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Abstract: Clasmatodendrosis is one of the irreversible astroglial degeneration, which is involved
in seizure duration and its progression in the epileptic hippocampus. Although sustained heat
shock protein 25 (HSP25) induction leads to this autophagic astroglial death, dysregulation of
mitochondrial dynamics (aberrant mitochondrial elongation) is also involved in the pathogenesis in
clasmatodendrosis. However, the underlying molecular mechanisms of accumulation of elongated
mitochondria in clasmatodendritic astrocytes are elusive. In the present study, we found that
clasmatodendritic astrocytes showed up-regulations of HSP25 expression, AKT serine (S) 473 and
dynamin-related protein 1 (DRP1) S637 phosphorylations in the hippocampus of chronic epilepsy rats.
2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me; bardoxolone methyl
or RTA 402) abrogated abnormal mitochondrial elongation by reducing HSP25 upregulation, AKT
S473- and DRP1 S637 phosphorylations. Furthermore, HSP25 siRNA and 3-chloroacetyl-indole
(3CAI, an AKT inhibitor) abolished AKT-DRP1-mediated mitochondrial elongation and attenuated
clasmatodendrosis in CA1 astrocytes. These findings indicate that HSP25-AKT-mediated DRP1
S637 hyper-phosphorylation may lead to aberrant mitochondrial elongation, which may result in
autophagic astroglial degeneration. Therefore, our findings suggest that the dysregulation of HSP25-
AKT-DRP1-mediated mitochondrial dynamics may play an important role in clasmatodendrosis,
which would have implications for the development of novel therapies against various neurological
diseases related to astroglial degeneration.
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1. Introduction

Temporal lobe epilepsy (TLE) is one of the common neurological diseases, which is
characterized by presence of spontaneous episodes of abnormal excessive neuronal dis-
charges [1,2]. Neuronal loss including γ-aminobutyric acid (GABA)-ergic interneurons
and synaptic rearrangement lead to seizure generation (ictogenesis) and the development
of epilepsy (epileptogenesis). Together with the dysfunctions of neurons, aberrant as-
troglial functionality also contributes to pathogenesis of TLE, since astrocytes control the
homeostasis of synaptic transmission and blood brain barrier (BBB), and glia-induced
inflammation [2–5]. Indeed, astroglial dysfunctions such as disturbance of astrocyte gap
junction coupling and K+ buffering are involved in the etiology of TLE [6]. Although astro-
cytes are believed to be resistant to harmful stresses [7,8], astroglial degeneration is also
induced by various pathological conditions [5,9–11]. In particular, clasmatodendrosis (an
irreversible autophagic astroglial death) has been reported by Alzheimer and Cajal more
than 100 years ago [12]. Clasmatodendritic astrocytes show extensive swollen cell bodies
with lysosome-derived vacuoles indicating ubiquitin proteasome system (UPS)-mediated
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autophagocytosis and disintegrated/beaded processes [12–16]. Furthermore, this astroglial
degeneration may be involved in the synchronous epileptiform discharges and regulate
seizure duration, but not seizure on-set or its severity, in chronic epilepsy rats [11,17].

The underlying molecular mechanisms of clasmatodendrosis are closely relevant to
dysregulations of extracellular signal-related kinases 1/2 (ERK1/2)-specificity protein 1
(SP1)-heat shock protein 25 (HSP25)-mediated endoplasmic reticulum (ER) stress, which
hyperactivates AKT and facilitates autophagic process independent of mammalian target
of rapamycin (mTOR) activity [18–23]. Furthermore, mitochondrial defects initiated by
acidosis and aberrant mitochondrial dynamics are involved in clasmatodendritic astroglial
degeneration [24–28].

Mitochondria are highly dynamic organelles, which play important role in the produc-
tion of adenosine triphosphate (ATP), cellular homeostasis, Ca2+ regulation, and reactive
oxygen species (ROS) generation [29,30]. Therefore, mitochondria change morphologies to
maintain their functions properly in response to cellular energetic status via two opposing
processes: fusion and fission (referred as mitochondrial dynamics). Mitochondrial fusion
increases mitochondrial length to maintain and restore mitochondrial function by facilitat-
ing the stochastic redistribution of soluble and membrane components between normal
and defective mitochondria. Fission shortens mitochondrial length for the elimination of
irreversibly damaged mitochondria via mitophagy. Imbalance of mitochondrial dynamics
induces mitochondrial dysfunctions and subsequently cell death. For example, aberrant
enlarged (giant) mitochondria show swelling, loss of cristae and destruction of the inner
membrane, indicating mitochondrial functional deficiencies such as decreased ATP pro-
duction [31–34]. Mitochondrial dynamics are regulated by various molecules including
mitofusin 1 (MFN1), MFN2, optic atrophy 1 (OPA1), dynamin-related protein 1 (DRP1),
fission related protein-1 (Fis-1) and mitochondrial fission factor (MFF) [31–33]. Among
them, DRP1 is a key player for mitochondrial fission, whose activity is differently regulated
by phosphorylation at distinct sites. Phosphorylation of DRP1 at serine (S) 616 by cyclin
dependent kinase (CDK) 1/Cyclin B, CDK5 or ERK1/2 promotes mitochondrial fission,
while DRP1-S637 phosphorylation by protein kinase A (PKA) detaches DRP1 from mito-
chondria and inhibits mitochondrial fission. Therefore, maintenance of DRP1 S616/S637
phosphorylation ratio is tightly regulated for cell viability [35–38]. Indeed, the reduced
DRP1-S616/S637 phosphorylation ratio leads to aberrant mitochondrial elongations in
clasmatodendritic astrocytes within the stratum radiatum of CA1 region (CA1 astrocytes)
without altering other mitochondrial dynamics-related molecules [28]. Interestingly, AKT
directly phosphorylates DRP1 S637 site [39–41]. Therefore, it is likely that upregulated AKT
phosphorylation may affect DRP1-mediated mitochondrial dynamics during clasmatoden-
drosis, which has been elusive.

2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me; bar-
doxolone methyl or RTA 402) is a derivatives of synthetic triterpenoids and has anti-
inflammatory, antioxidant, anti-proliferative properties [42]. Since CDDO-Me inhibits
HSP25-induced AKT S473 phosphorylation in clasmatodendritic CA1 astrocytes [17], it is
likely that CDDO-Me may also attenuate clasmatodendrosis by recovering the impairment
of DRP1-mediated mitochondrial dynamics in CA1 astrocytes. In the present study, there-
fore, we furthermore explored the effect of CDDO-Me on clasmatodendrosis to elucidate
how clasmatodendritic events would evoke abnormal mitochondrial elongations, in spite
of activations of autophagic process, and which signaling pathway would be involved in
the dysregulations of mitochondrial dynamics during clasmatodendrosis.

Here, we demonstrate that CDDO-Me ameliorated clasmatodendrosis in CA1 astrocytes
in the hippocampus of chronic epilepsy rats. In addition, CDDO-Me decreased accumulation
of elongated mitochondria in CA1 astrocytes, concomitant with the HSP25 downregulation
and the reduced DRP1 S637 and AKT S473 phosphorylation levels, which increased the
DRP1-S616/S637 phosphorylation ratio. HSP25 knockdown showed the similar effect on
clasmatodendritic CA1 astrocytes. 3-Chloroacetyl-indole (3CAI, an AKT inhibitor [43])
also mitigated clasmatodendrosis without altering prolonged HSP25 upregulation in CA1
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astrocytes. Therefore, our findings suggest that sustained HSP25 induction may trigger the
impaired mitochondrial fission in CA1 astrocytes during clasmatodendrosis by enhancing
AKT-mediated DRP1 S637 phosphorylation, which was mitigated by CDDO-Me.

2. Results
2.1. CDDO-Me Attenuates HSP25-Mediated Autophagy in CA1 Astrocytes

In chronic epilepsy rats (8 weeks after SE), 30% of CA1 astrocytes showed typical clas-
matodendrosis, which showed strong HSP25 and lysosomal-associated membrane protein
1 (LAMP1) positive vacuoles (t(12) = 10.2, p < 0.001 vs. control animals, Student t-test, n = 7,
respectively; Figure 1A–C). The fluorescent intensities of HSP25 and LAMP1 were 2.78
(t(12) = 8, p < 0.001 vs. control animals, Student t-test, n = 7, respectively; Figure 1A,D)
and 1.53-fold of control level (t(12) = 10.1, p < 0.001 vs. control animals, Student t-test,
n = 7, respectively; Figure 1B,E). In CDDO-Me-treated animals, most of CA1 astrocytes
were typical reactive forms showing swelling and hypertrophy without vacuolization
(Figure 1A,B). CDDO-Me decreased the fraction of clasmatodendritic astrocytes in CA1 as-
trocytes to 6% (F(2,18) = 81.1, p < 0.001, one-way ANOVA, n = 7, respectively; Figure 1A–C),
and reduced the fluorescent intensities of HSP25 and LAMP1 to 0.55 (F(2,18) = 44.8, p < 0.001,
one-way ANOVA, n = 7, respectively; Figure 1A,D) and 0.78-fold of vehicle-treated animal
level (F(2,18) = 60, p < 0.001, one-way ANOVA, n = 7, respectively; Figure 1B,E). Consis-
tent with our previous study [17], these findings indicate that CDDO-Me may attenuate
clasmatodendritic CA1 astroglial degeneration in the epileptic hippocampus.

2.2. CDDO-Me Reduces AKT S473 Phosphoprylation and Mitochondrial Length in CA1 Astrocytes

The dysregulation of mitochondrial dynamics is one of the causes for clasmatodendro-
sis in CA1 astrocytes. Briefly, aberrant mitochondrial elongation evokes clasmatodendritic
(autophagic) degeneration in CA1 astrocytes [28]. Considering the inhibitory effect of
CDDO-Me on clasmatodendrosis in CA1 astrocytes [17] and the AKT-mediated regulation
of mitochondrial dynamics [39–41], it is likely that CDDO-Me may rescue aberrant mito-
chondrial elongation (fusion) by inhibiting AKT activity. To confirm this, we evaluate the
effect of CDDO-Me on AKT activity (phosphorylation). In chronic epilepsy rats, clasmato-
dendritic CA1 astrocytes showed the upregulated AKT S473 fluorescent intensity and the
accumulation of elongated mitochondria (Figure 2A,B). The AKT S473 fluorescent intensity
was 3.61-fold of control level (t(12) = 15.5, p < 0.001 vs. control animals, Student t-test, n = 7,
respectively; Figure 2A,C).

In control animals, astroglial mitochondrial elongation (area-weighted form
factor [44–46]) was 2.43 (Figure 2A,D). The cumulative area:perimeter ratio (an indicative of
the transition from elongated, isolated mitochondria to a reticular network or aggregation
of interconnected mitochondria [44,45]) and the form factor (a parameter as transition from
the sphere to elongated, complex shaped, but still isolated mitochondria [44–46]) were
1.94 and 2.64, respectively (Figure 2B,E). In chronic epilepsy rats, astroglial mitochondrial
elongation was 5.7 (t(68) = 5.6, p < 0.001 vs. control animals, Student t-test, n = 7, respectively;
Figure 2A,D). The cumulative area:perimeter ratio and the form factor were 11.37 (t(68) = 8.9,
p < 0.001 vs. control animals, Student t-test, n = 7, respectively) and 1.33 (t(68) = 3.8, p < 0.001
vs. control animals, Student t-test, n = 7, respectively), respectively (Figure 2B,E), indicating
the accumulation of elongated mitochondria.

CDDO-Me decreased AKT S473 fluorescent intensity to 0.44-fold of vehicle-treated
animal level (F(2,18) = 170, p < 0.001, one-way ANOVA, n = 7, respectively; Figure 2A,C).
CDDO-Me reduced mitochondrial elongation to 3.13 (F(2,102) = 6.1, p = 0.003, one-way
ANOVA, n = 7, respectively; Figure 2B,D) and the cumulative area:perimeter ratio to 5.34
(F(2,102) = 12.2, p < 0.001, one-way ANOVA, n = 7, respectively; Figure 2B,E). However,
CDDO-Me increased the form factor to 2.99 (F(2,102) = 21.7, p < 0.001, one-way ANOVA,
n = 7, respectively; Figure 2B,E). These findings indicate that CDDO-Me may abrogate the
accumulation of elongated mitochondria in CA1 astrocytes, accompanied by the reduced
AKT activity.
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Figure 1. Effects of CDDO-Me on heat shock protein 25 (HSP25) and lysosomal-associated membrane
protein 1 (LAMP1) expressions in CA1 astrocytes of control and epileptic rats. As compared to control
animals (Cont), HSP25 and LAMP1 expressions are upregulated in CA1 astrocytes in epileptic rats.
CDDO-Me reduces the increased HSP25 and LAMP1 expressions in CA1 astrocytes, as compared
to vehicle (Veh). (A,B) Representative photos demonstrating astroglial HSP25 (A) and LAMP1 (B)
expressions in CA1 astrocytes. (C–E) Quantifications of the fraction of clasmatodendritic astrocytes in
total CA1 astrocytes (C), HSP25 expression (D) and LAMP1 fluorescent intensity (E) in CA1 astrocytes.
Open circles indicate each value. Horizontal bars indicate the mean value. Error bars indicate SEM
(*, # p < 0.05 vs. control and vehicle-treated epileptic rats, respectively; n = 7, respectively).
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Figure 2. Effects of CDDO-Me on AKT S473 phosphorylation and mitochondrial length in CA1
astrocytes of control and epileptic rats. As compared to control animals (Cont), AKT S473 phos-
phorylation and mitochondrial length are increased in CA1 astrocytes in epileptic rats. CDDO-Me
reduces AKT S473 phosphorylation and mitochondrial length in CA1 astrocytes, as compared to
vehicle (Veh). (A,B) Representative photos demonstrating astroglial AKT S473 phosphorylation
(A) and mitochondrial morphology (B) in CA1 astrocytes. (C–E) Quantifications of AKT S473 phos-
phorylation (mean ± S.E.M.; *, # p < 0.05 vs. control and vehicle-treated epileptic rats, respectively;
n = 7, respectively, (C)), mitochondrial elongation index (area-weighted form factor, mean ± S.E.M.;
*, # p < 0.05 vs. control and vehicle-treated epileptic rats, respectively; n = 7, respectively, (D)) and
the cumulative area:perimeter ratio (an indicative of the transition from elongated, isolated mito-
chondria to a reticular network or aggregation of interconnected mitochondria) and the form factor
(a parameter as transition from the sphere to elongated, complex shaped, but still isolated mitochon-
dria; mean ± S.E.M.; *, # p < 0.05 vs. control and vehicle-treated epileptic rats, respectively; n = 7,
respectively, (E)).
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2.3. CDDO-Me Reduces DRP1 S637 Phosphorylation in CA1 Astrocytes without Affecting
S616 Phosphorylation

DRP1 oppositely regulates mitochondrial dynamics by two distinct sites: Phosphory-
lation at S616 is associated with increased activity of DRP1 (profission), whereas phospho-
rylation at S637 is linked to reduced activity (antifission) [35–38]. Thus, we investigated the
effects of CDDO-Me on DRP1 S616 and S637 phosphorylations.

In chronic epilepsy rats, DRP1 S616 phosphorylation was lower than that in control
animals, while the S637 phosphorylation was higher (Figure 3A–D). The DRP1 S616 fluo-
rescent intensity was 0.62-fold of control level (t(12) = 13.1, p < 0.001 vs. control animals,
Student t-test, n = 7, respectively; Figure 3A,C), while DRP1 S637 fluorescent intensity was
1.66-fold of control level (t(12) = 15.5, p < 0.001 vs. control animals, Student t-test, n = 7,
respectively; Figure 3B,D). Thus, DRP1 S616/S637 ratio was reduced to 0.38-fold of control
level (t(12) = 21.7, p < 0.001 vs. control animals, Student t-test, n = 7, respectively; Figure 3E).
Although CDDO-Me did not affect DRP1 S616 fluorescent intensity, it decreased S637
fluorescent intensity to 0.73-fold of vehicle-treated animal level (F(2,18) = 138.3, p < 0.001,
one-way ANOVA, n = 7, respectively; Figure 3A–D). Therefore, DRP1 S616/S637 ratio
was elevated to 1.45-fold of vehicle-treated animal level (F(2,18) = 206.8, p < 0.001, one-way
ANOVA, n = 7, respectively; Figure 3E). These findings indicate that CDDO-Me may at-
tenuate aberrant mitochondrial elongation by inhibiting DRP1 S637 phosphorylation in
clasmatodendritic CA1 astrocytes.

2.4. HSP25 Knockdown Inhibits AKT S473 and DRP1 S637 Phosphorylations in CA1 Astrocytes

To confirm whether sustained HSP25 induction directly affects AKT S473 and DRP1
S637 phosphorylations in clasmatodendritic CA1 astrocytes, we applied HSP25 knockdown
in chronic epilepsy rats. Most of CA1 astrocytes showed typical reactive forms in HSP25
siRNA-infused animals (Figure 4A,B). HSP25 siRNA decreased the fraction of clasmato-
dendritic astrocytes in CA1 astrocytes to 5.3% (F(2,18) = 147.4, p < 0.001, one-way ANOVA,
n = 7, respectively; Figure 4A–C), and reduced the fluorescent intensities of HSP25 and
LAMP1 to 0.51 (F(2,18) = 47.2, p < 0.001, one-way ANOVA, n = 7, respectively; Figure 4A,D)
and 0.75-fold of control siRNA-treated animal level in chronic epilepsy rats (F(2,18) = 83.4,
p < 0.001, one-way ANOVA, n = 7, respectively; Figure 4B,E).

HSP25 knockdown decreased AKT S473 fluorescent intensity to 0.49-fold of control
siRNA-treated animal level (F(2,18) = 105.2, p < 0.001, one-way ANOVA, n = 7, respec-
tively; Figure 5A,C). In control siRNA-treated animals, astroglial mitochondrial elonga-
tion was 4.99 (Figure 5B,D). The cumulative area:perimeter ratio and the form factor
were 8.47 and 1.1 (Figure 5B,E). HSP25 siRNA reduced mitochondrial elongation to 2.93
(F(2,102) = 9.4, p < 0.001, one-way ANOVA, n = 7, respectively; Figure 5B,D) and the cu-
mulative area:perimeter ratio to 4.64 (F(2,102) = 14.8, p < 0.001, one-way ANOVA, n = 7,
respectively; Figure 5B,E). HSP25 siRNA increased the form factor to 1.99 (F(2,102) = 9.7,
p < 0.001, one-way ANOVA, n = 7, respectively; Figure 5B,E).

HSP25 siRNA knockdown did not affect DRP1 S616 fluorescent intensity in CA1
astrocytes (Figure 6A,C). However, HSP25 knockdown decreased S637 fluorescent intensity
to 0.7-fold of control siRNA-treated animal level (F(2,18) = 114.2, p < 0.001, one-way ANOVA,
n = 7, respectively; Figure 6B,D). Thus, DRP1 S616/S637 ratio was elevated to 1.47-fold
of control siRNA-treated animal level (F(2,18) = 206.2, p < 0.001, one-way ANOVA, n = 7,
respectively; Figure 6E). Taken together, these findings indicate that prolonged HSP25
induction may evoke the accumulation of elongated mitochondria in CA1 astrocytes by
increasing AKT S473 and DRP1 S637 phosphorylations.
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Figure 3. Effects of CDDO-Me on DRP1 S616- and S637 phosphorylations in CA1 astrocytes of
control and epileptic rats. As compared to control animals (Cont), DRP1 S616 phosphorylation is
reduced in CA1 astrocytes in epileptic rats, while DRP1 S637 phosphorylation is increased. CDDO-Me
reduces the increased DRP1 S637 phosphorylation in CA1 astrocytes without affecting DRP1 S616
phosphorylation, as compared to vehicle (Veh). (A,B) Representative photos demonstrating astroglial
DRP1 S616- (A) and S637 phosphorylation (B) in CA1 astrocytes. (C–E) Quantifications of DRP1 S616-
(C), S637 phosphorylation (D) and DRP1 S616/S637 phosphorylation ratio (E) in CA1 astrocytes.
Open circles indicate each value. Horizontal bars indicate the mean value. Error bars indicate SEM
(*, # p < 0.05 vs. control and vehicle-treated epileptic rats, respectively; n = 7, respectively).
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Figure 4. Effects of HSP25 knockdown on heat shock protein 25 (HSP25) and lysosomal-associated
membrane protein 1 (LAMP1) expressions in CA1 astrocytes of control and epileptic rats. As com-
pared to control animals (Cont), HSP25 and LAMP1 expressions are upregulated in CA1 astrocytes in
epileptic rats. HSP25 siRNA reduces the increased HSP25 and LAMP1 expressions in CA1 astrocytes,
as compared to control siRNA (cont siRNA). (A,B) Representative photos demonstrating astroglial
HSP25 (A) and LAMP1 (B) expressions in CA1 astrocytes. (C–E) Quantifications of the fraction of
clasmatodendritic astrocytes in total CA1 astrocytes (C), HSP25 expression (D) and LAMP1 fluores-
cent intensity (E) in CA1 astrocytes. Open circles indicate each value. Horizontal bars indicate the
mean value. Error bars indicate SEM (*, # p < 0.05 vs. control and control siRNA-treated epileptic rats,
respectively; n = 7, respectively).
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Figure 5. Effects of HSP25 knockdown on AKT S473 phosphorylation and mitochondrial length
in CA1 astrocytes of control and epileptic rats. As compared to control animals (Cont), AKT S473
phosphorylation and mitochondrial length are increased in CA1 astrocytes in epileptic rats. HSP25
siRNA reduces AKT S473 phosphorylation and mitochondrial length in CA1 astrocytes, as compared
to control siRNA (cont siRNA). (A,B) Representative photos demonstrating astroglial AKT S473 phos-
phorylation (A) and mitochondrial morphology (B) in CA1 astrocytes. (C–E) Quantifications of AKT
S473 phosphorylation (mean ± S.E.M.; *, # p < 0.05 vs. control and control siRNA-treated epileptic
rats, respectively; n = 7, respectively, (C)), mitochondrial elongation index (area-weighted form factor,
mean ± S.E.M.; *, # p < 0.05 vs. control and control siRNA-treated epileptic rats, respectively; n = 7,
respectively, (D)) and the cumulative area:perimeter ratio (an indicative of the transition from elon-
gated, isolated mitochondria to a reticular network or aggregation of interconnected mitochondria)
and the form factor (a parameter as transition from the sphere to elongated, complex shaped, but still
isolated mitochondria; mean ± S.E.M.; *, # p < 0.05 vs. control and control siRNA-treated epileptic
rats, respectively; n = 7, respectively, (E)).
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Figure 6. Effects of HSP25 knockdown on DRP1 S616- and S637 phosphorylations in CA1 astrocytes
of control and epileptic rats. As compared to control animals (Cont), DRP1 S616 phosphoryla-
tion is reduced in CA1 astrocytes in epileptic rats, while DRP1 S637 phosphorylation is increased.
CDDO-Me reduces the increased DRP1 S637 phosphorylation in CA1 astrocytes without affecting
DRP1 S616 phosphorylation, as compared to control siRNA (cont siRNA). (A,B) Representative
photos demonstrating astroglial DRP1 S616- (A) and S637 phosphorylation (B) in CA1 astrocytes.
(C–E) Quantifications of DRP1 S616- (C), S637 phosphorylation (D) and DRP1 S616/S637 phospho-
rylation ratio (E) in CA1 astrocytes. Open circles indicate each value. Horizontal bars indicate the
mean value. Error bars indicate SEM (*, # p < 0.05 vs. control and control siRNA-treated epileptic rats,
respectively; n = 7, respectively).
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2.5. 3CAI Decreases AKT S473 and DRP1 S637 Phosphorylations in CA1 Astrocytes

To investigate directly the role of AKT in DRP1 S637 phosphorylation in CA1 astrocytes,
we applied 3CAI (an AKT inhibitor) in chronic epilepsy rats. 3CAI reduced the fraction
of clasmatodendritic astrocytes in CA1 astrocytes to 6.4% (F(2,18) = 208.8, p < 0.001, one-
way ANOVA, n = 7, respectively; Figure 7A–C). Thus, most of CA1 astrocytes showed
typical reactive in 3CAI-infused animals (Figure 7A,B). However, 3CAI did not affect
HSP25 fluorescent intensity, but decreased LAMP1 fluorescent intensity to 0.77-fold of
vehicle-treated animal level in CA1 astrocytes (F(2,18) = 49.9, p < 0.001, one-way ANOVA,
n = 7, respectively; Figure 7A–E).

3CAI diminished AKT S473 fluorescent intensity to 0.44-fold of vehicle-treated animal
level (F(2,18) = 224.7, p < 0.001, one-way ANOVA, n = 7, respectively; Figure 8A,C). In
vehicle-treated animals, astroglial mitochondrial elongation was 5.23 (Figure 8B,D). The
cumulative area:perimeter ratio and the form factor were 11.47 and 1.6 (Figure 8B,E). 3CAI
reduced mitochondrial elongation to 3.5 (F(2,102) = 8.3, p < 0.001, one-way ANOVA, n = 7,
respectively; Figure 8B,D) and the cumulative area:perimeter ratio to 5.2 (F(2,102) = 15.3,
p < 0.001, one-way ANOVA, n = 7, respectively; Figure 8B,E). 3CAI increased the form
factor to 2.89 (F(2,102) = 10.4, p = 0.001, one-way ANOVA, n = 7, respectively; Figure 8B,E).

3CAI reduced S637 fluorescent intensity to 0.72-fold of vehicle-treated animal level
in CA1 astrocytes (F(2,18) = 108.3, p < 0.001, one-way ANOVA, n = 7, respectively) without
affecting DRP1 S616 fluorescent intensity (Figure 9A–D). In addition, 3CAI increased DRP1
S616/S637 ratio to 1.37-fold of vehicle-treated animal level (F(2,18) = 164.9, p < 0.001, one-way
ANOVA, n = 7, respectively; Figure 9E). Therefore, our findings indicate that upregulated
AKT activity may result in the aberrant mitochondrial elongation in clasmatodendritic CA1
astrocytes by DRP1 S637 hyper-phosphorylation.

2.6. CDDO-Me and 3CAI Decrease DRP1 S637, but Not S616, Phosphorylations in CA1 Astrocytes

To confirm the effects of CDDO-Me on DRP1 phosphorylation, we performed the
Western blot using the stratum radiatum of the CA1 region where astrocytes were mainly
observed. Consistent with our previous study [17], CDDO-Me decreased HSP25 (t(12) = 9.99,
p < 0.001, Student t-test, n = 7, respectively), AKT S473 (t(12) = 13.68, p < 0.001, Student
t-test, n = 7, respectively) and DRP1 S637 level (t(12) = 10.75, p < 0.001, Student t-test, n = 7,
respectively; Figure 10 and Supplementary Figure S1). 3CAI reduced AKT S473 (t(12) = 12.53,
p < 0.001, Student t-test, n = 7, respectively) and DRP1 S637 phosphorylation (t(12) = 11.98,
p < 0.001, Student t-test, n = 7, respectively; Figure 10 and Supplementary Figure S1) without
altering HSP25 level. Both CDDO-Me and 3CAI did not affect DRP1 S616 phosphorylation
(Figure 10 and Supplementary Figure S1). Together with immunohistochemical data, our
findings indicate that CDDO-Me may attenuate autophagic astroglial degeneration by
inhibiting HSP25-AKT-DRP1 signaling pathway.
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Figure 7. Effects of 3CAI on heat shock protein 25 (HSP25) and lysosomal-associated membrane
protein 1 (LAMP1) expressions in CA1 astrocytes of control and epileptic rats. As compared to control
animals (Cont), HSP25 and LAMP1 expressions are upregulated in CA1 astrocytes in epileptic rats.
3CAI reduces the increased LAMP1, but not HSP25, expression in CA1 astrocytes, as compared
to vehicle (Veh). (A,B) Representative photos demonstrating astroglial HSP25 (A) and LAMP1 (B)
expressions in CA1 astrocytes. (C–E) Quantifications of the fraction of clasmatodendritic astrocytes in
total CA1 astrocytes (C), HSP25 expression (D) and LAMP1 fluorescent intensity (E) in CA1 astrocytes.
Open circles indicate each value. Horizontal bars indicate the mean value. Error bars indicate SEM
(*, # p < 0.05 vs. control and vehicle-treated epileptic rats, respectively; n = 7, respectively).
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Figure 8. Effects of 3CAI on AKT S473 phosphorylation and mitochondrial length in CA1 astrocytes
of control and epileptic rats. As compared to control animals (Cont), AKT S473 phosphorylation
and mitochondrial length are increased in CA1 astrocytes in epileptic rats. 3CAI reduces AKT S473
phosphorylation and mitochondrial length in CA1 astrocytes, as compared to vehicle (Veh). (A,B) Rep-
resentative photos demonstrating astroglial AKT S473 phosphorylation (A) and mitochondrial mor-
phology (B) in CA1 astrocytes. (C–E) Quantifications of AKT S473 phosphorylation (mean ± S.E.M.;
*, # p < 0.05 vs. control and vehicle-treated epileptic rats, respectively; n = 7, respectively, (C)), mito-
chondrial elongation index (area-weighted form factor, mean ± S.E.M.; *, # p < 0.05 vs. control and
vehicle-treated epileptic rats, respectively; n = 7, respectively, (D)) and the cumulative area:perimeter
ratio (an indicative of the transition from elongated, isolated mitochondria to a reticular network or
aggregation of interconnected mitochondria) and the form factor (a parameter as transition from the
sphere to elongated, complex shaped, but still isolated mitochondria; mean ± S.E.M.; *, # p < 0.05 vs.
control and vehicle-treated epileptic rats, respectively; n = 7, respectively, (E)).
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Figure 9. Effects of 3CAI on DRP1 S616- and S637 phosphorylations in CA1 astrocytes of control and
epileptic rats. As compared to control animals (Cont), DRP1 S616 phosphorylation is reduced in CA1
astrocytes in epileptic rats, while DRP1 S637 phosphorylation is increased. 3CAI reduces the increased
DRP1 S637 phosphorylation in CA1 astrocytes without affecting DRP1 S616 phosphorylation, as
compared to vehicle (Veh). (A,B) Representative photos demonstrating astroglial DRP1 S616- (A)
and S637 phosphorylation (B) in CA1 astrocytes. (C–E) Quantifications of DRP1 S616- (C), S637
phosphorylation (D) and DRP1 S616/S637 phosphorylation ratio (E) in CA1 astrocytes. Open circles
indicate each value. Horizontal bars indicate the mean value. Error bars indicate SEM (*, # p < 0.05 vs.
control and vehicle-treated epileptic rats, respectively; n = 7, respectively).
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Figure 10. Effects of CDDO-Me and 3CAI on HSP25, AKT S473, DRP1 S616 and DRP1 S637 levels in
the stratum radiatum of the CA1 region of epileptic rats. As compared to vehicle (Veh), CDDO-Me
(CDDO) reduces HSP25, AKT S473 and DRP1 S637 levels. 3CAI decreases AKT S473 and DRP1 S637
levels. (A) Representative Western blot images of HSP25, AKT, AKT S473, DRP1, DRP1 S616 and
DRP1 S637. (B–E) Quantifications of HSP25 (B), AKT S473 (C), DRP1 S616 (D) and DRP1 S637 levels.
Open circles indicate each value. Horizontal bars indicate the mean value. Error bars indicate SEM
(* p < 0.05 vs. Vehicle, respectively; n = 7, respectively).

3. Discussion

Clasmatodendrosis is the type II programmed astroglial death induced by excessive or
unquenched autophagic process [21,22,47,48]. Clasmatodendrosis is observed in patients
of traumatic brain injury, Alzheimer’s disease, cerebrovascular accidents and mixed de-
mentia [15,49,50]. This irreversible astroglial degeneration is regulated by various signaling
pathways including ERK1/2, AKT, 5′ adenosine monophosphate-activated protein kinase
(AMPK) and P2X7 receptor [17,21,23]. On the other hand, the accumulation of elongated
mitochondria also leads to autophagic degeneration of CA1 astrocytes, although OPA1
(a mitochondrial fusion protein) expression is reduced in clasmatodendritic astrocytes of
chronic epilepsy rats. Indeed, mitochondrial division inhibitor 1 (Mdivi-1) accelerates and
exacerbates clasmatodendritic changes in CA1 astrocytes [28]. However, the underlying
mechanisms of dysregulation of mitochondrial dynamics in clasmatodendritic astrocytes
are poorly understood.

Although HSP25 plays a protective role against harmful stress, prolonged HSP25
translation results in high-energy consumption and ER stress and finally triggers astroglial
autophagy [18,20,22]. Compatible with a previous study [17], the present data demonstrate
that CDDO-Me may ameliorate clasmatodendrosis by inhibiting dysregulation of HSP25-
AKT signaling pathway. HSP25 modulates AKT enzyme activity, since HSP25 acts as a
chaperone to retain AKT S473 phosphorylation by abrogating the pleckstrin homology
domain and leucine-rich repeat protein phosphatase (PHLPP) 1- and 2-binding to AKT.
Therefore, sustained HSP25 induction is sufficient for AKT-mediated astroglial autophagy,
although HSP25 is not an indispensable factor for AKT activation [21,23,51,52]. Indeed,
the present study shows that both CDDO-Me and HSP25 siRNA attenuated clasmatoden-
drosis, accompanied by the reduced AKT S473 phosphorylation. Therefore, our findings
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suggest that HSP25-AKT signaling pathway may play a key role in clasmatodendritic
astroglial degeneration.

AKT directly binds with DRP1 and phosphorylates S637 site. This AKT-mediated
DRP1 S637 phosphorylation leads to the impaired mitochondrial fission (mitochondrial
elongation) by DRP1 inactivation [39,53]. In the present study, clasmatodendritic CA1 astro-
cytes showed the accumulation of elongated mitochondria, concomitant with the increased
AKT S473 and DRP1 S637 phosphorylations. Furthermore, CDDO-Me, HSP25 siRNA and
3CAI rescued clasmatodendrosis and aberrant mitochondrial elongation by reducing DRP1
S637 phosphorylation. Therefore, these findings indicate that HSP25-AKT-mediated DRP1
S637 hyper-phosphorylation may impair mitochondrial fission, which subsequently may
provoke abnormal mitochondrial elongation in clasmatodendritic astrocytes.

CDDO-Me prevents prolonged HSP25 induction by enhancing ERK1/2 activity that
would also phosphorylate DRP1 S616 site [54,55]. Indeed, DRP1 activation through S616
phosphorylation is regulated by ERK/AKT [56]. In addition, amyloid-β (Aβ) sustains AKT
activation that induces DRP1 S616 phosphorylation, and facilitates mitochondrial fission in
neurons [57]. Ca2+ influx induced by Aβ activates Ca2+/calmodulin-dependent protein
kinase II (CaMKII)-AKT signaling pathway, which facilitates DRP1-mediated mitochon-
drial fragmentations and suppresses mammalian target of rapamycin (mTOR)-dependent
autophagy in neurons [57]. However, clasmatodendrosis is mTOR-independent astroglial
autophagy that is regulated by HSP25-mediated AKT activation [21,23]. Furthermore, the
present data reveal that CDDO-Me did not affect DRP1 S616 phosphorylation, and that
clasmatodendritic astrocytes showed the accumulation of elongated mitochondria and
the AKT S473 hyper-phosphorylation. These findings indicate that CDDO-Me-induced
ERK1/2 activation may not be involved in DRP1-mediated mitochondrial fission, but may
inhibit the prolonged HSP25 induction in clasmatodendritic astrocytes. In addition, the
increased AKT activity in clasmatodendritic astrocytes may elongate mitochondrial length
by enhancing DRP1 phosphorylation at S637 rather than S616 site. Therefore, it is plausible
that the distinct signaling pathways in response to the disparate stimuli would cause the
different DRP1 regulations.

The dysregulation of mitochondrial fission (aberrant mitochondrial elongation) leads
to oxidative stress and further elevates reactive oxygen species, which triggers autophagic
cell death [58–61]. In the present study, CDDO-Me abrogated the aberrant mitochondrial
elongation in clasmatodendritic CA1 astrocytes by increasing DRP1 S616/S637 phosphory-
lation ratio. CDDO-Me is an activator of nuclear factor-erythroid 2-related factor 2 (Nrf2,
a redox-sensitive transcription factor) that maintains redox homeostasis by regulating
antioxidant-response element (ARE)-dependent transcription and the expression of antiox-
idant defense enzymes including heme oxygenase-1 (HO-1), which protect neurons and
astrocytes from various harmful stresses [17,38,55,62,63]. Therefore, it is presumable that
the antioxidant effect of CDDO-Me would restore the abnormal mitochondrial elongation,
and subsequently inhibit clasmatodendrosis in CA1 astrocytes. However, the present
study shows that CDDO-Me inhibited AKT that promotes HO-1 gene expression in rat
astrocytes [64]. Furthermore, AKT inactivation by 3CAI abrogated accumulation of elon-
gated mitochondria by reducing DRP1 S637 phosphorylation. Given the deterioration of
autophagic astroglial death induced by Mdivi-1 [28], therefore, our findings indicate that
CDDO-Me may attenuate clasmatodendrosis by direct regulation of AKT-mediated DRP1
phosphorylation as well as its antioxidant properties.

Astrocytes play an important role in delays clearance of K+ and glutamate from
extracellular space [11,65,66]. Therefore, astroglial dysfunction or death is involved in
spontaneous seizure activity and epileptogenesis [5,11,17,67,68]. Clasmatodendrosis is a
consequence of spontaneous recurrent seizures due to over-activation of the temporoam-
monic path, which is involved in the duration and propagation of synchronous discharges
(but not its frequency and severity) in the epileptic hippocampus [11,17]. Furthermore,
conventional anti-epileptic drugs prevent clasmatodendrosis in chronic epilepsy rats [11].
Although CDDO-Me and 3CAI have not anti-epileptic properties [54,69], furthermore,
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CDDO-Me attenuates reduces seizure duration and its progression, accompanied by
abrogating clasmatodendritic degeneration [17], and 3CAI improves the efficacies of α-
Amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) antagonists on
spontaneous seizure activities [43]. Considering that α-aminoadipic acid (an astroglial
toxin) and 4-aminopyridine (a K+ channel blocker) synchronizes reverberant epileptiform
discharges [11,17,67], clasmatodendrosis may be one of considering factors leading to
prolonged seizure activity and its propagation in the epileptic hippocampus through im-
pairments of inwardly K+ channel as well as GJ, although it may not be a primary cause of
ictogenesis. Therefore, the prevention of clasmatodendrosis may attenuate the duration and
propagation of synchronous discharges in the epileptic hippocampus by exerting clearance
of K+ and glutamate from extracellular space in ictal stage.

CDDO-Me has also anti-cancer properties. Indeed, CDDO-Me induces autophagy,
apoptosis and endoplasmic reticulum (ER) stress with the increased ERK1/2 activity and
the suppression of AKT/mTOR signaling pathway in human chronic myeloid leukemia
K562 cells [70]. Unlike cancer cells, CDDO-Me increases astroglial viability (attenuates clas-
matodendrosis) by relieving dysregulation of ERK1/2-mediated HSP25 and aberrant AKT
hyperactivation [17,21]. These discrepancies would be relevant to the dose of CDDO-Me
applied in the studies. Nanomolar doses of CDDO-Me protect cells against oxidative stress
by activating Nrf2. In vivo cell protective dose of CDDO-Me are ~0.05 nmol/kg/day intrac-
erebroventricular (i.c.v.) infusion over 7 days [54,71] and 0.4–4 µmol/kg once-intravenous
injection (i.v.) [62,63]. In contrast, the anti-cancer (cytotoxic) concentrations of CDDO-Me
in vivo are extremely higher than cell protective concentration. In vivo anti-cancer doses of
CDDO-Me are at least 15 µmol/kg/day per oral (p.o.) over 7 or 20 weeks [72–74]. Thus, it
is likely that the dose of CDDO-Me applied in the present study (~0.05 nmol/kg/day, i.c.v.)
could avoid the adverse (cytotoxic) effects of CDDO-Me.

On the other hand, inflammation-related disturbance and dysregulation of astroglial
gap junction connexin 43 (Cx43) contribute to the seizure generation, because the uncou-
pling of Cx43 results in gliotransmitter release and the accumulation of K+ and glutamate
in the extracellular space [75,76]. Interestingly, carbenoxolone (a gap junction blocker)
attenuated astroglial swelling, rupture of astroglial nuclear membrane and vacuolization
of the astroglial cytoplasm at post-SE 60 days [76]. Therefore, it is possible that CDDO-Me
would ameliorate clasmatodendrosis by affecting Cx43 functionality. Further studies are
needed to elucidate the CDDO-Me-induced Cx43 regulation.

4. Materials and Methods
4.1. Experimental Animals and Chemicals

Adult male Sprague-Dawley (SD) rats (7 weeks old) were used in the present study.
Animals were kept under controlled environmental conditions (23–25 ◦C, 12 h light/dark
cycle) to access freely to water and food throughout the experiments. All experimental
protocols described below were approved by the Institutional Animal Care and Use Com-
mittee of Hallym University (Chuncheon, South Korea, Code number: Hallym 2018-3,
approval date: 30 April 2018). All reagents were obtained from Sigma-Aldrich (St. Louis,
MO, USA), except as noted.

4.2. Epilepsy Model

Animals were subjected to the LiCl-pilocarpine model of temporal lobe epilepsy (TLE).
Rats were given LiCl (127 mg/kg, i.p.) 24 h before the pilocarpine treatment. Animals were
treated with pilocarpine (30 mg/kg, i.p.) 20 min after atropine methylbromide (5 mg/kg
i.p.). Two hours after status epilepticus (SE) onset, diazepam (Valium; Hoffmann-la Roche,
Neuilly-sur-Seine, France; 10 mg/kg, i.p.) was administered to terminate SE and repeated,
as needed. Control animals received saline in place of pilocarpine. Animals were video-
monitored 8 h a day for selecting chronic epileptic rats showing spontaneous recurrent
seizures [17,22,43].
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4.3. Surgery for CDDO-Me, HSP25 or 3CAI Infusion

Epileptic rats (7 weeks after SE) were implanted with a brain infusion kit 1 pump
(Alzet, Cupertino, CA, USA) into the right lateral ventricle (1 mm posterior; 1.5 mm lateral;
−3.5 mm depth to the bregma) under Isoflurane anesthesia (3% induction, 1.5–2% for
surgery, and 1.5% maintenance in a 65:35 mixture of N2O:O2), and connected with an Alzet
1007D osmotic pump (Alzet, Cupertino, CA, USA) to infuse with (1) vehicle, (2) CDDO-Me
(10 µM), (3) 3CAI (25 µM), (4) non-targeting control siRNA (5-GCAACUAACUUCGUUA-
GAAUCGUUAUU-3) or (5) HSP25 siRNA (5-CUUGGCUCCAGACUGUUCCUU-3). The
pump was placed in a subcutaneous pocket in the dorsal region. Each compound (siRNA)
was infused over 7-day period. Electrode and infusion needle were secured to the exposed
skull with dental acrylic [17,22,43].

4.4. Tissue Processing and Immunohistochemistry

Seven days after infusion (8 weeks after SE), animals were transcardially perfused
with 4% paraformaldehyde under urethane anesthesia (1.5 g/kg i.p.), and after additional
fixation for overnight at 4 ◦C. The brains were rinsed in PB containing 30% sucrose at 4 ◦C
for 2 days. Thereafter, coronal sections (30 µm) were cut with a cryostat. Age-matched
control (normal) animals were also perfused by the same method. Then sections were incu-
bated in 0.1% bovine serum albumin and subsequently primary antibody (Table 1). Tissue
sections visualized with appropriate Cy2- and Cy3-conjugated secondary antibodies. Im-
munofluorescence was observed using an Axio Scope microscope (Carl Zeiss Korea, Seoul,
South Korea). Negative control test was performed with normal rabbit serum (#31883, Ther-
moFisher Korea, Seoul, South Korea), mouse IgG1 isotype control (#02-6100, ThermoFisher
Korea, Seoul, South Korea), and mouse IgG2a isotype control (#02-6200, ThermoFisher
Korea, Seoul, South Korea), instead of the primary antibodies. No immunoreactivity was
observed for the negative control in any structures [17,22,43].

Table 1. Primary antibodies used in the present study.

Antigen Host Manufacturer
(Catalog Number) Dilution Used

AKT Rabbit Cell signaling (#9272) 1:1000 (WB)

AKT S473 Rabbit Cell Signaling (#4060) 1:100 (IF)
1:1000 (WB)

DRP1 Rabbit Thermo (PA1-16987) 1:1000 (WB)

DRP1 S616 Rabbit Cell Signaling (#4494) 1:500 (IF)
1:1000 (WB)

DRP1 S637 Rabbit Cell Signaling (#4867) 1:500 (IF)
1:1000 (WB)

GFAP Rabbit
Mouse

Abcam (#ab7260)
Millipore (#MAB3402)

1:500 (IF)
1:2000 (IF)

HSP25 Rabbit Enzo (#ADI-SPA-801) 1:500 (IF)
1:1000 (WB)

LAMP1 Rabbit Lifespan (#LS-B580) 1:200 (IF)

Mitochondrial marker
(MTCO1) Mouse Abcam (#ab14705) 1:500 (IF)

IF, Immunofluorescence; WB, Western blot.

4.5. Western Blots

Animals were sacrificed via decapitation. The brains were quickly removed and
coronally cut to 1 mm thickness using rodent brain matrix (World Precision Instruments,
Sarasota, FL, USA) on ice. Thereafter, the stratum radiatum of the CA1 region of the dorsal
hippocampus were dissected out in cold artificial cerebrospinal fluid (4 ◦C) under stere-
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omicroscope. The tissues were were homogenized and protein concentration determined
using a Micro BCA Protein Assay Kit (Pierce Chemical, Rockford, IL, USA). Following
electrophoresis, proteins were transferred to nitrocellulose membranes that were blocked
overnight with 2% bovine serum albumin in Tris-buffered saline (in mM 10 Tris, 150 NaCl,
pH 7.5, and 0.05% Tween 20) and then incubated overnight at 4 ◦C in blocking solution
containing primary antibodies (Table 1). After washing, membranes were incubated for 1 h
at room temperature in a solution containing horseradish peroxidase-conjugated secondary
antibodies. A chemiluminescence signal was detected by luminol substrate reaction (ECL
Western Blotting System, GE Healthcare Korea, Seoul, South Korea). The bands were
detected and quantified on an ImageQuant LAS4000 system (GE Healthcare Korea, Seoul,
South Korea). The values of each sample were normalized with the corresponding amount
of β-actin. The ratio of phosphoprotein to total protein was described as phosphorylation
level [17,22,43].

4.6. Cell Count, Measurement of Fluorescent Intensity and Mitochondrial Morphometry

The hippocampal tissues were captured (10 sections per each animal), and areas of
interest (1 × 105 µm2) were selected from the striatum radiatum of the CA1 region. There-
after, clasmatodendritic astrocytes were counted on 20× images using AxioVision Rel.
4.8 Software. In addition, five brain sections from each animal were randomly selected
at different rostro-caudal hippocampal levels. One randomly selected CA1 astrocytes
(naïve astrocytes in control animals, and clasmatodendritic and reactive astrocytes in
epileptic animals) from each slice (total 35 cells in each group, respectively) were used
for quantification of mitochondrial morphometry using ImageJ software. Mitochondria
were analyzed for perimeter and area. Mitochondrial parameters were calculated as
followed: Area-weighted form factor = perimeter2/4π (an indicative of mitochondrial
elongation); Form factor = perimeter2/4π × area (indicating the transition from punctiform
to elongated, complex shaped, but still isolated mitochondria); Cumulative area:perimeter
ratio = Σarea/Σperimeter (indicating the transition from elongated, isolated mitochondria
to a reticular network or aggregation of interconnected mitochondria) [44–46]. For mea-
surement of fluorescent intensity, 30 areas/rat (400 µm2/area) were randomly selected
within the stratum radiatum of CA1 region (15 sections from each animal, n = 7 in each
group). Mean intensity was measured using AxioVision Rel. 4.8 software (Carl Zeiss
Korea, Seoul, South Korea). Fluorescent intensity was normalized by setting the mean
background [44–46]. The investigators were blinded to experimental groups in performing
cell counts and morphological analysis.

4.7. Data Analysis

Comparisons of data among groups were performed using Student t-test or one-
way ANOVA followed by Bonferroni’s post hoc comparisons after evaluating the values
on normality using Shapiro-Wilk W-test. A p-value less than 0.05 was considered to
be significant.

5. Conclusions

The present data demonstrate for the first time that HSP25-mediated AKT activation
impaired mitochondrial fission by DRP1 S637 hyper-phosphorylation and led to autophagic
astroglial degeneration, which was abrogated by CDDO-Me, HSP25 siRNA and 3CAI. These
new findings may have implications for the development of novel therapies against various
neurological diseases by regulating astroglial degeneration and mitochondrial dynamics.
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Abbreviations

3CAI 3-chloroacetyl-indole
AMPAR α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor
ARE antioxidant-response element
ATP adenosine triphosphate
Aβ amyloid-β
BBB blood brain barrier
CaMKII Ca2+/calmodulin-dependent protein kinase II
CDDO-Me 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester
CDK cyclin dependent kinase
DRP1 dynamin-related protein 1
ER endoplasmic reticulum
ERK1/2 extracellular signal-related kinases 1/2
Fis-1 fission related protein-1
GABA γ-aminobutyric acid
GFAP glial fibrillary acidic protein
HO-1 heme oxygenase-1
HSP25 heat shock protein 25
LAMP1 lysosomal-associated membrane protein 1
MFF mitochondrial fission factor
MFN1 mitofusin 1
mTOR mammalian target of rapamycin
Nrf2 nuclear factor-erythroid 2-related factor 2
OPA1 optic atrophy 1
PHLPP pleckstrin homology domain and leucine-rich repeat protein phosphatase
PKA protein kinase A
ROS reactive oxygen species
SD Sprague-Dawley
SP1 specificity protein 1
TLE temporal lobe epilepsy
UPS ubiquitin proteasome system.
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