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Abstract: Glycogen synthase kinase-3 (GSK-3), a serine/threonine kinase, is a vital glycogen synthase
regulator controlling glycogen synthesis, glucose metabolism, and insulin signaling. GSK-3 is
widely expressed in different types of cells, and its abundant roles in cellular bioregulation have
been speculated. Abnormal GSK-3 activation and inactivation may affect its original bioactivity.
Moreover, active and inactive GSK-3 can regulate several cytosolic factors and modulate their
diverse cellular functional roles. Studies in experimental liver disease models have illustrated the
possible pathological role of GSK-3 in facilitating acute hepatic injury. Pharmacologically targeting
GSK-3 is therefore suggested as a therapeutic strategy for liver protection. Furthermore, while the
signaling transduction of GSK-3 facilitates proinflammatory interferon (IFN)-γ in vitro and in vivo,
the blockade of GSK-3 can be protective, as shown by an IFN-γ-induced immune hepatitis model.
In this study, we explored the possible regulation of GSK-3 and the potential relevance of GSK-3
blockade in IFN-γ-mediated immune hepatitis.

Keywords: glycogen synthase kinase-3; immune hepatitis; interferon-γ; liver

1. Multiple Roles of Glycogen Synthase Kinase-3 (GSK-3) in Human Diseases

Glycogen synthase kinase-3 (GSK-3) was first recognized as a critical glycogen syn-
thase and glycogen regulator responding to insulin signaling and glucose metabolism [1].
With regard to glycogen being made and stored primarily in the liver, particularly in
hepatocytes, controlling glycogen by glycogen synthase is essential. GSK-3 consists of
GSK-3α and GSK-3β [2] and is primarily expressed in the cytosol and nucleus in response
to stimuli [3]. In response to growth factor withdrawal and starvation, GSK-3 is activated
and then phosphorylates glycogen synthase to deactivate its enzymatic activity. In contrast,
in response to blood glucose, insulin, and insulin-like growth factor (IGF) 1, GSK-3 is
generally inactivated, and glycogen synthase is next activated to process glycogen biosyn-
thesis. In addition, nuclear GSK-3 facilitates the phosphorylation of nuclear cyclin D1 in
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the S phase of the cell cycle [4]. However, GSK-3α and GSK-3β have different biological
roles; the induction of embryonic lethality has been shown in GSK-3β but not GSK-3α
knockout mice [5]. In an early study, GSK-3 was also found to participate in various biolog-
ical processes by modulating Wnt/β-catenin, Hedgehog, and nuclear factor κB (NF-κB)
signaling [6]. The multifactorial actions of GSK-3 are exhibited by its multiple intracellular
substrates involving signaling, structure, and transcription [7] and regulate several cellular
processes, including embryonic development, metabolism, gene transcription, protein
synthesis, cell proliferation and division, differentiation, motility, apoptosis, and inflam-
mation [1,8]. Hence, aberrant activation and inactivation of GSK-3 have been implicated
in cancer, diabetes mellitus, liver diseases, and neurodegenerative diseases [9,10]. As an
important regulator in response to diverse stimuli, the possible roles of GSK-3 are therefore
summarized in Figure 1.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 2 of 16 
 

 

glycogen biosynthesis. In addition, nuclear GSK-3 facilitates the phosphorylation of nu-
clear cyclin D1 in the S phase of the cell cycle [4]. However, GSK-3α and GSK-3β have 
different biological roles; the induction of embryonic lethality has been shown in 
GSK-3β but not GSK-3α knockout mice [5]. In an early study, GSK-3 was also found to 
participate in various biological processes by modulating Wnt/β-catenin, Hedgehog, and 
nuclear factor κB (NF-κB) signaling [6]. The multifactorial actions of GSK-3 are exhibited 
by its multiple intracellular substrates involving signaling, structure, and transcription 
[7] and regulate several cellular processes, including embryonic development, metabo-
lism, gene transcription, protein synthesis, cell proliferation and division, differentiation, 
motility, apoptosis, and inflammation [1,8]. Hence, aberrant activation and inactivation 
of GSK-3 have been implicated in cancer, diabetes mellitus, liver diseases, and neuro-
degenerative diseases [9,10]. As an important regulator in response to diverse stimuli, 
the possible roles of GSK-3 are therefore summarized in Figure 1. 

 
Figure 1. The various roles of GSK-3 contribute to diverse bioactivities and human diseases. 

2. Regulation of GSK-3 in Facilitating Proapoptosis and Proinflammation 
Regulation of GSK-3 activation is suggested to be necessary for controlling many 

vital intracellular factors (Figure 2). First, GSK-3 inhibition by phosphorylation is regu-
lated at the N-terminal serine 9 residue through phosphatidylinositol 3-kinase 
(PI3K)-Akt (protein kinase B, PKB) [11]. Pharmacological blockade of PI3K-Akt signaling 
causes GSK-3β dephosphorylation and activation followed by cell apoptosis in a 
GSK-3β-regulated manner [12,13]. Furthermore, activation of protein phosphatases, in-
cluding protein phosphatase (PP) 1 and PP2A, can directly or indirectly dephosphory-
late GSK-3β for activation by causing Akt dephosphorylation [14]. Additionally, the 
signaling pathways of the extracellular signal-regulated kinase (ERK), PKA, PKC, mito-
gen-activated protein kinase (MAPK)-activated protein kinase-1 (also known as p90rsk), 
p70 ribosomal S6 kinase, and Wnt activation also promote GSK-3 inactivation [7]. Alter-
natively, tyrosine kinases such as proline-rich tyrosine kinase (Pyk) 2 [15], MAPK/ERK 
kinase, and Src-like kinase regulate GSK-3 activity [ 7 ] . Moreover, a heat shock protein 
90-mediated autophosphorylation mechanism has been suggested as a regulatory factor 
[16]. 

The proapoptotic role of GSK-3 is suggested in Alzheimer’s disease [17]. GSK-3 
overexpression in target cells induces apoptosis [13,18]. Therefore, GSK-3 activation has 
been reported in apoptotic stimuli, including endoplasmic reticulum (ER) stress, growth 
factor withdrawal, heat shock, hypoxia, staurosporine administration, and mitochondri-
al complex I inhibition [12,18–20]. GSK-3 exerts its multiple regulatory actions on apop-

Figure 1. The various roles of GSK-3 contribute to diverse bioactivities and human diseases.

2. Regulation of GSK-3 in Facilitating Proapoptosis and Proinflammation

Regulation of GSK-3 activation is suggested to be necessary for controlling many
vital intracellular factors (Figure 2). First, GSK-3 inhibition by phosphorylation is regu-
lated at the N-terminal serine 9 residue through phosphatidylinositol 3-kinase (PI3K)-Akt
(protein kinase B, PKB) [11]. Pharmacological blockade of PI3K-Akt signaling causes GSK-
3β dephosphorylation and activation followed by cell apoptosis in a GSK-3β-regulated
manner [12,13]. Furthermore, activation of protein phosphatases, including protein phos-
phatase (PP) 1 and PP2A, can directly or indirectly dephosphorylate GSK-3β for activation
by causing Akt dephosphorylation [14]. Additionally, the signaling pathways of the ex-
tracellular signal-regulated kinase (ERK), PKA, PKC, mitogen-activated protein kinase
(MAPK)-activated protein kinase-1 (also known as p90rsk), p70 ribosomal S6 kinase, and
Wnt activation also promote GSK-3 inactivation [7]. Alternatively, tyrosine kinases such
as proline-rich tyrosine kinase (Pyk) 2 [15], MAPK/ERK kinase, and Src-like kinase regu-
late GSK-3 activity [7]. Moreover, a heat shock protein 90-mediated autophosphorylation
mechanism has been suggested as a regulatory factor [16].
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The proapoptotic role of GSK-3 is suggested in Alzheimer’s disease [17]. GSK-3
overexpression in target cells induces apoptosis [13,18]. Therefore, GSK-3 activation has
been reported in apoptotic stimuli, including endoplasmic reticulum (ER) stress, growth
factor withdrawal, heat shock, hypoxia, staurosporine administration, and mitochondrial
complex I inhibition [12,18–20]. GSK-3 exerts its multiple regulatory actions on apoptosis
through different mechanisms. Interactions of GSK-3β with β-catenin, initiation factor 2B,
p21Cip1, and p53 translation may modulate cell fate in survival and apoptosis [7,13]. The
current study demonstrated the novel proapoptotic role of GSK-3 by negatively regulating
myeloid cell leukemia (Mcl)-1 protein followed by triggering mitochondrial damage [21].
PP2A and PI3K-Akt modulate GSK-3β activity, and GSK-3β, in turn, regulates mitochon-
drial permeability in ceramide-induced apoptosis [22]. In response to the ER stressor
tunicamycin, GSK-3 is essential for cell apoptosis [23]. These molecular regulations show
the proapoptotic role of GSK-3.

Disrupting the GSK-3β gene causes embryonic lethality [5]. In GSK-3β-deficient mice,
severe liver degeneration results from excessive tumor necrosis factor-α (TNF-α) cytotox-
icity. Significantly, GSK-3β can affect the early stage of NF-κB activation by interfering
with cytosolic IκB degradation and nuclear translocation of NF-κB. The data indicate that
GSK-3β regulates NF-κB signaling at the transcriptional complex. The potential regulation
of NF-κB activation by GSK-3 was demonstrated in lipopolysaccharide (LPS)/Toll-like
receptor (TLR)-4 and TNF-α/TNF receptor signaling. Further studies demonstrated that
inhibiting GSK-3β protects cells from inflammatory stimuli, including endotoxemia [24],
experimental autoimmune encephalomyelitis [25], experimental colitis [26], TNF-α [27],
type II collagen-induced arthritis [28], TLR-mediated inflammatory responses [29,30], and
OVA-induced asthma. Furthermore, GSK-3 regulates the expression of nitric oxide (NO),
inducible NO synthase (iNOS), and regulated on activation, normal T-cell expressed and
secreted (RANTES) in LPS-activated macrophages and endotoxemia-induced acute renal
failure [31,32]. Furthermore, inhibiting GSK-3 results in an anti-inflammatory effect in
LPS/interferon (IFN)-γ- and heat-inactivated staphylococcal aureus-activated macrophages
and microglia [33,34]. A study on the therapeutic mechanisms of GSK-3 inhibition will
help to understand the proinflammatory role of GSK-3. Because the activation of NF-κB is
involved in various immune responses, GSK-3 is speculated to be proinflammatory and
could be a therapeutic target for anti-inflammation [5,24,31,32].
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3. Targeting GSK-3 as a Protective Strategy against Hepatic Injury

The therapeutic effects of GSK-3 blockade on hepatic protection have been demon-
strated in TLR-mediated systemic inflammation involving multiorgan failure, including
the lungs, liver, pancreatic injury, and renal dysfunction [35]. In diseased mice with GSK-3
inhibitor treatment, proinflammatory and proapoptotic molecules such as iNOS, nitrotyro-
sine, poly(ADP-ribose), CD30, CD30 ligand, and Fas ligand are markedly reduced. In a
murine model of liver partial warm ischemia/reperfusion injury (IRI), active GSK-3 favors
the development of liver pathology, while GSK-3 inhibitor ameliorates the hepatocellular
injury as indicated by the presence of aspartate aminotransferase and histopathological ex-
amination [36]. Therefore, the findings on the pathogenic role of active GSK-3 are essential
for explaining how carbon monoxide works to protect the IRI liver [37]. Carbon monoxide
treatment causes activation of PI3K-Akt signaling to deactivate GSK-3. Notably, in these
diseased mice with GSK-3 inhibitor treatment [36], the induction of anti-inflammatory
interleukin (IL)-10 is essential for liver protection while neutralizing IL-10 overcomes the
therapeutic effects. It is suggested that the blockade of GSK-3 confers an indirect intercel-
lular regulation. However, the IL-10-producing cells required for hepatic inflammatory
resolution need further investigation. Targeting GSK-3 as a therapeutic strategy against
liver injury is therefore suggested.

Upon TLR stimuli, regulation of IL-10 production is generally critical for immune
resolution [30]. Tight regulation of GSK-3-mediated IL-10 generation has been previously
reported since a critical transcriptional factor cAMP-response element-binding protein
(CREB) required for IL-10 gene transactivation is suggested for use in GSK-3 regulation [38].
CREB is deactivated by active GSK-3 at the acute phase of TLR-mediated inflammatory
responses. Therefore, suppressing IL-10 production is necessary for early activation of
proinflammation, while active GSK-3 is also vital to sustaining TLR-induced NF-κB activa-
tion. Therefore, targeting GSK-3 could be anti-inflammatory directly by interfering with
NF-κB-regulated inflammatory factor expression and indirectly causing CREB-mediated
IL-10 induction. The IL-10-regulating effects raised by the blockade of GSK-3 have been
widely shown in the models of liver protection [36,39]. Similar to the GSK-3 blockade,
the exogenous administration and expression of IL-10 are protective in acute liver injury,
including allograft liver transplantation [40], liver fibrosis [41], and immune hepatitis [42].

In a murine acute liver injury model induced by LPS and D-galactosamine (D-GalN),
administrating the blocker of ER stress, 4-phenylbutyric acid, effectively rescues mice
from hepatic injury and inflammation [43]. Upon ER stress, GSK-3 is activated for me-
diating cellular activation toward proinflammatory and proapoptotic responses [23,44].
It has been demonstrated that the blockade of ER stress also inhibits GSK-3 activation
and GSK-3-mediated cell death and inflammatory activation. In brief, the inhibition of
GSK-3 also confers protection from LPS- [24,45] and cecal ligation and puncture-induced
liver injury [46], hemorrhagic shock [47], liver ischemia-reperfusion [36,48], and LPS/D-
GalN-induced acute hepatic injury [49]. For anti-inflammation, inhibiting GSK-3 promotes
autophagy to increase the expression of peroxisome proliferator-activated receptor (PPAR)
α [49]. Additionally, active GSK-3 mediates ER stress to facilitate LPS-triggered hepatic
inflammation [43]. Additional data have shown that in the same acute hepatic injury,
the blockade of GSK-3 reduces ER stress-triggered [44] and oxidative stress-induced [50]
apoptosis in hepatocytes. In studies of supplementation, including methane-rich saline [39],
suberoylanilide hydroxamic acid [51], curcumin [52], and l-carnitine [53], on liver protec-
tion, all of the treatments inhibit several models of acute hepatic injury by suppressing
inflammation as well as hepatocyte apoptosis. Notably, targeting GSK-3 signaling path-
ways for anti-inflammation and anti-apoptosis are the main effects of these liver-associated
protective agents.
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In addition to modulating hepatic inflammation and hepatic cell death, pharmaco-
logically inhibiting GSK-3 by using lithium in patients with chronic hepatitis C confers
antioxidant responses to avoid the progression of hepatic injury [54]. As shown in liver
biopsy specimens from these patients with GSK-3 inhibition, an inactive phosphorylated
GSK-3 is significantly increased and positively correlated with antioxidant Nrf2 expres-
sion. Nrf2 acts as a significant suppressor of cellular oxidative responsive pathways in the
hepatic cells [55]. In saturated free fatty acid-induced hepatocyte lipoapoptosis, palmitate
treatment causes GSK-3 activation, while pharmacologically inhibiting GSK-3 significantly
reduced palmitate-mediated lipoapoptosis in an experimental cell culture model of Huh-7
cells. The short hairpin RNA technique to knock down GSK-3 showed that GSK-3 facilitates
palmitate-induced JNK activation followed by the induction of the proapoptotic effector
p53-upregulated modulator of apoptosis (PUMA) [56]. The potential treatment by targeting
GSK-3 in experimental models of hepatic injury is summarized in Table 1.

Table 1. GSK-3 in liver diseases and hepatic cell injury.

Hepatic Injury Model The Blockade of GSK-3 References

Zymosan
4-Benzyl-2-methyl-1,2,4-
thiadiazolidine-3,5-dione

(TDZD-8)
[35]

IRI SB216763/TDZD-8/Carbon
monoxide [36,37,48]

Carbon tetrachloride Methane [39]

LPS/D-GalN 4-Phenylbutyric
acid/SB216763 [43,44,49,50]

LPS Lithium chloride (LiCl) [45]

CLP SB216763 [46]

Hemorrhagic shock TDZD-8 [47]

Transplantation Suberoylanilide hydroxamic
acid [51]

Lead Curcumin/l-carnitine [52,53]

HCV LiCl [54]

Palmitate GSK-3 inhibitor
IX/Enzastaurin [56]

4. Generation of IFN-γ and Its Multiple Proinflammatory Roles

IFN-γ is primarily produced by T cells, natural killer (NK) cells, and NKT cells [57,58].
Previous studies proved that the T-box transcription factor Tbx21 (T-bet) is required for
IFN-γ production [59–62]. In Th1 differentiation, IFN-γ-signal transducer and activator
of transcription (STAT) 1 signaling activates T-bet and then sustains the positive feedback
loop to produce more IFN-γ [59,63]. T-bet may also be important in many kinds of immune
cells, including CD8+ T cells [61,64], dendritic cells [65], B cells [66], NK cells, and NKT
cells [62,67]. In general, NK and NKT cells express IFN-γ in response to infection [61,68].
Therefore, NK- and NKT-driven IFN-γ production plays a proinflammatory role in the
immune hepatitis model [69]. However, the regulation of IFN-γ production by T-bet is
still unclear. Following T-bet activation, T-bet (Ser508), which is phosphorylated by casein
kinase I and GSK-3, is required for controlling cytokine production in developing Th1
cells [70].

IFN-γ generally and positively affects the production of the proinflammatory cytokine
TNF-α and chemokines, including IFN-inducible protein-10, monocyte chemoattractant
protein-1, monokine induced by IFN-γ, macrophage inflammatory protein-1α/β, and
RANTES [58], but decreases the expression of the anti-inflammatory cytokine IL-10 [57]. In
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addition, IFN-γ synergizes with LPS-stimulated iNOS/NO biosynthesis [71]. Furthermore,
it has been reported that IFN-γ may trigger the full activation of a variety of signaling
factors, including NF-κB [72], MAPK [73], STAT1 [71], and interferon regulatory factor-
1 (IRF-1) [74], to modulate its proinflammatory activation. In addition, IFN-γ induces
immune cell chemotaxis into sites of inflammation through the upregulation of adhesion
molecules, including intercellular adhesion molecule-1 and vascular cell adhesion molecule-
1, and chemokines [75]. In brief, IFN-γ is a potent cytokine that promotes antigen processing
and presentation, microbial killing, and proinflammatory cytokine production [58,68].

5. IFN-γ Signaling and Its Regulation

IFN-γ receptor (IFNGR) is composed of IFNGR1 and IFNGR2, which bind to Janus
kinase (Jak) 1 and Jak2, respectively [58,76]. Following IFN-γ stimulation, Jak2 is autophos-
phorylated and activated to cause Jak1 transphosphorylation. Through Jak1-mediated
IFNGR1 phosphorylation, activated IFNGR1 creates a docking site for STAT1 recruitment,
followed by Jak2-mediated phosphorylation at a tyrosine residue (Tyr701) [58,76]. Further-
more, IFN-γ-activated MAPKs, such as ERK and p38 MAPK, subsequently phosphorylate
Ser727 of STAT1 (Tyr701) to facilitate its dimerization, nuclear translocation, and DNA
binding stability [77]. Beurel and Jope [78] further demonstrated the requirement of GSK-
3β in facilitating IFN-γ-activated STAT3 and STAT5. This finding suggests a novel role
of GSK-3β in IFN-γ signaling, but the complete regulation of GSK-3 in IFN-γ signaling
remains unclear.

Critical signal components, including Jak1, Jak2, and IFNGR1, are rapidly phospho-
rylated within one minute of IFN-γ treatment in HeLa cells [79]. The time required for
full IFN-γ-induced STAT1-IRF-1 activation and nuclear translocation is approximately
thirty minutes [80]. Notably, STAT1 activation is then inhibited within one hour of IFN-γ
treatment [80], and three families of proteins, SH2-containing phosphatase (SHP) 2, protein
inhibitors of activated STATs, and suppressor of cytokine signaling (SOCS), have been
reported to show negative inhibition of IFN-γ signaling [81,82]. SOCS proteins, including
SOCS1–SOCS7, are identified as inducible negative regulators of cytokine signaling. SOCS
proteins contain an SH2 domain and a carboxy-terminal SOCS box [83]. It is now known
that Jak-STAT-induced SOCS1 and SOCS3 proteins subsequently interfere with Jak by
repressing its activity after ligand binding [83,84]. In addition to SOCSs, dual phosphatase
SHP2 can cause the dephosphorylation of Jak1, Jak2, IFNGR1, and STAT1 [85]. SHP2
becomes phosphorylated at Tyr542 and Tyr580 residues in response to growth factor stim-
ulation [86]. However, the in-depth molecular mechanisms of SHP2 activation remain
largely unclear.

6. GSK-3 Is Involved in IFN-γ Signaling Pathways

Targeting GSK-3 expression and activity suppresses TLR-mediated inflammation but
increases anti-inflammatory cytokine IL-10 production [29,30,36]. Active GSK-3β nega-
tively regulates the IL-10-regulating transcription factor cyclic AMP responsive element
binding protein [29,87]. With a dysregulation of GSK-3-mediated excessive proinflamma-
tory cytokine production and IL-10 downregulation, cirrhotic patients show a high risk of
developing sepsis under endotoxin exposure [88]. While GSK-3 regulates the expression of
NO, iNOS, and RANTES in LPS-activated macrophages, pharmacologically inhibiting GSK-
3 increases IL-10 production to relieve anti-inflammation [31,88]. Accordingly, treatment
with GSK-3 inhibitors comprehensively improves the survival of endotoxemic C3H/HeN
mice. An advanced study demonstrated that IFN-γ treatment synergizes with TLR2-
mediated IκB degradation and NF-κB activation, while TNF-α production is effectively
induced by suppressing IL-10-dependent phosphorylation of STAT3 in a GSK-3-regulated
manner [87,89]. In GSK-3β-deficient fetal liver cells, IFN-γ increases GSK-3β activity to
reduce IL-10 expression in TLR2-stimulated cells [90]. This finding suggests that GSK-3β
plays a decisive signaling role in transducing the proinflammatory activity of IFN-γ.



Int. J. Mol. Sci. 2022, 23, 4669 7 of 16

Following the generation of bioactive lipid signaling, treatment of IFN-γ activates
phosphatidylcholine-specific phospholipase C and PKC to cause Pyk2- and PP2A-regulated
GSK-3 activation [91]. Inhibiting GSK-3 activates SHP2 to prevent STAT1 activation. Among
the signaling pathways, a calcium-dependent tyrosine kinase, Pyk2, causes GSK-3β phos-
phorylation (Tyr216) and activation [34,38,92]. The involvement of GSK-3β in facilitating
IFN-γ signaling has been widely investigated [34,78,87,89]; however, the mechanisms for
IFN-γ-regulated GSK-3β activation remain undecided. Pyk2 can act as a downstream
kinase of immunoreceptor tyrosine-based activation motif-associated receptors and causes
the regulation of the IFN-induced activation of Jak-STAT [38]. Therefore, Pyk2 is involved
in the regulation of Jak-STAT signaling. Moreover, Pyk2 is constitutively bound to Jak2 and
undergoes tyrosine phosphorylation and activation caused by IFN-γ [93]. In response to
IFN-γ-induced iNOS/NO biosynthesis, diacylglycerol is generated to activate PKC. The
activations of PKC-mediated Src, Pyk2, and GSK-3β are essential for regulating IFN-γ
signaling [91,94]. Importantly, our previous work [91] demonstrated the possible inhibitory
effects of GSK-3 on SHP2 activation, an inhibitor of STAT1 signaling. The possible regula-
tion of GSK-3 in facilitating IFN-γ-activated STAT1 signaling and bioactivity is summarized
in Figure 3.
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7. Immune Hepatitis

Immune-mediated hepatic injury, also called immune hepatitis, is caused by many
agents, such as infectious pathogens and chemical and metal drugs [95]. Following stimu-
lation, the condition is further induced by adverse hepatic immune responses, including
activating local and infiltrated immune cells, resulting in hepatocytes undergoing apopto-
sis [96]. In addition, in the liver, T, NK, and NKT cells, sinusoid endothelial cells, Kupffer
cells, and stellate cells are involved in hepatic immunity [97]. Therefore, advances in under-
standing hepatic immunopathogenesis will improve the treatment of immune hepatitis.

Many viral infections can cause chronic diseases in the liver. To mimic acute immune
hepatitis, lymphocyte mitogen concanavalin A (ConA)-induced immune hepatitis closely
resembles the pathology of viral-, drug-, and autoimmune-induced immune hepatitis [98].
Intravenous injection of ConA can induce immune cell infiltration in the liver and can
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elevate the serum alanine aminotransferase and serum aspartate aminotransferase level,
followed by hepatocyte death [98]. Activated immune cells, such as T, NK, NKT, and
Kupffer cells, may exhibit direct cytotoxicity or may release procytotoxic and proinflam-
matory cytokines to mediate liver damage [99]. NKT cells, which express invariant T-cell
receptors, are an abundant cell population in the liver and play a pathogenic role in immune
responses in ConA-induced immune-mediated hepatic injury [100]. In general, activated
NKT cell-mediated excessive inflammatory responses may cause hepatocellular apoptosis.
It has been shown that liver injury in this model depends on IFN-γ and TNF-α overproduc-
tion since administering neutralizing antibodies that recognize either cytokine effectively
protects against ConA-induced immune hepatitis [101,102].

Hepatocellular apoptosis is the primary cause of hepatic injury [95]. Hepatocyte
apoptosis is caused by excessive inflammation resulting from activated T cells, NKT cells,
polymorphonuclear granulocytes (PMNs), and cytokine responses [96,103]. Additionally,
it has been reported that ConA-induced immune hepatitis is fully protected by using
macrophage depletion, T-cell depletion, and T-cell-deficient mice [98]. NKT cells increase
the production of proinflammatory cytokines and procytotoxic factors, leading to hepatic
injury [100,104–106]. Further studies showed the suppression of ConA-induced immune
hepatitis in CD4+ neutralized mice, while the CD8+ neutralized mice showed no significant
change [107]. PMNs are also reported to modulate the generation of IFN-γ in ConA-
induced hepatic injury [103,108]. Kupffer cells are resident hepatic macrophages and can
facilitate neutrophil infiltration. In Kupffer cell-depleted mice, hepatic cell apoptosis and
inflammatory responses in ConA-induced immune hepatitis are reduced [109]. Upon
ConA stimulation, a variety of hepatic immune cells are involved in the pathogenesis of
immune hepatitis.

Several cytokine- and apoptosis-related effector molecules, including IFN-γ [101,106,110],
CD95 Ligand (CD95L) [111], TNF-α [102,112], and IL-4 [104], take part in ConA-induced
T cell- or NKT-mediated hepatic injury [96]. T cells are generally activated, followed by
the immediate secretion of IFN-γ and TNF-α, causing cellular activation and cytotoxicity
in ConA-induced hepatic injury [101]. IFN-γ-deficient mice show significant resistance to
ConA-induced hepatocyte apoptosis, suggesting the proapoptotic role of IFN-γ in immune-
mediated hepatic injury [113]. Hepatocytes, sinusoidal endothelial cells, stellate cells, and
Kupffer cells express CD95 [114], and CD95L is generally expressed on cytotoxic T cells, NK
cells, NKT cells, and hepatic macrophages [115]. Notably, the induction of CD95 expression
on hepatocytes and CD95L expression on cytotoxic NKT cells after treatment with ConA
is mediated by IFN-γ, and this elevated expression of CD95 causes apoptosis [113]. Fur-
thermore, IFN-γ signaling determines the induction of multiple chemokines and adhesion
molecules in ConA-induced immune hepatitis [69]. The pathogenesis of ConA-induced im-
mune hepatitis is generally regulated by T cells, NKT cells, PMNs, cytokines, chemokines,
adhesion molecules, and apoptosis.

8. GSK-3 in IFN-γ-Mediated Hepatic Immune Hepatitis and Its Therapeutic Efficacy

Active GSK-3 facilitates the signal transduction of IFN-γ to modulate IFN-γ-induced
proinflammatory responses [34,78,87,89]. Pharmacological inhibition of GSK-3 provides
anti-inflammation and cytoprotection against IFN-γ- [34,91,116], LPS- [29,31,117], and
TNF-α-induced inflammation in vitro [27] and endotoxemic multiple organ failure
in vivo [24,32,117,118]. In addition, the blockade of GSK-3 also has a protective effect
in several IFN-γ-related autoimmune mouse models, including experimental autoimmune
encephalomyelitis [25], experimental colitis [26], and type II collagen-induced arthritis [28].
Evidence has shown that IFN-γ-deficient and STAT1 mice are resistant to ConA-induced
immune hepatitis [60,106,113]. It is speculated that IFN-γ-activated Jak-STAT signaling
is required for ConA-induced immune hepatitis by increasing CD95/CD95L-mediated
apoptosis, and GSK-3 is essential in ConA-induced IFN-γ-mediated immune hepatitis by
modulating IFN-γ signaling. Previous work [106] showed that exogenous administration
of ConA caused GSK-3 activation in NKT cells and hepatocytes in an in vitro cell culture
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model and an in vivo model of experimental immune hepatitis. The activation of GSK-3
in these cells is speculated to be important in controlling the downstream signaling of
ConA-activated hepatic NKT cells as well as IFN-γ-activated hepatocytes. In the ConA-
treated liver, the loss of glycogen could be observed to be accompanied by the decrease
in glycogen synthase and the increase in active GSK-3 in the hepatocytes. As shown by
the blockade of GSK-3 using selective inhibitors of GSK-3, the loss of glycogen is restored.
While a ConA-induced liver injury is an appropriate model of glycogen deregulated disor-
der, our other results demonstrate that GSK-3 causes dual effects on T-bet-dependent IFN-γ
production in hepatic NKT cells and IFN-γ-activated Jak2/STAT1 for proinflammatory as
well as procytotoxic effects in hepatocytes. The downstream effects of GSK-3 activation are
necessary for promoting IFN-γ-mediated ConA-induced immune hepatitis.

There are multiple causes of hepatic cell apoptosis in immune hepatitis. Hepatocyte
apoptosis may be caused by mechanisms other than those mediated by the CD95-CD95L
system because lpr/lpr mice showed only partial resistance against ConA-hepatitis [113,119].
Indeed, other results have shown IFN-γ-induced CD95-independent apoptosis of mouse
hepatocytes in vitro [120]. Interestingly, stimulating IFN-γ effectively triggers primary
hepatocyte apoptosis, probably in an IRF-1-dependent manner [121,122]. Additionally, IFN-
γ-induced iNOS, a potent inducer of apoptosis [123,124], is known to be induced by IFN-γ.
LPS/D-GalN-induced hepatocyte apoptosis is mediated by iNOS/NO biosynthesis [125].
IFN-γ synergizes with LPS [34] or TLR2 [87] to increase iNOS/NO biosynthesis by involv-
ing GSK-3 activation followed by inhibiting IL-10. The requirement of GSK-3 is indispens-
able in IFN-γ-induced iNOS expression in primary hepatocytes or Huh7 cells. Therefore,
GSK-3 contributes to ConA/IFN-γ-induced iNOS/NO-mediated hepatocyte apoptosis.

The roles of GSK-3 in regulating bioactivities are diverse depending on its protein ex-
pression, activation, intracellular location, interacting molecules, and cell types [1,2,8]. This
review shows the benefits of GSK-3 blockade in many acute and chronic liver diseases;
however, GSK-3 may also protect hepatocytes from TNF-α-induced hepatocyte apopto-
sis [126]. Initially and importantly, GSK-3β deficiency causes embryonic lethality in mice
since GSK-3 is required for TNF-α-activated p65 phosphorylation and upregulation of
NF-κB transactivation [5]. Furthermore, during the stage of liver generation in the embryo,
TNF-α-activated NF-κB is essential for hepatocyte survival by upregulating antiapoptotic
protein expression [5,126] as well as iNOS/NO biosynthesis [127]. According to these
findings, it is controversial in GSK-3-involved liver diseases whether targeting GSK-3 may
be protective or pathogenic [10].

Furthermore, studies have shown the potential implications of inhibiting GSK-3
against septic shock and multiorgan failure [9,118]. Patients with liver cirrhosis have
a high risk of developing sepsis due to excessive inflammation resulting from the deregula-
tion of GSK-3-modulated inflammation and anti-inflammation [88]. Therefore, GSK-3 is
an attractive therapeutic target of pharmacologic intervention that has become indispens-
able for investigation, particularly in acute liver diseases [10]. To stretch the blockade of
GSK-3, inhibitors of GSK-3 are approached by using metal ions (such as lithium), which
are used to block the enzymatic activity. Additionally, GSK-3 inhibitors are developed
by three main classes, including ATP-competitive (such as BIO, SB216763, and SB415286),
non-ATP-competitive (such as TDZD-8), and substrate competitive (such as L803) [117,128].
Additionally, modulating the upstream signaling pathways of GSK-3 activation and inac-
tivation are suggested to be functionally regulated for controlling GSK-3. The selectivity
of GSK-3 inhibitors used to suppress its intracellular activation is therefore crucial for
further investigation.

9. Conclusions

In summary (Figure 4), in an experimental model of ConA-induced immune hep-
atitis [106], activating GSK-3 by ConA determines IFN-γ generation in NKT cells and
synergistically facilitates IFN-γ-activated Jak-STAT, inflammatory responses (such as CD54
expression, iNOS/NO biosynthesis, and immune cell infiltration), and proapoptotic effects
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(such as CD95L/CD95 signaling) in the liver, particularly in hepatocytes. GSK-3 inhibition
has been used to prevent inflammatory disorders, including neurodegenerative disorders,
infectious pathogens, endotoxemia, trauma, and asthma [128–130]. Therefore, GSK-3 inhi-
bition represents a potential therapeutic strategy to prevent or reduce disease progression,
probably through anti-inflammation and anti-apoptosis. Based on the essential roles of
GSK-3 in immune hepatitis and IFN-γ signaling, drug targeting of GSK-3 and its upstream
or downstream signaling can provide strategies for anti-inflammation and anti-apoptosis
in immune-mediated hepatic injury.
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and its receptor IFNGR may cause GSK-3-regulated Jak2/STAT1 signaling in hepatocytes to facilitate
IFN-γ-activated Jak2-STAT1 signaling. IFN-γ is essential for inducing hepatic injury, including CD95-
mediated hepatic cell death and hepatic inflammatory responses such as iNOS/NO biosynthesis,
CD54 induction, and immune T cell and granulocyte infiltration. These findings illustrate a pathogenic
role of GSK-3 in guiding ConA-induced immune hepatitis by facilitating IFN-γ expression, signaling,
hepatic injury, and inflammation.
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