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Supplementary materials to the manuscript A. Gorobchenko et al. 

Mathematical Modeling of Monovalent Permselectivity of a Bilayer Ion-Exchange 
Membrane as a Function of Current Density 

 
S1. Evolution of the ion concentration profiles in the depleted diffusion layer with increasing potential 
drop 

 
Animation of changes in the ion concentration profiles in the depleted diffusion layer with an 

increase in the potential drop is presented in the separate attached file (Animation S1). 
 
S2. Values of j’Na, j’Сa and max

/Na CaP  for various parameters of the anion-exchange modification layer 
 
The values of the partial current densities of Na+ and Ca2+ (j’Na and j’Сa respectively) corresponding 

to the maximum value of the specific permselectivity coefficient, max
/Na CaP , as well as the themselves values of 

max
/Na CaP  for various parameters of the modification layer (thickness, dML and concentration of fixed ionic 

groups, QML) are presented in Table S1. 

Table S1. Values of j’Na, j’Сa and max
/Na CaP  for various parameters of the anion-exchange modification layer 

QML, М dML, nm j’Na, A/m2 j’Ca, A/m2 max
/Na CaP  

0.5 
10 27.06 22.36 1.21 
20 25.43 19.56 1.32 
30 24.39 17.28 1.41 

1.0 
10 24.12 16.69 1.44 
20 22.49 12.84 1.75 
30 21.58 10.69 2.01 

2.0 
10 21.52 9.715 2.18 
20 20.21 6.390 3.15 
30 19.50 4.760 4.05 

 
S3. Nikolsky’s equation. Connection of the thermodynamic equilibrium constant with the coefficient 
of ion-exchange equilibrium 

 
The distribution of ions between two phases (solution and membrane phases) that are in 

equilibrium depends on the difference in the electrochemical potentials of both phases. At equilibrium, the 
electrochemical potentials, μi, of ions of kind i in the membrane-solution phases are equal [S1]: 
 i iμ μ= . (S1) 

From the definition of the electrochemical potential follows: 
 ln lni i i iRT a z F RT a z Fϕ ϕ+ = + , (S2) 

where i i ia c γ=  and i i ia c γ=  are activity of ion i in the solution and in the membrane, respectively; ci and γi 

are the molar concentration and activity coefficient of ion i in the solution, respectively; ic  and iγ  are the 
molar concentration and activity coefficient of ion i in the membrane, respectively; zi is the charge number 
of the ion i, φ и ϕ  are the electric potential in the solution and in the membrane, respectively; R is the gas 
constant; T is the temperature; F is the Faraday constant. 

Expressing from equation (S2) the electrical potential drop between two phases, we obtain: 

 ln i i

i i i

cRT
z F c

γ
ϕ ϕ

γ
− = − . (S3) 



 

2 

Let us apply equation (S3) to the system with the ternary electrolyte, where i = 1, 2 are counterions 
of various kinds (for example, singly and doubly charged counterions): 
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From equation (S5) it is easy to express the Nikolsky equation: 
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where K21 is the thermodynamic equilibrium constant, which can be expressed in terms of standard 
chemical potentials, 0

iμ , [S2] or, according to equations (S5) and (S6), in terms of ion activity coefficients 
[S1]: 
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When considering the laws of ion exchange for the phases of the membrane and the solution, it is 
most expedient to choose equivalent fractions as units of concentration, since only in this case the activity 
coefficients of the components in the solution are always equal to unity [S1]. To go from molar 
concentrations to equivalent fractions, we transform equation (S6) into the following form: 
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where zm and Qm are the charge number and concentration of fixed groups of the membrane, respectively, 
z3 and c3 are the charge number and concentration of coions, respectively. 

The equivalent fractions of counterions in the membrane and in the solution will be equal to 
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 is the ion exchange equilibrium coefficient [S1]. From this follows the final 

form of the relation, which describes the ion-exchange equilibrium between the phases of the membrane 
and the solution: 
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