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Abstract: Pancreatic cancer is a highly fatal disease and an increasing common cause of cancer
mortality. Mounting evidence now indicates that molecular heterogeneity in pancreatic cancer
significantly impacts its clinical features. However, the dynamic nature of gene expression pattern
makes it difficult to rely solely on gene expression alterations to estimate disease status. By contrast,
biological networks tend to be more stable over time under different situations. In this study, we
used a gene interaction network from a new point of view to explore the subtypes of pancreatic
cancer based on individual-specific edge perturbations calculated by relative gene expression value.
Our study shows that pancreatic cancer patients from the TCGA database could be separated into
four subtypes based on gene interaction perturbations at the individual level. The new network-
based subtypes of pancreatic cancer exhibited substantial heterogeneity in many aspects, including
prognosis, phenotypic traits, genetic mutations, the abundance of infiltrating immune cell, and
predictive therapeutic efficacy (chemosensitivity and immunotherapy efficacy). The new network-
based subtypes were closely related to previous reported molecular subtypes of pancreatic cancer.
This work helps us to better understand the heterogeneity and mechanisms of pancreatic cancer from
a network perspective.
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1. Introduction

Pancreatic cancer is a common lethal and aggressive cancer with a 5-year survival rate
of only 10% in 2020 [1]. Poor prognosis is linked to the rapid progression, early metastasis,
and lack of obvious clinical symptoms or sensitive screening modalities for early-stage
pancreatic cancer. During recent years, multiple treatment modalities (neoadjuvant therapy,
radiotherapy, chemotherapy, molecular-targeted therapy, and immunotherapy) have been
used for pancreatic cancer patients and have obtained certain therapeutic effects [2]. How-
ever, for individual patients, the survival benefits of these treatments differ from patient to
patient. Pancreatic cancer should be managed by individualized systemic treatment based
on molecular subtypes, which may prolong survival and improve quality of life [3].

With the development in molecular pathology, large numbers of molecules and pre-
diction models have been identified to predict pancreatic cancer prognosis. For example,
Moffitt et al. classified pancreatic ductal adenocarcinoma (PDAC) into “basal-like” or
“classical” type by RNA transcriptional analysis [4]. Basal-like type is molecularly similar
to basal tumors and is associated with poorer clinical prognosis and loss of differentia-
tion. Collisson et al. defined three subtypes: classical, quasi-mesenchymal (QM-PDA),
and exocrine-like by using hybridization array-based mRNA expression data from PDAC

Int. J. Mol. Sci. 2022, 23, 4792. https://doi.org/10.3390/ijms23094792 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23094792
https://doi.org/10.3390/ijms23094792
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-5121-3650
https://doi.org/10.3390/ijms23094792
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23094792?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 4792 2 of 19

patients [5]. The QM-PDA subtype correlated with high tumor grade and poor survival.
Currently, individual treatment for pancreatic cancer based on PDAC subtypes is under
investigation in prospective trials [6].

However, the molecular profiles of PDAC might be variable under different time
points or under different conditions, which would have a profound effect on therapeutic
development. By contrast, biological networks tend to be relatively stable over time [7,8].
As we know, many reported network methods are dependent on biological pathways,
whose concerns revolve around the inference of pathway activity by using pathway-
specific genes [9,10]. An advantage of this approach in cancer research is that it may be
helpful for some pathway-targeted therapies in tumors [11,12]. For example, pathway-
targeted therapy by antagonizing C-X-C motif chemokine receptor (CXCR4) may target the
enhanced proliferative signaling, angiogenesis, invasion and metastatic potential of cancer
cells [13]. Pathway-targeted therapies are considered to be highly efficient and have low
side effects by targeting only the particular disordered pathways [14].

To clearly understand the disease state of pancreatic cancer patients, an individual-
specific network (ISN) may be more reliable rather than molecular networks. The ISN
utilizes not only the expression data of genes but also the interaction information. The gen-
eral stability of the gene interactions in a biological network is commonly good in a normal
human tissue but tends to be disturbed in diseased tissues [15,16]. These perturbations of
gene interactions (named “edge perturbations”) in an individual sample can be evaluated
by the change in the relative gene expression value. The edge perturbations at an individual
level can be used to define the perturbation of the biological network for each sample effec-
tively. Then, an unsupervised clustering analysis of pancreatic cancer based on the edge
perturbation matrix could be applied to demonstrate the heterogeneity among pancreatic
cancer patients (Figure 1). Our results demonstrated that the network-based subtypes
exhibited substantial heterogeneity in some aspects, including prognosis, phenotypic traits,
genetic mutations, the abundance of infiltrating immune cell, and predictive therapeutic
efficacy (chemosensitivity and immunotherapy efficacy). Moreover, our network-based
subtypes correlated with the previous reported molecular subtypes of pancreatic cancer.
These findings may help us to understand the heterogeneity of pancreatic cancer, improve
our understanding of pathogenesis and pathophysiological mechanisms, and improve the
accuracy of predicting prognosis.
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expression data of this group of samples. A new cancer sample S6 is added to the group, and the
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perturbed network with this additional sample is built in the same way. The difference between the
background and perturbed networks is due to sample S6. Edge perturbations for each individual
sample are calculated by perturbed network and background network. Then, the pancreatic cancer
samples are clustered by using a partition edge-perturbation matrix to reveal new network-based
subtypes. The identified subtypes are characterized from different aspects, including prognosis,
phenotypic traits, genetic mutations, immune cell infiltration, and therapeutic efficacy. We further
performed pathway enrichment analysis for subtype-3 using all genes involved in the subtype-specific
network. Abbreviations: S, sample; G, gene; E, edge.

2. Results
2.1. The Constructed Networks

We constructed the initial background network from the Reactome database, which
was composed of 171,755 edges and 7411 genes in total. Before the network was used to
calculate the edge-perturbation matrix, we filtered out genes that were not in the expression
data, making the background network decreased to having 168,834 edges and 7362 genes.
Both the filtered network and the initial background network used in this work are scale free,
which indicates that the fraction of nodes with degrees follows a power law distribution.
Figure S1 demonstrated the degree distributions of the two networks (the determination
coefficients R2 are 0.759 and 0.821, respectively). Here, R2 is used to measure the fitting
level of the power law curve. The better the curve fitting level is, the closer R2 is to 1. Both
the degree distribution figures and the determination coefficients show that the networks
used in this study are all scale free.

2.2. Stable Gene–Gene Interaction Network in Normal Pancreatic Tissues

Both 167 normal samples obtained from GTEx and 176 pancreatic cancer samples
obtained from TCGA were used to evaluate the stability of the edge perturbation in normal
samples and variability in cancer samples. The edge-perturbation-based method was used
to construct the edge perturbation matrix with 168,834 rows (see Section 4 for details).
In our study, we used zero center normalization to get the edge perturbation matrix by
Equation (2) (see Section 4). The edge-perturbation matrix can evaluate the sample-specific
perturbation in the same background network effectively. For a given gene pair, the greater
absolute value in the edge-perturbation matrix means the greater perturbation. In normal
samples, the mean absolute magnitude of the edge perturbations was 1283.27, whereas
it was much higher in pancreatic cancer samples at 3644.26. Furthermore, we found that
94.71% of all 168,834 gene pairs showed more dispersion in pancreatic cancer samples than
in normal samples through comparing the sum of edge-perturbation degrees.

In addition, we randomly selected 1000 features from all the gene-gene interaction
edges, and then, the Wilcoxon rank-sum test was performed to compare the difference of
the edge perturbation distribution between normal and cancer groups (p < 2.2 × 10−16). The
edge-perturbation amplitude was expressed as log2(|∆e,s| + 1) for both normal and cancer
samples, as shown in Figure 2A. Next, the difference of the edge-perturbation distribution
between normal and cancer samples was shown in a scatter plot (1000 selected features on
X axis, log2 transformation of the edge-perturbation amplitude of 1000 selected features
on Y axis), as shown in Figure 2B. The edge perturbation of normal samples (blue points)
is much denser and less than that of cancer samples (red points). These two plots reveal
that the edge perturbations of normal samples are more stable, whereas a wider variation
exists in cancer samples, making it possible to find the heterogeneity in pancreatic cancer
samples through the edge-perturbation matrix of all samples.
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matrix in both the normal and cancer groups. The distributions in these two groups were signifi-
cantly different, as assessed by the Wilcoxon rank-sum test. (B) The scatterplot for the log2-trans-
formed mean of the edge perturbations in the 1000 randomly selected edges in both normal (blue 
points) and pancreatic cancer (red points) tissues. The edge perturbations of normal samples are 
much denser and less than those of cancer samples. 
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was shown in Figure S2, and the corresponding determination coefficient R2 was 0.999 (p 
= 0.001), which meant that it was also a scale-free network. 
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Figure 3. Identification of network-based subtypes by unsupervised consensus clustering. (A) Con-
sensus matrix heatmap of 176 TCGA pancreatic cancer samples when k = 4. The rows and columns 
represent patient samples, and consensus matrix values vary from 0 in white (indicating that pa-
tients are never clustered together) to 1 in dark blue (indicating that patients are always clustered 
together). (B) Consensus CDF shows a real random variable of its probability distribution based on 

Figure 2. Perturbation of gene interactions in normal and pancreatic cancer tissues. (A) Distribution
of log2-transformed edge perturbations in both normal and cancer samples. Violin plots show the
distributions of the edge perturbations of 1000 randomly selected edges in the edge-perturbation
matrix in both the normal and cancer groups. The distributions in these two groups were significantly
different, as assessed by the Wilcoxon rank-sum test. (B) The scatterplot for the log2-transformed
mean of the edge perturbations in the 1000 randomly selected edges in both normal (blue points) and
pancreatic cancer (red points) tissues. The edge perturbations of normal samples are much denser
and less than those of cancer samples.

2.3. Network-Based Subtypes

Then, we used the cancer sample matrix derived from the edge-perturbation matrix to
cluster pancreatic cancer samples. The cancer sample matrix had 1409 rows which represent
the 1409 edges. These edges formed a network with 980 genes (Table S1), which was shown
in Figure S2, and the corresponding determination coefficient R2 was 0.999 (p = 0.001),
which meant that it was also a scale-free network.

Consensus clustering was performed using the R package “ConcensusClusterPlus” [17]
to explore the subgroups of cancer samples based on the cancer sample matrix. The best
cluster number was determined by the clustering score for the cumulative distribution
function (CDF) curve. The CDF curve based on the consensus scores achieved the best
division when k = 4 (Figure 3A–C). Among the 176 pancreatic cancer samples analyzed in
this study, 43 were subtype-1, 45 were subtype-2, 17 were subtype-3, and 72 were subtype-4.
Afterwards, we used the four network-based subtypes for the following analyses.

2.4. Heterogeneity among Network-Based Subtypes
2.4.1. Prognosis

In the following analysis, we compared prognostic differences among the network-
based subtypes. Kaplan–Meier survival analysis indicated that overall survival (OS),
progression-free survival (PFS), and disease-specific survival (DSS) differ significantly
among patients in subtypes (Figure 4A–D). Subtype-3 has the most favorable prognosis
compared with other subtypes.



Int. J. Mol. Sci. 2022, 23, 4792 6 of 19
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW  6  of  20 
 

 

 

Figure 3. Identification of network‐based subtypes by unsupervised consensus clustering. (A) Con‐

sensus matrix heatmap of 176 TCGA pancreatic cancer samples when k = 4. The rows and columns 

represent patient samples, and consensus matrix values vary from 0 in white (indicating that pa‐

tients are never clustered together) to 1 in dark blue (indicating that patients are always clustered 

together). (B) Consensus CDF shows a real random variable of its probability distribution based on 

consensus scores for different subtype numbers (k = 2–10). (C) The delta area plot for k changed 

from 2  to 10. The vertical axis  is the relative change  in  the area under  the CDF curves when  the 

cluster number varies from k to k + 1. The range of k changed from 2 to 10. Abbreviations: CDF, 

cumulative distribution function; TCGA, The Cancer Genome Atlas. 

2.4. Heterogeneity among Network‐Based Subtypes 

2.4.1. Prognosis 

In the following analysis, we compared prognostic differences among the network‐

based subtypes. Kaplan–Meier survival analysis indicated that overall survival (OS), pro‐

gression‐free survival (PFS), and disease‐specific survival (DSS) differ significantly among 

patients  in  subtypes  (Figure 4A–D). Subtype‐3 has  the most  favorable prognosis  com‐

pared with other subtypes. 

Figure 3. Identification of network-based subtypes by unsupervised consensus clustering. (A) Con-
sensus matrix heatmap of 176 TCGA pancreatic cancer samples when k = 4. The rows and columns
represent patient samples, and consensus matrix values vary from 0 in white (indicating that patients
are never clustered together) to 1 in dark blue (indicating that patients are always clustered together).
(B) Consensus CDF shows a real random variable of its probability distribution based on consensus
scores for different subtype numbers (k = 2–10). (C) The delta area plot for k changed from 2 to 10. The
vertical axis is the relative change in the area under the CDF curves when the cluster number varies
from k to k + 1. The range of k changed from 2 to 10. Abbreviations: CDF, cumulative distribution
function; TCGA, The Cancer Genome Atlas.
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compared with the patients in other subtypes. Abbreviations: OS, overall survival; PFS, progression-
free survival; DFS, disease-free survival; DSS, disease-specific survival; TCGA, The Cancer Genome
Atlas; PAAD, pancreatic adenocarcinoma.

2.4.2. Phenotypic Heterogeneity

The tumor purity scores in Figure 5A were derived from the computational method
(ABSOLUTE) [18,19], which infers tumor purity and malignant cell ploidy directly from
the analysis of somatic DNA alterations. Our analysis showed that the tumor purity scores
are significantly higher in subtype-3. Next, we attempted to find out whether our network-
based subtypes in pancreatic cancer shows phenotypic heterogeneity (Figure 5B–I). The
pathway scores, which are protein expression signatures of pathway activity, associated
with tumor lineage were from a reverse-phase protein microarray (RPPA) as published by
TCGA [19,20]. Our analysis indicated that the pathway scores for epithelial–mesenchymal
transition (EMT), Ras.MAPK (Ras GTPase/MAP kinase signaling), and receptor tyrosine
kinase (RTK) were significantly lower in subtype-3 than in other subtypes. These results
suggest that the network-based subtypes show differences in part of pancreatic cancer-
associated phenotypes.

1 
 

 

Figure 5. Phenotype heterogeneity among the network-based subtypes. Boxplots show differences in
(A) tumor purity, (B) tumor mutation burden, (C) apoptosis, (D) cell cycle, (E) DNA damage response,
(F) EMT, (G) Ras/MAPK, (H) RTK, and (I) TSC-mTOR scores from TCGA among network-based
subtypes. The data from A were derived from ABSOLUTE. The data from B were obtained using R
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package “maftool”. The data from C–I were from RPPA data-based scores published by TCGA. The
Kruskal–Wallis test was performed to calculate the p-value, and those associations with p-value < 0.05
were considered significant. Abbreviations: EMT, epithelial–mesenchymal transition; MAPK,
mitogen-activated protein kinase; RTK, receptor tyrosine kinase; TSC, tuberous sclerosis complex;
mTOR, mammalian target of rapamycin; TCGA, TCGA, The Cancer Genome Atlas; RPPA, reverse-
phase protein microarray; DNA, deoxyribonucleic acid.

2.4.3. Gene Mutation and Immune Cell Infiltration

We then further investigate the mutational data of patients among different subtypes
using the “maftool” package. The common mutational genes in the top 20 of the 4 subtypes
were shown in Figure 6A. KRAS and TP53 were the common top 2 frequent mutational
genes in all subtypes. TP53 is recognized as a tumor suppressor regulating cell cycle,
apoptosis, and senescence. Mutations in the TP53 are associated with tumor progression,
tumor metastasis, and early relapse [21]. We found that the mutational ratio of TP53 in
subtype-3 were the lowest among the four network-based subtypes. In addition, two
other frequently mutated genes (SMAD4 and CDKN2A) were not detected in the top
20 mutational genes of subtype-3. Previous studies have demonstrated that PDAC patients
who had CDKN2A or SMAD4 expression loss had worse disease-free survival and overall
survival compared with patients with intact CDKN2A/SMAD4 [22,23]. ATM and ATRX,
which ranked the third and fourth mutated genes, were closely related with DNA damage
repair (DDR) pathway [24]. As has been previously reported, patients with DDR gene
mutations may have better survival [25]. These results were consistent with the prognostic
outcome in our study.

1 
 

 

Figure 6. Somatic mutations and immune cell infiltration among the network-based subtypes. (A) The
distribution of gene mutations among network-based subtypes. KRAS and TP53 were the top 2 most
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important mutation according to the importance of ranking in all subtypes. (B) CIBERSORT algorithm
showed immune infiltration of 22 immune cells among network-based subtypes. Abbreviations: NK,
natural killer; ns, not significant; NA, not applicable. * p < 0.05, ** p < 0.01, **** p < 0.0001.

To further explore the differences in immune cell infiltration among network-based
subtypes, we used the CIBERSORT algorithm to calculate the proportions of 22 immune
cells in each subtype (Figure 6B). The results showed that the proportions of M0 and
M1 macrophage, monocytes, resting natural killer (NK) cells, and CD8+ T cells had a
significant downward trend in the subtype-3, and the proportions of regulatory T cells
(Tregs), activated natural killer (NK) cells, and plasma cells were significantly (p < 0.01)
increased in the subtype-3.

2.4.4. Predictive Therapeutic Efficacy

We further estimated the drug sensitivity among different subtypes based on the
GDSC [26]. Intriguingly, the predicted drug sensitivity values (IC50) of gemcitabine and
docetaxel were the highest in the patients of subtype-3 who had the most favorable prog-
nosis (Figure 7A,B; p = 0.0069 and 0.00012, respectively, Wilcoxon rank sum test). The
drug sensitivity model was not consistent with prognosis after treatment of gemcitabine
or docetaxel, suggesting that the model is drug specific, rather than a general predictor of
disease prognosis.
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based subtypes. The Kruskal–Wallis test was performed to calculate the p-value. (C) Expression
level of PD-1 and PD-L1 among network-based subtypes of PDAC patients from TCGA dataset.
(D–I) Network-based subtypes immunotherapy response prediction. The p values were adjusted
by the Benjamini and Hochberg’s approach for controlling the false discovery rate. Abbreviation:
TCGA, The Cancer Genome Atlas; PDAC, pancreatic ductal adenocarcinoma; IC50, the half maximal
inhibitory concentration; PAAD, pancreatic adenocarcinoma; PD-1, programmed cell death-1; PD-L1,
programmed cell death-ligand 1; CTLA-4, cytotoxic T lymphocyte associate protein-4. ** p < 0.01,
*** p < 0.001.

At present, immunotherapy drugs have been widely used in melanoma, lung cancer,
and hepatocellular carcinoma [27–29]. However, pancreatic cancer is almost entirely re-
fractory to immunotherapy. Therefore, a better selection of patients who are most likely to
benefit from immunotherapy may be critical. We then compared the expression of PD-1 and
PD-L1 in different subtypes (Figure 7C). Subtype-3 had the lowest level of PD-1 and PD-L1,
whereas subtype 2 had the highest level of PD-1 and PD-L1. For exploring the response
to immunotherapy in these subtypes, we performed subclass mapping to compare the
expression profile of the 4 network-based subtypes which were identified using a previous
published cohort containing 56 melanoma patients who were treated with immunother-
apy [30]. The pairwise comparison of the four subtypes showed that more promising results
were observed in subtype-2 for the anti-PD1 and anti-CTLA4 treatments compared to the
other subtypes, whereas subtype-3 was the most resistant to immunotherapy (Figure 7D–I)
(anti-PD1 therapy: subtype-1 vs. subtype-2, p = 0.006; subtype-1 vs. subtype-3, FDR = 0.04;
subtype-1 vs. subtype-4, p = 0.036; subtype-2 vs. subtype-3, FDR = 0.008; subtype-2 vs.
subtype-4, FDR = 0.024; subtype-3 vs. subtype-4, p = 0.039; anti-CTLA4 therapy: subtype-3
vs. subtype-4, p = 0.039).

2.5. Connection with Other Molecular Subtypes of Pancreatic Cancer

As we all know, Collison et al. identified the quasi-mesenchymal subtype [5], and
Moffitt et al. discovered the basal subtype [4], which are associated with poor overall
survival outcomes in PDAC patients. However, the classical subtype in both classifications
had better prognosis. There were close relationships between our four network-based
subtypes and the classifications of Collison and Moffitt. Specifically, according to Collison’s
classification, subtype-3 was a mixed subtype, including classical (66.67%) and exocrine-like
(33.33%) subtypes (Figure 8A). Although subtype-1 was also a mixed subtype, it had the
lower proportion of a classical subtype (2.78%) which carried a better prognosis when
compared to the exocrine-like and quasi-mesenchymal subtypes. Similarly, according
to Moffitt’s classification, subtype-3 was an all-classical subtype (Figure 8C). This was
consistent with the better prognosis of subtype-3.

2.6. Subtype-3 Specific Pathways and Feature Genes

The subtype-3 specific pathways were displayed in Figure 9A. Most pathways enriched
in subtype-3 were related to immune modulation, such as antigen processing: ubiquiti-
nation and proteasome degradation, adaptive immune response, complement activation,
classical pathway, and host interactions of HIV factors. Neddylation, which has been shown
to be closely related to the worse prognosis in pancreatic cancer [31], is also one of the en-
riched pathways that was closely correlated with immune modulation [32]. The pathways
related with cell cycle and proliferation were also enriched in subtype-3 specific pathways,
such as cell cycle, mitotic, anaphase-promoting complex/cyclosome (APC/C)-mediated
degradation of cell cycle proteins, mitotic cell cycle, microtubule cytoskeleton organization
involved in mitosis, nuclear division, and G2/M transition of mitotic cell cycle. In addition
to immune and cell cycle and proliferation pathways, ubiquitination-related pathways such
as neddylation, protein K48-linked ubiquitination, protein autoubiquitination, positive
regulation of protein ubiquitination, protein monoubiquitination, and ubiquitin E3 ligase
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(The COP9 signalosome (CSN) 1, CSN8, HRT1, S-phase kinase-associated protein (SKP) 1,
SKP2, Cullin (CUL) 1, CUL2, CUL3) were also enriched in subtype-3.
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We then pick out the genes in the subtype-3 specific pathways, which had the
top 10 highest degrees in Figure 3. The expression levels of these genes were signifi-
cantly different among subtypes (Figure 9B). The higher expression of Polo-like kinase 1
(PLK1), cyclin dependent kinase 1 (CDK1), ubiquitin-conjugating enzyme 2C (UBE2C), and
Ring-box 1 (RBX1) were related with worse prognosis in PDAC (Figure 9C).
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3. Discussion

In this study, we used a relatively stable gene interaction network to distinguish
the subtypes of pancreatic cancer. We separated the pancreatic cancer patients into four
network-based subtypes based on gene interaction perturbations at the individual level.
Different subtypes exhibit high heterogeneity in many aspects, including prognosis, pheno-
typic traits, genetic mutations, the abundance of infiltrating immune cell, and predictive
therapeutic efficacy (chemosensitivity and immunotherapy efficacy).

Compelling evidence has demonstrated that differences in the molecular pathology
of pancreatic cancer substantially impact the clinical outcomes of the disease [6]. Better
optimized individual patient management and/or risk stratification may improve systemic
therapeutic regimen selection. Consequently, there have been intense efforts to develop
methods that define molecular subtypes of pancreatic cancer. Molecular classification of
cancer can be achieved in many ways, including identifying distinct characterization of
genomic [33], transcriptomic [6], and microenvironmental alterations [34]. Most of these
classification schemes attempt to separate the patients into limited categories. As a result,
competing molecular subtypes are often overlapping, with no optimal single classification
that addresses all requirements. Recently, A unique continuous gradient classification
system of PDAC was proposed [35]. The resulting PDAC molecular gradient signature
seems to be more informative and clinically relevant than previous non-overlapping meth-
ods. However, all these methods merely utilize the gene sets in a network but ignore the
interactions among genes [33,36]. In our study, we made better use of the gene interaction
relations in the background network to explore new subtypes of pancreatic cancer.

Of the 4 subtypes of pancreatic samples, subtype-3 had the best prognosis. In our
analysis, we found that subtype-3 had the highest tumor purity compared with the other
subtypes. This appears to contradict the previous suggestions that a higher degree of
tumor purity is associated with a worse prognosis [37]. Higher tumor purity often means
lower degree of tumor immune infiltration. Using the CIBERSORT analysis of the immune
cell proportion of network-based subtypes, we found that the abundance of various cells
associated with cytotoxicity in the subtype-3 was significantly lower than that in other
subtypes, such as resting NK cells, CD8+ T cells, and activated memory CD4+ T cells.
The number of macrophages M0, M1, and regulatory T cells was significantly increased
in subtype-3 (Figure 6B). The composition of immune cells in the subtype-3 established
an immunosuppressive microenvironment and may be the reason of limited efficacy of
immunotherapy (Figure 7D–I). Moreover, subtype-3 was not sensitive to gemcitabine and
docetaxel (Figure 7B). The more resistant to conventional chemotherapy may be attributed
to the mutation of ATM and/or ATRX. As previously reported, the abnormalities in DDR
pathways are closely linked with resistance to treatment [38,39]. These results indicate that
the better prognosis of subtype-3 may not be attributed to sensitive response to therapy.
Our analysis implies that the pathway scores for EMT, Ras.MAPK, and RTK of subtype-3
are significantly lower than those in other subtypes. Previous studies have revealed that
inhibition of MAPK and RTK is associated better prognosis in PDAC [40]. And patients
with lower EMT ability are predisposed to have longer survival time. We further found
that subtype-3 had lower proportion of lymph node metastasis (Figure S3, p < 0.001, using
Chi-square test). The presence of lymph node metastasis is commonly recognized as a poor
prognostic sign [41]. Therefore, the lower malignant potential may be the main reason for a
better prognosis of subtype-3.

We further explored the enriched pathways and top 10 genes with the highest de-
gree in subtype-specific network. We found that PLK1, CDK1, UBE2C, and RBX1 were
related with prognosis of PDAC. PLK1, an essential cell cycle regulator and a member
of the serine/threonine-protein kinase family, is overexpressed in many human cancers.
A recent study has shown that it is associated with worse prognoses of pancreatic can-
cer [42]. Similarly, CDK1 has been regarded as a potential target for treatment of PDAC [43].
CDK1 is commonly significantly overexpressed in PDAC patients, which is an indicator
of poor survival for patients [44]. UBE2C is a core ubiquitin-conjugating enzyme in the
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ubiquitin-proteasome system that promotes cell cycle progression. The dysregulation of
UBE2C is related with the proliferation of cancer cells and poor overall survival in pan-
creatic carcinoma [45,46]. RBX1 is part of the cullin-ring ubiquitin ligase (CRL4) complex
(CUL4A–RBX1), which is associated with DNA damage repair. However, there have been
no studies that have reported the association of RBX1 and prognosis of PDAC. Our findings
support the development of therapies targeting the 4 genes for PDAC treatment. Future
studies on the molecular mechanisms of these genes and the development of targeted
therapies are warranted.

In fact, the single genetic marker classification in PDAC has little effect on guiding
treatment decision. Numerous studies have shown that network-based approaches are
more robust and effective than single-gene features. However, previous typing methods
just used the expression of gene sets but ignore the interactions between genes in the
pathway. The perturbation of the network can be used to reflect the abnormal extent of
an individual with disease, which was innovatively measured by the edge perturbations
in our study. Another important feature of our study is the individual-specific analysis
of the gene interaction network. Based on the background network, we could separate
new cancer samples into different subtypes and guide the following treatment and predict
prognosis. The method used in our study may emerge as an ideal tool for personalized or
precision oncology, which represents one potential research direction of future development.
However, our outcome analyses are limited by the retrospective nature of this work,
including nonrandomized patient treatment selection and possible confounding factors
not balanced between subtypes. Therefore, the results should be interpreted with caution.
More future work is needed, including prospective clinical trials and animal experiments.

4. Materials and Methods
4.1. Data Processing

The Cancer Genome Atlas (TCGA) mRNA expression data, along with the clinical
information and mutation data were extracted from the Genomic Data Commons (GDC)
data portal. The 176 pancreatic cancer samples which were pathologically diagnosed as
pancreatic ductal adenocarcinoma were included in the following analyses as the case group
(Table S2). For the control group, mRNA expression data of 167 normal pancreatic tissues were
downloaded from the Genotype-Tissue Expression (GTEx) project (https://gtexportal.org/,
accessed on 13 February 2021). For further analysis, we converted both of the two data sets
into transcripts per million (TPM) form with 30,948 genes in total.

4.2. Constructing Background Network

The ISN for individual is built based on edge perturbations analysis of this sample
against a group of given normal samples. To achieve this objective, we first used the mRNA
expression data of 167 normal pancreatic tissues downloaded from GTEx project, which
serve as the control or reference samples. The Reactome pathway database is then used
to construct a background network which reflects functional protein interaction network
derived from pathways [47]. We obtained all the gene interaction networks (231 in total)
of Reactome pathways by using the app ReactomeFIPlugIn 8.0.0 in Cytoscape 3.7.1 [48].
All the networks were integrated into a large network as the background network with
168,834 edges in total.

4.3. Overview of the Edge-Perturbation-Based Approach

To evaluate the abnormal condition of patients at an individual sample level, we
used the edge-perturbation-based approach. We constructed ISN based on statistical
perturbation analysis in an accurate manner of a single cancer sample against a given
control group of normal samples, which is the theoretical foundation of this method [49]. In
brief, the major steps in our method were shown in Figure S4: at first, the gene expression
matrix of normal and cancer samples was converted into a gene expression rank matrix
by ranking all genes based on the expression levels in individual sample (represented as

https://gtexportal.org/
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element ri,s, which indicates the rank of gene gi in sample s). Secondly, we calculated the
delta rank matrix whose rows referred to as edges in the background network and columns
represented samples. An element δe,s (delta rank) in the delta rank matrix was obtained by
subtracting the ranks of the connecting two genes in an edge (e) of the background network.

δe,s = ri,s − rj,s (1)

The gene–gene interaction network is stable in normal samples, and there are few
interaction perturbations [50]. Therefore, the background network is considered to be stable
across all normal samples. Then, we used the normal samples to acquire the benchmark
delta rank vector, with which each sample must be compared, and the corresponding
difference means the gene interaction perturbations on the sample. We ranked genes
according to their mean gene expression value among normal samples and then calculated
the delta rank as the benchmark delta rank vector with elements denoted by δe, where e is
an edge in the background network. This vector represents the mean relative ranks of gene
pairs in all normal samples.

Finally, we get the edge-perturbation matrix with element ∆es through subtracting the
benchmark delta rank vector from the delta rank of each sample.

∆e,s = δe,s − δe (2)

The edge-perturbation matrix will be converted to a cancer sample matrix that is used
for subsequent clustering analysis.

4.4. Construction of the Network-Based Subtypes

First, we calculated the variance of each edge between pancreatic cancer samples
and normal samples in the edge-perturbation matrix by the Kruskal–Wallis test. Only the
top 30,000 significantly different edges with higher standard deviations (SDs) (also top
30,000 edges with higher SDs) of the edge perturbation of all pancreatic samples would be
used for clustering analysis.

4.5. Estimation of the Abundance of Immune Cell Populations

To estimate the abundance of immune cell populations in cancer samples, we used the
CIBERSORT algorithm. This is an analytical tool used to estimate the infiltration ratio of
different immune cell types in a mixed cell population using gene expression data [51].

4.6. Chemotherapy Response and Immune Checkpoint Inhibitor Treatment Response Prediction

We predict the chemotherapy response of each sample from TCGA database based on
the Genomics of Drug Sensitivity in Cancer (GDSC). Two commonly used chemotherapeu-
tic agents were selected, namely, docetaxel and gemcitabine. The prediction process was
performed using the R package “pRRophetic”, where the half-maximum inhibitory concen-
tration IC50 of the sample was calculated using ridge regression, and the accuracy of the
prediction was assessed using 10-fold cross-validation, according to the GDSC training set.

We further used TCGA’s mRNA expression profile combination subclass mapping
method to predict the therapeutic response of our network-based subtypes to immune
checkpoint blockade [52].

4.7. Identifying Subtype-Specific Pathways

The cancer sample matrix was standardized by the Z-score methodology, which
converted the mean of each row (corresponding to feature edge) to zero and variance to
one. First, we employ hierarchical clustering using complete linkage method to define
clusters of the rows of the matrix, with the cluster number set to 100, and clusters containing
more than 30 edges were retained. Afterwards, the mean values of the perturbation for
each edge in subtype-3 were calculated through Z-scores. Then, the ratio of edges whose
absolute value of the average perturbation was greater than 0.5 in each retained cluster
was obtained. A cluster with a percentage greater than 70% was considered as a perturbed
cluster for subtype-3. All edges in all of the perturbed clusters for subtype-3 constituted
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the subtype-specific networks. All genes involved in the subtype-specific network were
used for pathway enrichment analysis by Metascape (http://metascape.org, accessed on
11 November 2021). The KEGG and Reactome pathways with a p-value less than 0.01 were
retained. Finally, the subtype-specific pathways were identified.

4.8. Survival Analysis

We compared the survival prognosis (overall survival (OS), progression-free survival
(PFS), disease-free survival (DFS) and disease-specific survival (DSS)) of patients in different
network-based subtypes using Kaplan–Meier curve. The log-rank test used p < 0.05 as the
threshold to detect significant differences in survival time. Meanwhile, survival analysis
of genes with the top 10 highest degrees in the subtype-3 specific network were operated
based on GEPIA (Gene Expression Profiling Interactive Analysis) database [53].

4.9. Statistical Analysis

All statistical analyses were carried out using R (version 3.6.1). The survival curve
of the prognostic analysis was generated by the Kaplan–Meier method, and the statistical
significance was tested by the log-rank test. In order to test whether the differences among
the subtypes were statistically significant, Kruskal–Wallis one-way Analysis of Variance
(Kruskal–Wallis) test was performed. Then, the R package “maftools” was used to present
the mutation landscape of the samples.

5. Conclusions

In this study, we constructed an association network by edge-perturbation, which
includes both direct and indirect regulation between two genes. These findings may help
us to understand the heterogeneity of pancreatic cancer and improve our understand-
ing of pathogenesis and pathophysiological mechanisms and improve the accuracy of
predicting prognosis.
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