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Abstract: Methicillin-resistant Staphylococcus aureus (MRSA) infection is challenging to eradicate
because of antibiotic resistance and biofilm formation. Novel antimicrobial agents and alternative
therapies are urgently needed. This study aimed to evaluate the synergy of sanguisorbigenin (SGB)
isolated from Sanguisorba officinalis L. with six conventional antibiotics to achieve broad-spectrum
antibacterial action and prevent the development of resistance. A checkerboard dilution test and time-
to-kill curve assay were used to determine the synergistic effect of SGB combined with antibiotics
against MRSA. SGB showed significant synergy with antibiotics and reduced the minimum inhibitory
concentration of antibiotics by 2–16-fold. Biofilm inhibition assay, quantitative RT-PCR, crystal
violet absorption, and transmission electron microscopy were performed to evaluate the synergy
mechanism. The results indicated that SGB could inhibit biofilm formation and alter cell membrane
permeability in MRSA. In addition, SGB was found to exhibit quite low cytotoxicity and hemolysis.
The discovery of the superiority of SGB suggests that SGB may be an antibiotic adjuvant for use in
combination therapy and as a plant-derived antibacterial agent targeting biofilms.
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1. Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant bacterial
pathogen that is a leading cause of hospital and community-acquired infections [1]. Colo-
nization with MRSA leads to skin and soft-tissue infections, bone and joint infections, bac-
teremia, pneumonia, and endocarditis with persistently high morbidity and mortality [2].
Initially acquired in healthcare settings, MRSA has now emerged in the community in
populations without risk factors for MRSA acquisition and has subsequently been detected
in colonized or infected animals and foods of animal origin; MRSA transmission between
countries has also been frequently reported [3]. The global spread of MRSA has transformed
simple incision infections into a potential cause of severe infection [4], greatly reducing
treatment options and significantly increasing medical costs [5]. The current first-line
treatment of MRSA typically involves the administration of high-dose systemic antibiotics,
including vancomycin, linezolid, or ceftaroline; however, clinical isolates resistant to these
antibiotics have emerged during the last 20 years [6]. Antibiotic resistance (AMR) threatens
global health by preventing effective treatment against bacteria, parasites, viruses, and
eukaryotic pathogens, and the misuse or overuse of antibiotics will accelerate the selec-
tion of drug-resistant variants [7]. Since all organisms have evolved genetic mutations
to prevent lethal selection pressure, AMR is an inevitable evolutionary consequence [8].
Today, resistance to most antibiotics is widespread, and the supply of new drugs has been
exhausted [9]. Consequently, alternative strategies and novel antimicrobials are urgently
needed to address AMR problems [10].
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Biofilms are composed of microorganisms that are adhered to a solid surface and
encased in an exopolysaccharide matrix that they have synthesized [11]. Biofilm commu-
nities are highly complex and nonreplicating, which defend against multiple clearance
mechanisms (e.g., host immune responses), enabling biofilms to survive in harsh environ-
ments [12]. In addition, the biofilm matrix, which acts as a bacterial fortress, increases
bacterial resistance to antibiotics by reducing the rate of antibiotic diffusion and preventing
entry into the biofilm [13]. The rapid development of multidrug-resistant (MDR) bacteria
is due to the inappropriate and overuse of antibiotics and the ineffectiveness of antibiotics
for difficult-to-treat biofilm-associated infections [14]. The quorum sensing (QS) system is
a regulatory system for biofilm formation, and the hld gene is one of the most important
regulators of the QS system [15]. A large percentage of bacterial infections are considered to
be associated with biofilm formation, resulting in a large number of deaths each year [16].
Therefore, antimicrobial agents capable of rapidly penetrating and inhibiting biofilms
represent a potentially valuable therapeutic alternative for the treatment of MRSA infec-
tions. Moreover, certain antibiotics have minimal antimicrobial activities toward bacteria
related to membrane permeability resistance; accordingly, the combination of medications
with membrane permeabilizes or cell membrane disruptors is regarded as an effective
combination treatment [17].

Plants are renewable and cost-effective sources of antimicrobial agents with low toxic-
ity and little to no drug resistance; hence, they are considered to have clinical value [18].
Sanguisorba officinalis L., a member of the subfamily Rosoideae and family Rosaceae, is a
perennial plant widely distributed in eastern Asia, North America, and western Europe [19].
In previous work, we demonstrated that triterpenoid saponin sanguisorbigenin (SGB) from
the dried root of Sanguisorba officinalis L. is a potential plant-derived antimicrobial agent,
with an MIC range of 12.5–50 µg/mL against standard strains and clinical isolates [20]. The
current study further evaluated the synergy of SGB with six conventional antibiotics includ-
ing non-β-lactam antibiotics against MRSA. Furthermore, we investigated the inhibition of
biofilm formation and the effect of SGB on the permeability of cell membranes.

2. Results
2.1. Synergistic Interactions of SGB with Conventional Antibiotics

A checkerboard assay was performed to evaluate the double combinations of SGB
with six conventional antibiotics against one reference strain ATCC 33591 and two isolates
DPS-1 and DPS-3 (Table 1). Among the 18 combinations examined, 11 showed synergy
(61.0%), two showed partial synergy (11.0%), five showed additive effects (28.0%), and
no antagonism was detected. The FICI values of double combinations of SGB with six
conventional antibiotics against MRSA ranged from 0.19 to 1 and reduced the MIC value of
antibiotics by 2–16-fold.

Table 1. Synergistic effect of SGB combined with conventional antibiotics and the MIC of antibiotics
used alone or combination.

Antibiotics

ATCC 33591 DPS-1 DPS-3

MIC (µg/mL)
(Alone/

Combination)
Fold FICI

MIC (µg/mL)
(Alone/

Combination)
Fold FICI

MIC (µg/mL)
(Alone/

Combination)
Fold FICI

Linezolid 1.9/0.9 2 1 500/62.5 8 0.25 250/62.5 4 0.38
Gentamicin 3.9/0.9 4 0.38 125/15.6 8 0.25 250/15.6 16 0.19
Vancomycin 1.9/0.9 2 1 250/62.5 4 0.5 500/62.5 8 0.25
Amikacin 62.5/31.3 2 1 125/31.3 4 0.5 125/31.3 4 0.75

Amoxicillin 125/62.5 2 1 125/62.5 2 1 250/62.5 4 0.5
Ceftazidime 31.3/7.8 4 0.5 31.3/3.9 8 0.63 62.5/7.8 8 0.25

MIC, minimal inhibitory concentration; MIC values were shown for antibiotics alone or in combination with SGB;
Fold, fold reduction in antibiotic MIC with combination therapy; FICI, fractional inhibitory concentration index.
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2.2. Time-to-Kill Assay

The results of a time-to-kill assay of SGB in combination with six conventional an-
tibiotics against S. aureus (ATCC 33591 and DPS-1) further corroborated the checkerboard
assay results. Compared to the most active single drug group, all combination groups
exhibited significant synergistic interactions and more than 3 log10 reductions in colony
count after 24 h. As shown in Figure 1, none of the antimicrobials alone could completely
inhibit bacterial growth after 24 h of incubation. However, except for the combination
group with vancomycin (Figure 1c), all the combination treatment groups could ultimately
kill the bacteria after 24 h of incubation. Furthermore, SGB combination with linezolid or
amoxicillin showed a more significant synergistic interaction than the other four combi-
nations (Figure 1b,c), killing the bacteria completely within 16 h. In addition, except for
the gentamicin treatment group (Figure 1a), the antibacterial effect of the subinhibitory
concentrations of SGB was more potent than that of conventional antibiotics within 24 h.
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LIN, linezolid; VC, vancomycin, CEF, ceftazidime, AMO, Amoxicillin, AMK, amikacin. Data are the
mean ± standard deviation of three independent experiments.

2.3. SGB Inhibited Biofilm Formation and Downregulated the Expression of the hld

Figure 3a shows the effects of SGB on biofilm formation by clinical MRSA isolates
investigated at subinhibitory concentrations (1/8 MIC, 1/4 MIC, and 1/2 MIC). SGB
significantly and dose-dependently inhibited biofilm formation at subinhibitory concen-
trations by more than two-fold. Specifically, at 1/2 MIC, SGB inhibited biofilm formation
of ATCC 33591 and DPS-1 by 86% and 91%, respectively (Figure 2a). Additionally, the
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expression of the biofilm regulatory gene hld of MRSA was downregulated significantly
after treating with SGB at subinhibitory concentrations (Figure 2b).
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(b) The expression of hld in MRSA (ATCC 33591, DPS-1) cultures exposed to SGB at subinhibitory
concentrations. The data are presented as the mean ± standard deviation of three independent
experiments. * p < 0.05.

2.4. SGB Increased Crystal Violet Absorptions

The results of the crystal violet absorption assay are shown in Figure 3. The absorption
of crystal violet of S. aureus ATCC 33591 treated with 2 MIC and 4 MIC of SGB was increased
2.1-fold and 2.3-fold, respectively (Figure 3a). The absorption of crystal violet of S. aureus
DPS-1 treated with 2 MIC and 4 MIC of SGB was increased 3.2-fold and 3.5-fold, respectively
(Figure 3b). SGB significantly altered the membrane permeability of S. aureus and increased
crystal violet absorption. As a negative control, vancomycin had no discernible impact,
showing that it does not influence membrane permeability.
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as a negative control. (a) The crystal violet absorption of S. aureus ATCC 33591 treated with 2 MIC
and 4 MIC of SGB or vancomycin. (b) The crystal violet absorption of S. aureus DPS-1 treated with
2 MIC and 4 MIC of SGB or vancomycin. SGB, sanguisorbigenin; VC, vancomycin. The data are
presented as the mean ± standard deviation of three independent experiments.

2.5. SGB Damaged the Morphological of MRSA Cells

The results of TEM showed the impact of SGB on the morphology of MRSA ATCC 33591.
The untreated MRSA strains were observed to have normal morphology with intact septa
(Figure 4a), whereas MRSA strains exposed to 1/2 MIC (6.3 µg/mL) of SGB were observed
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to have damaged cytoplasmic membranes and rougher surfaces compared to the untreated
control MRSA (Figure 4b). Moreover, MRSA exposure to the MIC (12.5 µg/mL) of SGB was
shown to lyse the cell and release cytoplasmic contents, with the cells appearing almost
absent (Figure 4c).
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Figure 4. TEM images of MRSA (ATCC 33591) after treatment with SGB. (a) Untreated control
MRSA. (b) MRSA treated with 1/2 MIC of SGB (6.3 µg/mL). (c) MRSA treated with the MIC of SGB
(12.5 µg/mL).

2.6. Cytotoxicity and Hemolysis Activity of SGB

The potential cytotoxicity and hemolysis activity of SGB was investigated to exclude
the toxicity of SGB toward mammalian cells. The result showed that the IC50 value against
RAW 264.7 cells was approximately 100 µg/mL, which is more than 2–8-fold the MIC
values of standard strains or clinical strains, respectively (Figure 5a). Moreover, compared
to Triton X-100 (1%), SGB exhibited below 10% hemolysis activity at 100 µg/mL, showing a
relatively low hemolysis activity (Figure 5b).
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X-100 (TX-100) was used as a positive control. Dimethyl sulfoxide (DMSO) was used as a negative
control. The data are presented as the mean ± standard deviation of three independent experiments.
* p < 0.05.

3. Discussion

As more antibiotics are rendered ineffective by antibiotic-resistant bacteria, the focus
must shift to alternative treatments for infections. MRSA is one of the major causes
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of antibiotic-resistant infections. According to the results of our previous studies, SGB
is considered to be a promising natural antimicrobial agent against MRSA, and it was
confirmed to reverse the antibacterial activity of β-lactam antibiotics by downregulating
MRSA resistance-related genes [20]. In this study, we evaluated the synergistic effect of
SGB with six conventional antibiotics, including non-β-lactam antibiotics, to learn more
about its therapeutic utility. The results of the checkerboard assay indicated that SGB
showed synergy or partial synergy with all six conventional antibiotics, and none of the
tested combinations showed antagonism. Notably, SGB showed synergy with linezolid
and vancomycin, the guideline antibiotics for MRSA treatment. This is an encouraging
sign that the combination of SGB and antibiotics may be valuable in reducing the use
of antibiotics. The synergy was further confirmed in a time-to-kill assay, in which the
combined treatment group significantly inhibited bacterial growth after 4 h and nearly
eradicated bacteria within 24 h. This result reveals that the combination therapy may have
higher and faster bactericidal activity. Metastatic spread of MRSA infection is generally
considered to be related to the duration of bacteremia [21], while the combination therapy
of SGB and antibiotics may shorten the duration of treatment.

The clinical failure of several conventional antibiotics such as vancomycin in the
treatment of persistent pulmonary MRSA by systemic or local administration can be ratio-
nalized by incapability to efficiently penetrate biofilms [22]. Interestingly, the combination
of vancomycin and SGB effectively inhibited the growth of S. aureus strain, with a 2–8-fold
reduction in MIC. Therefore, we speculated that SGB may have biofilm-disrupting proper-
ties that contribute to the potent activity of the subsequent release of antibacterial agents
against protected colonies thriving in the biofilm state [22]. Subsequently, the results of
crystal violet biofilm inhibition assays verified our conjecture that SGB inhibited biofilm
formation in a dose-dependent manner at subinhibitory concentrations. Moreover, we
assumed that SGB inhibits biofilm formation by downregulating the expression of biofilm-
related genes, as evidenced by the RT-qPCR results. This finding is also consistent with
previous reports that saponins can disrupt the biofilm [23], and they indicate that SGB is a
promising lead compound for targeted biofilm therapy.

Furthermore, the limitation of conventional antibiotics for MRSA treatment has also
been attributed to their low penetration into cell membranes [24]. Notably, saponin is a
natural nonionic detergent with cell membrane permeability, and its hydrophobic structure
directly contacts the phospholipid bilayer of microbial cell membranes, leading to enhanced
ion permeability and leakage of important intracellular components [25]. We speculated
that another mechanism for the synergy between SGB and conventional antibiotics was
related to SGB improving the antibacterial efficiency of conventional antibiotics by destroy-
ing the cell membrane of MRSA. The findings of the crystal violet absorption assay and
TEM gave evidence in support.

We performed a preliminary drug resistance assay, where the MIC value of SGB was
not increased significantly after 10 consecutive passages, consistent with the report that
the plant-derived compound has little drug resistance (Appendix A, Figure A1). Moreover,
the cytotoxicity hemolysis activity was only observed at concentrations far exceeding
those necessary for a reversal of conventional antibiotic resistance in MRSA. Therefore,
these advantages embody the potential of SGB as an antibiotic adjuvant, which is of great
significance for increasing the industrial and medical applications of SGB.

The current study, however, was subject to several limitations. First, the current
study was limited to determining the contribution of in vitro experiments. Even if the
results of this study yielded a statistically significant synergy, it is insufficient to give
clinical recommendations. Future work will be required to investigate the results of in vivo
experiments. Second, the addition of a therapeutic agent may raise the likelihood of
side-effects. Hence, future investigations on the combination treatment will require close
monitoring of renal impairment. Third, the strains used in this study were a standard strain
and two clinical strains from the same hospital. Thus, the sample size was small and had
regional limitations. Therefore, more diverse clinical isolates should be included in future
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studies to better elucidate the feasibility of the clinical application of SGB in synergistic
therapy with conventional antibiotics.

In summary, the small scale of this study limited the ability to draw strong conclusions;
however, it serves as a pilot trial, provides a valuable reference for the development of
therapeutic methods for preventing the development of drug resistance, and lays the
foundation for the development of targeted biofilm drugs.

4. Materials and Methods
4.1. Reagents

SGB (Figure 6) was isolated from Sanguisorba officinalis L., and identified by spectral
and physicochemical methods; the purity of HPLC analysis was more than 98% [20]. Skim
milk, Mueller–Hinton agar (MHA), and Mueller–Hinton broth (MHB) were purchased from
Difco Laboratories (Baltimore, MD, USA). Crystal violet, linezolid, gentamicin, vancomycin,
amikacin, amoxicillin, ceftazidime, and dimethyl sulfoxide (DMSO) were obtained from
Sigma-Aldrich Co. (St. Louis, MO, USA). The E.Z.N.A. Bacterial RNA Kit was obtained
from Omega Bio-Tek (Norcross, GA, USA). The sequences of primers used in qRT-PCR was
purchased from Bioneer (Daejeon, Korea).
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4.2. Bacterial Strains

In this study, S. aureus ATCC 33591 (American Type Culture Collection, Manassas,
VA, USA) was used as a reference strain. MRSA (DPS-1 and DPS-3) were isolated from
patients at the Hospital of Wonkwang University and used as clinical isolates. S. aureus
was cultured in MHA or MHB at 37 ◦C.

4.3. Checkerboard Assay

A checkerboard assay was used to assess the MIC values of SGB in combination
with conventional antibiotics (linezolid, gentamicin, vancomycin, amikacin, amoxicillin,
and ceftazidime) according to the Clinical and Laboratory Standards Institute (CLSI) stan-
dards [25]. S. aureus strains (ATCC 33591, DPS-1, DPS-3) were grown on MHA for 24 h at
37 ◦C. In Mueller–Hinton broth, serial dilutions of SGB with antibiotics were combined
(MHB). MRSA inocula were adjusted in MHB to the 0.5 McFarland standard. The final
inoculum had a bacterial concentration of 1.5 × 105 CFU/well. After a 24 h incubation
period at 37 ◦C, each MIC value was determined and defined as the lowest concentration
that inhibited the growth of the S. aureus. The fractional inhibitory concentration index
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(FICI) was used to determine the interaction between SGB and conventional antibiotics
as follows:

∑FIC: FICA + FICB = MICA + B/MICA alone + MICB + A/MICB alone.

The combination was considered as synergy for FICI ≤ 0.5, partial synergy for
0.5 < FICI ≤ 0.75, an additive effect for 0.75 < FICI ≤ 1, indifference for 1 < FICI ≤ 4,
and antagonism for FICI > 4. In addition, the fold reduction in the MIC of antibiotics
against MRSA alone or in combination with SGB was calculated, shown in Table 1 as Fold.
All tests were performed three times.

4.4. Time-to-Kill Assays

A time-to-kill assay was performed to further determine the synergistic antimicrobial
effect. The method was carried out according to the recommendations of CLSI. Bacterial
cultures were diluted with MHB to 1.5 × 105 CFU/mL and incubated at 37 ◦C for 24 h. An-
timicrobial agent concentrations were set at subinhibitory concentrations (1/2 MIC) in both
single and combination treatments. SGB was combined with six antibiotics against MRSA
(reference strain ATCC 33591 and clinical isolate DPS-1) for the combined treatment groups.
Bacterial growth curves were observed at five different timepoints (0, 4, 8, 16, and 24 h).

4.5. Crystal Violet Biofilm Assay

The SGB inhibition of the biofilm formation of S. aureus was performed in a previous
study [15], with two S. aureus strains DPS-1 and ATCC 33591. Briefly, 100 µL of overnight
culture (0.5 MacFarland bacterial culture) was added to each well of 96-well microtiter
plates and treated with subinhibitory concentrations of SGB. The planktonic cells were
removed after 24 h at 37 ◦C and washed three times with PBS, and each well of the 96-well
microtiter plates was stained with 1% (w/v) crystal violet for 10 min at room temperature
before being rewashed three times. The stained biofilms were solubilized in 100 µL of
absolute ethanol, and the optical density (OD) values at 570 nm were determined. Using
the formula below, the percentage biofilm inhibition was calculated.

Percentage inhibition = 100 − ((OD 570 nm of the treatment wells)/(OD 570 nm of the
control wells) × 100)).

4.6. Quantitative RT-PCR (qRT-PCR)

A qRT-PCR was performed using a previously published procedure [26]. MRSA
(ATCC 33591 and DPS-1) was grown overnight in MHB and then treated for 1 h with
subinhibitory concentrations of SGB. As a control, a sample without SGB was used. Total
RNA was extracted from S. aureus using the E.Z.N.A.® bacterial RNA kit according to the
manufacturer’s instructions (Omega Bio-tek, Norcross, GA, USA). A spectrophotometer
was used to determine the RNA concentration by measuring the absorbance ratio at
260 nm (BioTek, Winooski, VT, USA). The complementary DNA was then synthesized
using a QuantiTect reverse transcription kit (Qiagen, Dusseldorf, Germany) according
to the manufacturer’s instructions. Thus, 2 µL of sample cDNA, 1 µL of each primer
(10 L/mL), 6 µL of deionized water, and 10 µL of 2 SYBR Green PCR master mix (Life
Technologies LTD, Warrington, UK) were used in a total volume of 20 µL. The delta–delta
cycle threshold method was used to calculate the expression level of the target gene relative
to the endogenous reference gene 16 rRNA using StepOne software v2.3 from Applied
Biosystems (Waltham, MA, USA). Primer sequences used in this study were as follows:
16S (5′–3′) F: ACTCCTACGGGAGGCAGCAG, R: ATTACCGCGGCTGCTGG; hld (5′–3′) F:
ATTTGTTCACTGTGTCGATAATCC, R: GGAGTGATTTCAATGGCACAAG.

4.7. Crystal Violet Absorption Assay

A crystal violet assay was used to detect the alteration in membrane permeability [27].
Suspensions of the MRSA (ATCC 33591) were prepared in MHB. Centrifugation at 4500× g
for 5 min at 4 ◦C was used to harvest cells. The cells were washed twice with PBS and
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resuspended. Vancomycin and SGB were added to the cell suspension at 2 MIC and 4 MIC
concentrations and incubated for 30 min at 37 ◦C. Samples without treatment were similarly
prepared with SGB as a control. Cells were harvested at 9300× g for 5 min. The cells were
then resuspended in PBS with 10 µL/mL crystal violet. After that, the cell suspension was
incubated for 10 min at 37 ◦C. After centrifuging the sample at 13,400× g for 15 min, the
OD590 of the supernatant was determined using a spectrophotometer. The OD value of the
crystal violet solution, which was originally utilized in the experiment, was determined to
be 1. The crystal violet absorption in all samples was estimated using the following formula:

Crystal violet absorption = (OD value of the sample/OD value of the crystal violet
solution) × 100.

4.8. Transmission Electron Microscopy (TEM)

MRSA exponential phase cultures were obtained by overnight dilution in MHB and
continued growth at 37 ◦C until the cultures reached the mid-logarithmic phase of growth.
The MHB-grown exponential-phase MRSA ATCC 33691 was treated with 1/2 MIC and
the MIC of SGB for 4 h. Following treatment, 2 mL of the culture was centrifuged at
10,000× g for 10 min to collect. After removing the supernatant, pellets were fixed by
immersion in a modified Karnovsky fixative solution containing 2% paraformaldehyde
and 2% glutaraldehyde in a sodium cacodylate buffer solution of 0.05 M (pH 7.2) [28]. A
4K slow-scan charge-coupled device camera (Ultrascan 4000 SP; Gatan, Pleasanton, CA,
USA) linked to an electron microscope was used to record transmitted electron signals.

4.9. Cytotoxicity Assay

In vitro cytotoxicity was assessed in RAW 264.7 cells using the CellTiter 96AQueous
One Solution Reagent (Promega) following the procedure in [29]. RAW 264.7 cells were
cultured at 37 ◦C in an atmosphere of 5% CO2 and seeded at 5 × 104 cells per well in a
total volume of 100 µL in 96-well plates. After 24 h, the medium was replaced with fresh
medium containing a series of concentrations of SGB (2 MIC, 4 MIC, and 8 MIC). Here,
0.5% DMSO was used as the control. Each culture well was optimized using a microplate
reader (Titertek Multiskan, Flow Laboratories, North Ryde, Australia) at 490 nm after the
medium was replaced with an MTS solution. The formula for calculating cell viability was
as follows:

Cell viability (%) = (OD490 value of CTT treated cells/OD490 value of untreated cells)× 100.

4.10. In Vitro Hemolysis Assay

A hemolysis assay was performed to assess the toxic hemolysis of the drug according
to the product protocol. Rabbit blood was washed with PBS until the supernatant was clear.
A series of SGB solutions were incubated with a 2% blood solution at 37 ◦C for 30 min.
Triton X-100 (1%) was used as a positive control, and 0.5% DMSO was used as a negative
control. After incubation, the mixture was centrifuged at 2500× g for 6 min. Afterward,
100 uL of supernatant from each sample was placed in a 96-well plate, and the absorbance
at 541 nm was measured.

4.11. Statistical Analysis

Analyses were performed in triplicate, and the results were reported as the mean
standard deviation. An independent Scheffe’s t-test was used to statistically assess the
acquired data (SPSS software version 22.0; IBM SPSS, Armonk, NY, USA). A p-value of less
than 0.05 was considered statistically significant.

5. Conclusions

The current study evaluated the synergistic effect and synergistic mechanism of
sanguisorbigenin (SGB) with six conventional antibiotics. We investigated the inhibitory
effect of SGB on biofilm formation and the effect on cell membrane permeability.
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