 2.2 × 10−6

a-47 test 7,10-(OH)2 CH2CH2NH2 NHCH2CH2NH2 4.8 × 10−7

a-48 training 7,10-(OH)2 CH2CH2NH2 NH(CH2)3NH2 3.1 × 10−7

a-49 test 7,10-(OH)2 CH2CH2NH2 NHCH2CH2NHMe 7.0 × 10−7

a-50 training 7,10-(OH)2 CH2CH2NH2 NHCH2CH2NHCH2CH2OH 5.8 × 10−7

a-51 test 7,10-(OH)2 CH2CH2NH2 NH(CH2)3NHCH2CH2OH 8.7 × 10−7

a-52 test 7,10-(OH)2 CH2CH2NH2 NHCH2CH2NHCH2CH2NMe2 9.3 × 10−7

a-53 test 7,10-(OH)2 (CH2)3NH2 NHCH2CH2NHCH2CH2OH 1.6 × 10−7

a-54 test 7,10-(OH)2 (CH2)3NH2 NHCH2CH2NHCH2CH2NMe2 6.4 × 10−7

a-55 training 7,10-(OH)2 CH2CH2NHMe NHCH2CH2NHCH2CH2OH 4.4 × 10−7

a-56 training 7,10-(OH)2 CH2CH2NHCH2CH2OH NHCH2CH2NH2 1.6 × 10−6

a-57 training 7,10-(OH)2 CH2CH2NHCH2CH2OH NH(CH2)3NH2 9.6 × 10−7

a-60 training 7,10-(OH)2 CH2CH2NHCH2CH2OH NHCH2CH2NHMe 1.4 × 10−7

a-62 training 7,10-(OH)2 CH2CH2NHCH2CH2OH NHCH2CH2NHCH2CH2OH 7.4 × 10−7

a-63 training 7,10-(OH)2 CH2CH2NHCH2CH2OH NH(CH2)3NHCH2CH2OH 1.8 × 10−6

a-64 test 7,10-(OH)2 CH2CH2NHCH2CH2OH NHCH2CH2N(CH2CH2OH)2 4.3 × 10−7

a-65 training 7,10-(OH)2 CH2CH2NHCH2CH2OH NH(CH2)3N(CH2CH2OH)2 9.2 × 10−7

a-66 training 7,10-(OH)2 CH2CH2NHCH2CH2OH NHCH2CH2NMe2 2.3 × 10−7

a-67 training 7,10-(OH)2 CH2CH2NHCH2CH2OH NHCH2CH2NEt2 5.1 × 10−7

a-68 training 7,10-(OH)2 CH2CH2NHCH2CH2OH NHCH2CH2N(CH2CH2)2O 6.5 × 10−7

a-69 training 7,10-(OH)2 CH2CH2NHCH2CH2OH N(CH2CH2)2NMe 4.3 × 10−7

a-70 test 7,10-(OH)2 CH2CH2NHCH2CH2OH NHCH2CH2NHCH2CH2NH2 3.3 × 10−7

a-71 training 7,10-(OH)2 CH2CH2NHCH2CH2OH NHCH2CH2NHCH2CH2NMe2 7.6 × 10−7

a-73 training 7,10-(OH)2 CH2CH2NHCH2CH2OH N(Me)CH2CH2NMe2 6.3 × 10−7

a-74 training 7,10-(OH)2 CH2CH2NHCH2CH2OH NH(CH2)3NH2 1.8 × 10−6

a-76 training 7,10-(OH)2 CH2CH2NMeCH2CH2OH NHCH2CH2NHCH2CH2OH 3.3 × 10−7

a-77 training 7,10-(OH)2 CH2CH2NMe2 NHCH2CH2NH2 2.2 × 10−7

a-78 training 7,10-(OH)2 CH2CH2NMe2 NH(CH2)3NH2 5.4 × 10−7

a-79 test 7,10-(OH)2 CH2CH2NMe2 NHCH2CH2NHCH2CH2OH 1.2 × 10−7

a-80 test 7,10-(OH)2 (CH2)3NMe2 NHCH2CH2NH2 2.2 × 10−6

a-81 test 7,10-(OH)2 (CH2)3NMe2 NH(CH2)3NH2 8.0 × 10−7

a-82 test 7,10-(OH)2 (CH2)3NMe2 NHCH2CH2NHCH2CH2OH 5.9 × 10−7

a-83 training 7,10-(OH)2 CH2CH2NEt2 NHCH2CH2NH2 4.6 × 10−8
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Table 6. Cont.

Compound Set X R1 NR2R3

L1210
Leukemia
In Vitro:
IC50,M

a-84 test 7,10-(OH)2 CH2CH2NEt2 NHCH2CH2NHMe 7.4 × 10−6

a-86 training 7,10-(OH)2 CH2CH2NEt2 NHCH2CH2NHCH2CH2OH 1.3 × 10−7

a-87 test 7,10-(OH)2 CH2CH2NEt2 NHCH2CH2NEt2 5.5 × 10−7

a-88 test 7,10-(OH)2 CH2CH2NHCH2CH2NMe2 NHCH2CH2NHCH2CH2OH 1.4 × 10−6

a-90 training 7,10-(OH)2 CH2CH(OH)CH2NEt2 NHCH2CH2NHCH2CH2OH 8.4 × 10−7

a-91 training 7,10-(OH)2 CH2CH(OH)CH2NEt2 NHCH2CH2NEt2 1.3 × 10−6

4.2. Geometry Optimization and Structural Descriptors

The initial optimization of the geometric structures of the analyzed particles, with the
use of specialized HyperChem Release 8.0 (Hypercube Inc., Gainesville, FL, USA) software,
was performed using the built-in Molecular Mechanic Force Field (MM+) procedure, taking
into account the adequacy of the principles of quantum mechanics. In the next step, the
proper optimization was achieved using the Semi-Empirical Molecular Method AM1, with the
utilization of the Polak–Ribiere algorithm. The gradient norm limit applied for the calculations
was 0.01 kcal (Å·mol)−1, and the maximum possible number of cycles was set to 32,000.
Finally, HyperChem, as well as Dragon 7 (Talete, Milano, Italy) software, were used to obtain
molecular descriptors for all studied structures, using previously optimized molecules. In
total, 2554 descriptors were calculated, mainly by using Dragon software. In the next stage
of the study, the obtained descriptors were subjected to MARSplines analysis. Descriptors
calculated by Dragon include 29 logical molecular descriptor blocks: constitutional indices,
ring descriptors, topological indices, walk and path counts, connectivity indices, information
indices, 2D matrix-based descriptors, 2D autocorrelations, burden eigenvalues, P_VSA-like
descriptors, ETA indices, edge adjacency indices, geometrical descriptors, 3D matrix-based
descriptors, 3D autocorrelations, RDF descriptors, 3D-MoRSE descriptors, WHIM descriptors,
GETAWAY descriptors, randic molecular profiles, functional group counts, atom-centered frag-
ments, atom-type E-state indices, CATS 2D, 2D atom pairs, 3D atom pairs, charge descriptors,
molecular properties, and drug-like indices [20].

4.3. Statistical Analysis

Statistical analysis was carried out using Statistica 13.3 software (StatSoft, Cracow,
Poland), introducing the data obtained in the previously performed molecular modeling.
The analysis used the following variables: descriptors describing molecular properties
of a particle, and the values of the negative decimal logarithm of the IC50 describing the
biological activity against the L1210 murine leukemia cell line tested in vitro, obtained
from the literature data. The whole group of compounds was divided into a training and
test set on the basis of random sample selection in STATISTICA 13.3 Data Miner (StatSoft,
Cracow, Poland). Raw data, consisting of 2554 descriptors (independent variables) and
negative decimal logarithm values of the IC50 (pIC50, dependent variable), were subjected
to a process of standardization and pre-selection. The selection consisted of removing the
variables that did not show variability. The analyses were performed at the 5% significance
level (α = 0.05). The multivariate adaptive regression splines procedure was used to
build eleven different models. Pearson’s correlation coefficient was used in the analysis of
the correlation of variables. J. Guilford’s classification was used for the interpretation of
the results. The analysis of three validation parameters, providing minimal but sufficient
information about model performance (R2, Q2, MAE) [13,21], and is explained in Section 4.4,
allowed for the selection of an optimal theoretical model aimed at predicting the pIC50
value for each of the considered derivatives.
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4.4. MARSplines Analysis

Multivariate Adaptive Regression Splines (MARSplines), performed with the use of
Statistica 13.3, is an adaptive procedure for regression. The specification of MARSplines
analysis is shown in Table 7. It is very useful, especially to solve high-dimensional problems,
such as a large number of inputs. Moreover, it is used to solve both regression and
classification problems, and does not require assumptions about the functional relationship
between independent (input) and dependent (output) data. This relationship is modeled
with the use of base functions and a set of coefficients generated solely on the basis of
data [6,22].

Table 7. Specification of MARSplines analysis.

Options Values

Maximum number of basis functions 40
Degree of interactions 3

Penalty 2
Threshold 0.0005

Apply pruning YES

The basis functions in MARS model are single truncated spline functions, or an
interaction of a few spline functions, and they consist of a left-sided and right-sided
segment (reflected pair) (Equation (4)). The subscript “+” means the positive part, thus:

(x− t)+ =

{
x− t, if x > t,
0, otherwise,

(t− x)+ =

{
t− x, if x < t
0, otherwise.

(4)

Each function is piecewise linear, with a knot at value t (the so-called linear spline).
Those reflected pairs are formed for each input Xj, with knots at each observed value xij of
that input. That is why the collection of basis functions is as follows:

C =
{(

Xj − t
)
+

,
(
t− Xj

)
+ t ∈ {x1j, x2j, . . . , xNj}

j = 1, 2 . . . , p

(5)

If all of the input values are distinct, there are 2Np basis functions altogether. Although
each basis function depends only on a single Xj, it is still considered as a function over the
entire input space IRp.

The model–building approach is similar to a forward stepwise linear regression, but
instead of using the original inputs, functions from set C and their products are used, so
the model is as follows:

f(X) = β0 +
M

∑
m−1

βmhm(X) (6)

where each hm(X) is a function in C, or a product of two or more such functions. During
each iteration, the best reflected pair is chosen and all possible predictors, as well as
corresponding knot locations, are evaluated. As a result of each iteration, the so-called
interactions may be introduced if this improves the model. The building process stops
when a user-defined maximum number of basis functions is reached; however, it should be
emphasized that, during model building, a global model usually overfits the training data.
That is why, in the next step, a pruning procedure based on generalized cross-validation
(GCV) is applied, which leads to exclusion functions that receive the lowest contribution
from the model. The GCV parameter, comprising a penalty for the model complexity, is an
adjusted residual sum of squares used to prevent the occurrence of an excessive number of
spline functions in the final model.
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4.5. Model Validation

Elaborated models underwent a process of validation in the terms of the determination
coefficient, cross validated determination coefficient, and mean absolute error, in order to
select the optimal MARS model suitable for the prediction of the antitumor activity of the
anthrapyrazoles studied [13].

R2 = 1− ∑ (Yobs − Ycal)
2

∑ (Yobs − Ytraining)
2 (7)

The determination coefficient R2 (Equation (7)) measures the variation of observed
data with the predicted data. A perfect correlation is observed when the R2 reaches the
maximum possible value (i.e., 1. Yobs denotes the observed response values for the training
set, and Ycalc denotes the calculated response values for the training set of compounds.
Ytraining is the mean observed response of the training set compounds [13]).

Q2
(

orQ2
LOO

)
= 1−

∑
(

Yobs(training) − Ypred(training)

)2

∑ (Yobs(training) − Y(training))
2 (8)

Cross-validated R2 (Q2), presented in Equation (8), is checked for internal validation.
Yobs(training) is the observed response, and Ypred (training) is the predicted response of the
training set molecules based on the leave-one-out (LOO) technique. The generally accepted
threshold value of Q2 is 0.5 [13].

MAE =
∑
∣∣∣Yobs − Ypred

∣∣∣
n

(9)

The mean absolute error (MAE) (Equation (9)) is also recognized as the average
absolute error (AAE). Generally, it is regarded as a superior index of errors in the context of
predictive modeling studies. Due to the involvement of the squared term of the prediction
errors in the expression of RMSE, the variance of errors may be influenced by a set of
data. That is because squaring the higher prediction error values have more weight than
the lower errors in the formalism of the root mean square error (RMSE), whereas MAE
provides an equal weight to all errors; thus, MAE is considered to be a simpler and more
straightforward determinant of prediction errors [13].

For the optimal MARS model following validation, the parameters as follows: R2,
Q2, QF1

2, QF2
2, QF3

2, CCC, ∆rm
2, r2

m, PRES, SDEP, and MAE, were calculated according to
Roy et al. [13].

5. Conclusions

A quantitative structure–activity relationship study was applied to a large set of
anthrapyrazole compounds presenting antitumor activity against murine leukemia L1210.
The approach of MARSplines was employed for prediction purposes, and was able to
describe more than 96% of the variance in the experimental activity. This study has shown
that fourteen parameters appearing in the statistically significant and extensively validated
MARS model (i.e., descriptors belonging to 3D-MoRSE, 2D autocorrelations, GETAWAY,
burden eigenvalues and RDF descriptors) significantly affect the antitumor activity of
anthrapyrazole compounds. Moreover, this study confirmed the benefit of using the
modern machine learning algorithm, namely, the MARSplines procedure, because the
elaborated flexible model was also used in the prediction of antitumor activity against
murine leukemia L1210 using an external set of seven anthrapyrazole compounds. Finally,
in light of the potential laying in such a large set of anthrapyrazole compounds, which still
may be tested on various cell lines, and the high predictive power of the MARS model,
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the MARSplines procedure may be useful in the selection of the anticancer compounds of
anthrapyrazoles for future clinical studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23095132/s1.
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