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Abstract: The maintaining and initiating mechanisms of atrial fibrillation (AF) remain controversial.
Deep learning is emerging as a powerful tool to better understand AF and improve its treatment,
which remains suboptimal. This paper aims to provide a solution to automatically identify rotational
activity drivers in endocardial electrograms (EGMs) with convolutional recurrent neural networks
(CRNNs). The CRNN model was compared with two other state-of-the-art methods (SimpleCNN
and attention-based time-incremental convolutional neural network (ATI-CNN)) for different input
signals (unipolar EGMs, bipolar EGMs, and unipolar local activation times), sampling frequencies,
and signal lengths. The proposed CRNN obtained a detection score based on the Matthews correlation
coefficient of 0.680, an ATI-CNN score of 0.401, and a SimpleCNN score of 0.118, with bipolar EGMs as
input signals exhibiting better overall performance. In terms of signal length and sampling frequency,
no significant differences were found. The proposed architecture opens the way for new ablation
strategies and driver detection methods to better understand the AF problem and its treatment.

Keywords: atrial fibrillation; artificial intelligence; rotors; arrhythmias; cardiology; machine learning

1. Introduction

Deep learning (DL) models are more than a trend and they are becoming practical
tools in everyday life, with unprecedented performance in image classification problems,
product recommendation, DNA sequence analysis, cellular electron transport, and med-
ical diagnosis applications [1–5]. In the latter, DL models have recently debuted in the
cardiology field to tackle problems such as arrhythmia type classification [6–9], heart
rate variability [10], computed tomography (CT), magnetic resonance imaging (MRI) 3D
ventricular-atrial segmentation [11], diagnosis of arrhythmias in wearable devices [12],
guidance in irregular heart electrical activity, and more specifically atrial fibrillation (AF)
electroanatomical mapping [13–15].

AF is a major problem in our society, with an estimated prevalence of 2–4% in
adults [16]. The suboptimal treatment of this arrhythmia and the ongoing debate on
its initiating and maintenance mechanisms, i.e., multiple wavelet propagation [17], ec-
topic beats [18], and rotational activity drivers [19], make AF a major challenge in modern
medicine. The AF complexity calls for a holistic, multisided, and multidisciplinary ap-
proach involving the joint work of physicians, scientists, and engineers. This partnership
could improve the success of AF interventions and therefore reduce AF incidence and
risk [20].

However, the initiating and maintenance mechanisms behind AF have generated
debate and controversy. Recent technological advances allow the direct examination of the
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endocardial atrial tissue with multi-electrode catheters and 3D electroanatomical navigation
systems. This paper aims to provide a solution to identify rotational activity drivers (rotors)
using convolutional neural network (CNN)-based models from endocardial electrograms
(EGMs) recorded in direct contact with the arrhythmogenic tissue. These so-called “drivers”
are spatiotemporal self-reentrant electrical wavefronts that appear and propagate in the
atrial tissue and may play an active role in the maintenance of AF. Multi-electrode catheters
allow the visualization of the rotational activity when the signals are displayed in a ring
order fashion with respect to the position and layout of the mapping catheter (Figure 1). In
the presence of a rotor, bipolar EGMs exhibit a staircase activation pattern that expands
the complete activation cycle and merges with the next one if repetitive rotations occur.
Present signal processing algorithms that tackle the rotor detection problem use phase
transformation of the EGMs [21], unipolar EGM local activation times (LATs) [22,23],
causality EGM relationships [24], or even directed graphs [25] to describe this abnormal
cardiac electrical propagation.
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Figure 1. CNN-based rotational activity detection workflow. (Top) Endocardial EGMs registered
with a multi-electrode catheter exhibiting a rotational activation (rotor) staircase pattern. Signals were
obtained from a 3D electroanatomical mapping system and multi-electrode catheters. (Bottom) Bipo-
lar EGMs, unipolar EGMs, and unipolar LATs are used as input signals and are fed to the proposed
CRNN-based model to train and detect the presence of rotational activity in AF endocardial signals.
EGMs, electrograms; LATs, local activation times; CRNN, convolutional recurrent neural network.

These techniques for AF driver assessment employ endocardial EGMs from multi-
electrode catheters placed inside the atrial chambers. They apply traditional signal pro-
cessing methods, e.g., filtering, threshold-based detectors, phase domain analysis, or fast
Fourier transform [21,22,26]. Although robust, these methods require heavy pre-processing
and post-processing steps that may distort the signals, lack specificity [27], and in most
cases, introduce computationally expensive times to retrieve the results. DL methods,
specifically CNNs, allow inner processing of the signals into feature vector representations
that identify important aspects of the signals, and once they are trained, their direct appli-
cation to new data can be applied in real-time signals from a patient [28], overcoming the
previously mentioned limitations of traditional methods.

In this paper, we present a novel methodology to assess the presence of rotors using
DL models. We propose a new network architecture based on CNNs and recurrent layers
and compare its performance against two state-of-the-art models employed in electrocar-
diogram (ECG) classification. The rest of the paper is organized as follows. In Section 2, we
present the results of three models applied to an AF EGM database for rotational activity
detection. Section 3 provides a discussion of our main findings. Section 4 details the
methodology, experimental settings, DL model architecture, and implementation. Finally,
Section 5 summarizes the conclusions of the paper.
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2. Results
2.1. Overview

We evaluated the performance of different CNN-based models to detect electrical
rotational activity presence in AF endocardial EGM recordings. Figure 1 summarizes the
workflow of the study and the final proposed network architecture. The first model is a
simple network consisting of three dense layers with binary (sigmoid) output. The second
model mimics a network architecture employed to classify ECG recordings that integrates
CNN blocks and long short-term memory (LSTM) layers. The third one, our proposed
model, implements CNN blocks and gated recurrent unit (GRU) layers. The detailed archi-
tecture of the models is described in the Methods section. We evaluated the performance for
the two main signal acquisition configurations employed in clinical practice, i.e., unipolar
and bipolar EGMs, and also for the LATs of the unipolar EGMs. Additionally, we studied
the pre-processing effect when we applied increasing sub-sampling rates and different
signal lengths to the input data.

2.2. Patient Characteristics

We retrospectively analyzed a cohort of 75 persistent AF patients (56 men, 19 women)
who underwent ultra-high-density mapping during stable AF, i.e., more than 5000 points
per electroanatomical map, and point-by-point pulmonary vein isolation with an elec-
troanatomical mapping system (CARTO3 V7, Biosense Webster, Diamond Bar, CA, USA).
Table 1 lists the baseline characteristics of the AF population in the study. After a first
screening, patients with no rotational activity were discarded to avoid data imbalance,
leaving a total of 48 patients. Patients were split into training and test sets according to a
90% training, and 10% test division (43 and 5 patients, respectively). Patients were assigned
to the groups in chronological order. The first consecutive patients were assigned to the
training group and the last patients to the test group.

Table 1. Baseline characteristics of the patients.

Characteristics All Patients Training Set Test Set p-Value

N 75 (100.0) 43 5 -
Age (years) 60.7 ± 9.7 61.4 ± 9.5 60.0 ± 4.1 0.7509
Sex

Men 56 (74.7) 37 (86.0) 3 (60.0) 0.1389
Women 19 (25.3) 6 (14.0) 2 (40.0) 0.1389

Atrial volume (cm3) 148.5 ± 39.4 158.6 ± 40.5 144.4 ± 37.7 0.4649
Diagnosis of AF (years) 3.1 ± 3.5 3.6 ± 2.5 1.8 ± 1.5 0.1594
Comorbidities

BSA (m2) 2.0 ± 0.2 2.1 ± 0.2 2.1 ± 0.1 0.6083
CHA2DS2-VASc 1.8 ± 1.5 1.6 ± 1.4 2.0 ± 1.3 0.5403
COPD 4 (5.3) 4 (9.0) 0 (0.0) 0.4777
Diabetes mellitus 12 (16.0) 6 (14.0) 1 (20.0) 0.7188
Dyslipidemia 26 (34.7) 16 (37.0) 3 (60.0) 0.3222
Heart failure 13 (17.3) 8 (16.6) 1 (20.0) 0.9362
Hypertension 36 (48.04) 21 (49.0) 3 (60.0) 0.6384
Obstructive sleep apnea 16 (21.3) 10 (23.0) 0 (0.0) 0.2263
SHD 22 (29.3) 12 (28.0) 3 (60.0) 0.1416
Stroke 4 (5.33) 4 (9.0) 0 (0.0) 0.4777

Signal acquisitions (per patient)
Number of acquisitions 37.2 ± 14.7 39.9 ± 13.6 35.0 ± 8.6 0.4471
Number of rotational events 51.2 ± 112.4 66.5 ± 111.9 50.4 ± 57.2 0.7568
Rotor cycle duration (ms) 166.8 ± 36.1 167.0 ± 36.4 164.4 ± 31.1 0.9073

Values in the table are n (%) or mean ± standard deviation. AF, atrial fibrillation; BSA, body surface area;
COPD, chronic obstructive pulmonary disease; SHD, structural heart disease.
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2.3. DL Model Performance

We compared the performance of the three models, namely SimpleCNN, attention-
based time-incremental convolutional neural network (ATI-CNN), and CRNN, for three
different types of input signals: unipolar EGMs, bipolar EGMs, and unipolar LATs. Addi-
tional finer analysis was conducted regarding the sampling frequency of the data for 500,
250, and 100 Hz rates, and also varying the temporal length of the signals for 500 ms and
2500 ms segments. After training and validating the models with 34,820 and 4760 signals
respectively, we tested them with 5080 new signals from different AF patients. Table 2
shows the performance results for all the parameter combinations. The best metrics for
each of the models are highlighted to facilitate comparison.

Table 2. Performance results.

DL Model Input Data Signal
Length

Sampling
Frequency

Validation
Accuracy

Test
Accuracy Precision Recall Specificity MCC

(Type) (ms) (Hz) (%) (%) (%) (%) (%)

uEGMs
500

500 49.83 49.93 49.96 77.82 22.05 −0.002
250 50.99 49.07 49.25 60.72 37.43 −0.019
100 53.54 52.13 52.26 49.38 54.89 0.043

2500
500 51.23 49.97 49.94 26.88 73.05 −0.001
250 48.82 50.62 50.37 84.33 16.91 0.017
100 50.20 51.24 51.15 55.00 47.48 0.025

bEGMs
500

500 50.00 50.00 50.00 100.00 0.00 0.000
250 50.00 50.01 50.00 100.00 0.01 0.008
100 48.96 49.46 49.27 36.73 62.18 −0.011

2500
500 50.00 50.00 50.00 100.00 0.00 0.000
250 50.00 50.00 50.00 100.00 0.00 0.000
100 50.00 50.05 50.03 100.00 0.10 0.022

uLATs
500

500 57.90 55.86 55.10 63.32 48.39 0.118
250 55.97 53.21 52.87 59.08 47.34 0.065
100 53.61 52.51 52.45 53.64 51.38 0.050

2500
500 51.07 50.77 51.14 34.67 66.88 0.016
250 51.36 49.80 49.78 44.77 54.84 −0.004

SimpleCNN

100 52.16 48.59 48.62 49.97 47.20 −0.028

uEGMs
500

500 64.00 58.56 70.63 29.32 87.80 0.211
250 58.82 56.83 73.20 21.54 92.11 0.193
100 62.00 58.81 66.80 35.05 82.57 0.200

2500
500 63.37 59.28 68.18 34.80 83.76 0.213
250 59.85 58.83 71.11 29.73 87.92 0.217
100 54.33 55.67 66.41 22.95 88.39 0.150

bEGMs
500

500 62.69 63.30 71.97 43.56 83.04 0.289
250 67.60 58.75 68.16 32.86 84.65 0.205
100 67.42 62.00 69.78 42.33 81.67 0.261

2500
500 64.01 59.85 63.46 46.44 73.26 0.204
250 65.49 63.05 65.09 56.31 69.80 0.263
100 65.74 58.96 57.69 67.21 50.70 0.182

uLATs
500

500 64.14 63.29 69.56 47.25 79.33 0.281
250 70.56 65.36 68.63 56.57 74.14 0.312
100 76.44 70.03 69.48 71.44 68.62 0.401

2500
500 - - - - - - 1

250 62.39 54.23 75.75 12.43 96.02 0.154

ATI-CNN

100 70.89 65.46 59.85 93.95 36.97 0.376

uEGMs
500

500 71.76 68.40 77.91 51.36 85.44 0.400
250 65.76 63.12 77.17 37.25 88.98 0.310
100 56.25 64.81 70.93 50.18 79.44 0.310

2500
500 63.05 60.55 46.73 64.73 58.27 0.220
250 71.40 63.66 70.90 46.34 80.98 0.290
100 64.86 61.71 58.20 83.11 40.31 0.260

bEGMs
500

500 78.39 72.52 67.12 89.80 50.24 0.410
250 72.57 59.88 76.89 28.24 91.51 0.260
100 73.18 65.48 67.85 58.82 72.13 0.310

2500
500 80.93 80.04 74.14 92.27 67.82 0.680
250 79.23 63.96 63.28 66.50 61.42 0.280
100 74.64 60.33 63.47 48.70 71.97 0.210

uLATs
500

500 74.28 68.72 67.09 73.46 63.98 0.376
250 69.60 61.87 57.30 93.21 30.54 0.305
100 73.15 64.61 60.96 81.27 47.95 0.310

2500
500 50.48 49.84 30.77 0.26 99.41 −0.025
250 67.86 56.94 53.87 96.68 17.20 0.229

CRNN

100 70.71 60.23 71.01 34.57 85.89 0.238
1 Training on the GPU could not be achieved due to a lack of memory. The best metrics for each model
are highlighted with different background colors. DL, deep learning; MCC, Matthews correlation coefficient;
CNN, convolutional neural network; ATI-CNN, attention-based time-incremental convolutional neural network;
CRNN, convolutional recurrent neural network; uEGMs, unipolar electrograms; bEGMs, bipolar electrograms;
uLATs, unipolar local activation times.
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In Figure 2, we show the receiver operating curve (ROC) for the best performance of
each model. Similarly to Table 2, the CRNN model achieved the best area under the curve
(AUC) = 0.81, followed by the ATI-CNN-AUC = 0.70, and SimpleCNN-AUC = 0.56.
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In terms of the Matthews correlation coefficient (MCC) metric, the CRNN model
achieved the best performance with MCC = 0.680 for bipolar EGMs as input signals, a
sampling frequency of 500 Hz, and a signal segment length of 2500 ms. The ATI-CNN
achieved MCC = 0.401 for the unipolar LATs, with a segment size of 500 ms and a sampling
frequency of 100 Hz. The best result for the SimpleCNN approach was 0.118 for the unipolar
LATs input, with a sampling frequency of 500 Hz and signal length of 500 ms.

Using the DL model, the SimpleCNN, ATI-CNN, and CRNN models had an average
MCC performance of 0.017 ± 0.034, 0.242 ± 0.069, and 0.298 ± 0.130, respectively, for all
the tested parameter combinations. The general performance of all the simulations for
the three models after a one-Way ANOVA and pairwise comparison showed significant
differences (p-value < 0.0001). Pairwise comparison between SimpleCNN and ATI-CNN
and between SimpleCNN and CRNN was also significant (p < 0.0001). Overall CRNN
performance was higher than ATI-CNN (p = 0.1604).

Analysis of the signal type for all the combinations showed no significant differences
(p = 0.8449). The average performance obtained was 0.199 ± 0.174, 0.169 ± 0.124, and
0.18.14 for bipolar EGMs, unipolar EGMs, and unipolar LATs, respectively. Pairwise
comparisons between signal types were not significant either.

The different sampling frequency values obtained an MCC score of 0.184 ± 0.137,
0.171 ± 0.125, and 0.199 ± 0.1956 (p = 0.2373) for 100 Hz, 250 Hz, and 500 Hz rates, respec-
tively. Pairwise comparison between groups 100–250 Hz, 100–500 Hz, and 250–500 Hz
provided p-values of 0.969, 0.952, and 0.8533, respectively.

Finally, the MCC for the temporal length of the input signal obtained for 500 ms and
2500 ms was 0.207 ± 0.142 and 0.161 ± 0.161, respectively (p = 0.2373).
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3. Discussion

In this study, we propose the first CNN-based model for rotational activity detection
in AF endocardial EGMs. The model was trained with real patient data and was tested
with bipolar EGMs, unipolar EGMs, and unipolar LATs to compare their performance. In
addition, we analyzed the effects of down-sampling and signal length on the detection
capabilities of the proposed CNN-based models. Our proposed model was compared to
two different DL models used in ECG classification. The main findings of the study were
as follows: first, we highlighted the importance of bipolar EGMs for identifying rotational
activity as opposed to traditional rotor assessment algorithms that focus on unipolar signals.
Second, we also demonstrated their better performance versus unipolar LATs and EGMs
when training DL networks. Finally, we opened the way for upcoming research on AF
driver detection with leading-edge techniques, with the aim of better understanding the
AF problem and its treatment.

3.1. Artificial Intelligence in Cardiology

Recently, DL-based methods have emerged as a powerful instrument to outperform
current state-of-the-art methods and algorithms in large-scale cardiology databases. Cur-
rent programming libraries, e.g., Keras or PyTorch [29,30] in Python, provide the user
with friendly assets to implement neural networks; however, their real potential emerges
after fine-tuning the parameters and optimizing the network design. This is the case for
successful studies in the literature that employ different cardiac-related data, e.g., CT-MRI
images, ECGs or EGMs, antiarrhythmic drug effects, or clinical screening [6,15,31]. The DL
potential managed to provide promising results and a significant performance boost.

Given the promising results of these studies, we applied these methods and concepts
to cardiac arrhythmias, and more specifically, the AF problem whose treatment remains
suboptimal. The results obtained by our method are comparable with previously published
works in the literature for driver detection using EGMs [32], non-invasive ECG leads [33],
or optical mapping recordings [14]. Phase singularity detection by Li et al. [32] with
multi-electrode catheters and virtual (in silico) EGM signals reported F-scores between
0.54 and 0.83. Their approach was based on traditional signal processing and the phase
component of the signals. They concluded that AF driver identification is dependent on the
phase singularity detection algorithms and their parameters, and proposed a workflow to
operate with optimal parameters to facilitate the comparisons in forthcoming rotor-guided
ablation. The non-invasive approach by Jones et al. [33] to determine the number of stable
rotors in AF using ECG signals reported an AUC = 0.72. They applied a signal processing
method, i.e., phase lock, that quantifies the spatial repeatability of fibrillatory waves in
the ECG over time. Similarly, machine learning applied to optical mapping recordings by
Zolotarev et al. [14] reported an accuracy of 86% for the classification of EGM recordings
as an AF driver or nondriver.

These studies imply the need to better understand the mechanisms and the onset of
the fibrillatory state and also to establish common metrics to compare studies that employ
different technologies, signals, or algorithms. Therefore, a thorough examination of the
atrial chambers is required during electroanatomical ablation procedures. In this sense
the mapping time is key and is the main limitation of these studies. Mapping the atria
with multi-electrode catheters requires time and expertise and can increase the overall
clinical procedure, which may endanger the patient. To achieve a better trade-off between
procedure time and substrate investigation, we improved the response time to obtain
rotational activity detection of traditional signal processing methods with the proposed
DL CRNN model. Our solution avoids heavy pre- and post-processing, minimizing the
computational times.

In addition, the model is easy to implement in most of the present programming
languages and does not require specialized hardware solutions after the training process is
performed. This grants future compatibility with current electrophysiology workstations,
3D electroanatomical mapping systems, or even in silico simulation platforms.
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3.2. AF Signals

Unipolar and bipolar EGMs are the two main types of signals that electrophysiologists
use to diagnose and treat cardiac arrhythmias. In the case of rotational activity, both play an
active role in the detection and visualization of reentrant propagation patterns. Most of the
recent commercial systems that assess rotor activity employ unipolar EGMs [22,34], which
are known for providing local information about the electrical activity in the vicinity of the
electrode that can accurately define the LAT of the atrial tissue. Unipolar LATs correspond
to the point of maximum negative slope of the signal; however, this configuration suffers
from far-field activity introduced by the ventricular activity. On the other hand, bipolar
EGMs cancel this undesired noise source at the same time that they provide better readings
of the local activity, but their amplitude is sensitive to the wavefront orientation and
prevents the accurate identification of LATs.

Even though the rotor annotations of our database were obtained from unipolar
LAT analysis, we decided to train our model with raw bipolar and unipolar EGMs, since
DL networks may process the signals differently to the human brain and extract hidden
features that experts may overlook or ignore. For the CRNN model, the bipolar set reported
better results than the unipolar one, even when compared to the proper unipolar LATs
employed to obtain the true labels. Our model correctly predicted 80.04% of the event
locations; ATI-CNN performed well, with a 70.03% accuracy, and SimpleCNN reported
57.9% accuracy, not capturing the temporal dependence of the signals. One of the reasons
that may explain these results is the higher signal-to-noise ratio that bipolar signals have,
which probably enhances the detection of the staircase activation sequence compared to
the unipolar configuration.

The type of convolution may also contribute to the better performance of the CRNN
model. In our model, rectangular kernels boosted the performance of our preliminary
versions with squared kernels. This enabled the network to capture longer temporal
dependencies within the extracted CNN features in deeper layers, yielding satisfactory
results. Hence, temporal relationships between the EGM signals are crucial to learn and
correctly identify rotors from the rest of the AF propagation patterns.

In addition, we hypothesized that the sampling frequency and the input size of the
signals might have an impact on the DL learning process. However, the results in Table 2
showed that reducing the sampling frequency or the signal length did not provide a
significant impact on increasing the accuracy of the learning process. The best-trained
models for the CRNN and the ATI-CNN differ in sampling rates, 500 Hz and 100 Hz,
respectively, which is likely related to the input signal used: bipolar EGMs for the CRNN
and unipolar LATs for the ATI-CNN. The simple binary representation of the unipolar LAT
signals may explain that lower sampling rates can also capture the important features and
detect rotors compared to the higher variability of the bipolar EGM voltage values. They
may require a higher number of samples to capture important rotor-related features. In this
regard, we cannot conclude if the size or the sampling rate of the input signals is a crucial
parameter to be taken into account when a DL network is designed.

3.3. Rotational Activity Detection Analysis

We analyzed the false positives (FPs) obtained with the CRNN model to better un-
derstand how the CRNN model worked and what the model missed. Several bipolar
signals were inspected by the authors and one external cardiologist who was blinded to
the detection outcome. All of them agreed that the model performance was good and that
many of the FPs were in fact rotors that were misdetected in the bipolar EGMs by the
CartoFinder system, which is known to provide a lack of specificity [35].

As we can see in Figures 3 and 4, these results validate our assumption that our model
performed better than the 80.0% accuracy score in Table 2. Most of the FPs coincide with
fractionation of the bipolar EGMs, which is a known surrogate characteristic of rotational
activity [36]; we believe this is the main explanation for the specificity problem in the CRNN
network when dealing with bipolar EGM inputs. Another explanation for this behavior can
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be attributed to the way we chose the “gold standard” for our database. Since DL methods
usually require datasets of thousands of samples to achieve a good generalization of the
problem at stake, we resorted to CartoFinder, as it could provide thousands of labeled data;
this is a trusted tool to detect rotational activity, but it cannot be considered a real “gold
standard”, since noise and signal artifacts may affect the EGM acquisitions. To achieve
further validation of the CartoFinder method, high-resolution optical mapping videos [37]
or in silico computer calculations should be employed to further determine the agreement
between CartoFinder and rotational activity. Even when facing this potential limitation, our
model exhibited great results and was capable of revealing new rotational activity present
in bipolar EGMs that was missed by the CartoFinder module.
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3.4. Clinical Implications of Rotational Activity

AF treatment relies on pulmonary vein isolation ablation procedures, antiarrhythmic
drug administration, electrical cardioversion, or a combination of these to restore sinus
rhythm. Unfortunately, they fail to optimally reduce tachycardia recurrence rates, with
50–70% recurrence after electrical cardioversion and antiarrhythmic drugs [38,39], and
20–45% after ablation procedures [38].

The impact of AF drivers like rotational activity in the management of AF is still being
investigated. New mapping technologies favored in new studies evidenced solid proof of
the role of rotors as a part of the AF electrophysiological substrate [40]. Clinical studies such
as the FIRM trial [40,41], AFACART [42], CartoFinder driven ablation [43,44], UNCOVER
AF trial [45], or the RADAR trial [46] showed initial promising results. However, there
is still an open debate whether rotors are crucial to maintaining AF or if they are just
bystander activations due to the collision of multiple wavefronts [47]. Recent studies have
provided different outcomes; most of them were single-center studies, and they differed in
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the technologies employed. We believe that more extensive multicentric studies are needed
to either accept or discard rotors as key components responsible for AF maintenance. In
this regard, the new guidelines and studies for the management of AF open the door to
new ablation strategies beyond pulmonary vein isolation [48,49].
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3.5. Study Limitations

There are several limitations in the study. The first limitation is the absence of a
gold standard database for rotor detection such as the ones employed in other fields, e.g.,
MNIST, ImageNet, or Labelme labeled image datasets in computer vision. For this reason,
we resorted to the CartoFinder (Biosense Webster, Diamond Bar, CA, USA) module as the
ground truth for our experiments. This is a single-center study, and the number of included
patients could be improved. However, we consider it to be a representative number, since
the CartoFinder module is a relatively new technology in the electrophysiology field and
other AF-related studies with a moderate number of patients and imbalanced data have
reported promising results using CNNs [7–9]. What is more, the algorithm requires the
splines of the catheter to be correctly deployed, which in particular areas of the left atrium
(LA) becomes a challenge due to its restricted accessibility and stability during the signal
acquisition. In this line, surrogate indices for rotational activity detection should be further
studied. Models were trained for the PentaRay catheter layout, including 20 unipolar or
15 bipolar EGMs. In the event of using a new mapping catheter model with a different
number of electrodes or layout, models should be adapted and trained to the new topology
and distribution of the electrodes.

4. Materials and Methods

In Figure 1, we visually summarize the workflow of the proposed CNN-based models
to detect rotational activity in cardiac EGMs recorded with a multi-electrode catheter.
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4.1. Patient Cohort

A total of 76 persistent AF patients were referred for their first radiofrequency ab-
lation procedure at the Hospital General Universitario Gregorio Marañón (see Table 1).
In 27 patients, no rotational activity events were found. Therefore, we included the re-
maining patients in the training/validation and test sets in a 90:10% split, respectively.
The study was approved by the local ethics committee of Hospital General Universitario
Gregorio Marañón.

4.2. Signal Database

Ultra-high-density endocardial maps (>5000 points) were performed with a 20-pole
multi-electrode PentaRay catheter and CARTO3 V7 electroanatomical mapping system
(Biosense Webster, Diamond Bar, CA, USA). Signals were bandpass filtered: bipolar EGMs
at 30–240 Hz, and unipolar EGMs at 0.1–100 Hz. A 50 Hz notch was applied at a sampling
frequency of 1 kHz. Signals were acquired sequentially with no pre-established order in
the atrial chamber until LA mapping was completed. The setting of the electroanatomical
mapping system to integrate a point in the 3D map was a point density < 2 mm, position
stability of 2 mm, and the tissue proximity index enabled.

Before performing the pulmonary vein isolation ablation, the CartoFinder module
for rotational detection assessment was employed (Biosense Webster, Diamond Bar, CA,
USA). The module required the catheter to be correctly deployed and to remain stable for
30 s. After the acquisition, the module detected the LATs of each unipolar EGM as the
time instant of the maximum negative slope of the signals. The algorithm arranged the
electrode splines by rings and detected rotational activity if the LATs of the concentric
circles expanded for more than 50% of the dominant cycle of the EGMs and if there were
more than 2 consecutive events. The detected rotational activity should exhibit a staircase
activation sequence (see Figure 1), with the upward or downward direction related to a
clockwise or counter-clockwise gyre of the rotation. A total of 2792 CartoFinder acquisitions
were exported for training and validating the models.

4.3. Signal Pre-Processing

The dataset consisted of a total of 2792 CartoFinder acquisitions. The original dataset
suffered from imbalanced learning; the class imbalance ratio between rotational activity
and no rotational activity was 4:100, with 27 patients (36.0%) not presenting rotor events.
To compensate for this problem, we discarded the patients with no rotational activity and
rebalanced the dataset by selecting as many non-rotor and rotor signals from each patient
in a 1:1 ratio, which left a total of 4466 CartoFinder acquisitions for training and testing
the models.

To reduce disk space, the signals were down-sampled to 500 Hz and reshaped into
15 × 15,000 and 20 × 15,000 matrices for the bipolar and unipolar EGMs, respectively. At
this point, offline data augmentation was applied to increase the size of the dataset.

Data augmentation consisted of a temporal sliding window, horizontal and vertical
flips, and electrode-ring order arrangement. We set a 50% sliding window overlap, and
the window length was tested for two different lengths, i.e., 500 and 2500 ms. Signals
were arranged by rings, and the electrode order was modified starting at spline 1 for
the first augmentation and starting at spline 5 for the 5th and last permutation, which
provided a 5-fold augmentation. The final unipolar and bipolar datasets contained a total of
39,580 training and 5080 test samples (4760 training samples were set aside for validation).

All signals were normalized to be in the 0–1 range. Upper and lower normalization
limits were obtained from the 2nd and 98th percentile of the histogram voltage values of
the signals. Apart from the well-known advantages of the normalization step in machine
learning, this transformation also removes undesired peaks or noisy artifacts that may
potentially distort the performance of the models.
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4.4. Classification Models
4.4.1. SimpleCNN

The first model we tested consisted of a SimpleCNN architecture that served as the
baseline to analyze the detection problem. This network included 3 fully connected layers
with 128 units, 64 units, and 1 unit, respectively. We used a rectified linear unit (ReLU) as
the activation function and sigmoid output for binary classification.

4.4.2. ATI-CNN

We tested a deep neural network model (ATI-CNN) used in ECG multi-class arrhyth-
mia detection [6]. The idea was to employ a network with a good classification accuracy
and with similar input data, i.e., ECG signals. This architecture implements a 13-layer fully
CNN with a kernel size of 3 and increasing CNN (64, 128, 256, 256, and 256) kernels of size
3 with pooling layers. This first block eases the spatial fusion of the data from different
signals. Then, two LSTM cells follow the convolutional block to achieve temporal data
fusion, which allows the temporal flow information transmission between the cells. The
cells decide to forget or remember part of the information from the feature vectors fed by
the previous convolutional block.

4.4.3. CRNN

The detailed network architecture implemented for the CRNN model is included in
Table 3. The model takes as its starting point the AlexNet [50], with improvements to fit
the input rectangular shape in terms of kernel, pooling, and stride sizes. To capture the
temporal information of the signals, we added two GRU layers of 32 units each before
the final output sigmoid layer. This approach is based on previous literature on audio
tagging [51] and ECG detection problems [52].

The final architecture in Table 3 consists of 3 CNN blocks and 2 GRU layers. First, we
added zero padding to the input signals and batch normalization. For the CNN blocks,
rectangular 5 × 23 kernels were used with batch normalization and leaky ReLU activation
function. Max-pooling was increased in each block, with dropout set at 30% to reduce
overfitting. The GRU layers included 32 units each.

4.5. Implementation and Specifications

This study was developed in Python™ v3.8 in the 64-bit version using PyCharm
2021.1.2 (JetBrains, Prague, Czech Republic). The DL models were developed using
Keras [29] with CUDA v11.0 and cudnn 8.0.4.30 (NVIDIA Corporation, Santa Clara, CA,
USA). Data were processed using an Intel® Core™ i9 CPU 3.10 GHz processor, 32 GB RAM,
and Nvidia GeForce RTX 2070 Super GPU on Windows 10 64 bits. The models were trained
with an Adam optimizer [53], with a grid search for learning rates of [10−2, 10−3, 10−4],
binary cross-entropy as the loss function, and a batch size of 32.

Table 3. CRNN model for rotational activity detection.

Layer Kernel Size
(H, W, D)

Stride
(H, W)

Activations 1

Unipolar EGMs,
LATs Bipolar EGMs

Input - - 1250 × 20 × 1 1250 × 15 × 1
Zero Padding 2D 1 (37, 0, 0) 1324 × 20 × 1 1324 × 15 × 1
Batch Normalization 1 - -
Dropout 1 - - 1324 × 20 × 1 1324 × 15 × 1
Conv2D 1 (5, 23, 32) (1, 1) 1324 × 20 × 32 1324 × 15 × 32
Batch Normalization 2 - - 1324 × 20 × 32 1324 × 15 × 32
LeakyReLU 1 - - 1324 × 20 × 32 1324 × 15 × 32
Max Pooling 2D 1 (2, 2, 32) (2, 1) 662 × 19 × 32 662 × 14 × 32
Dropout 2 - - 662 × 19 × 32 662 × 14 × 32
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Table 3. Cont.

Layer Kernel Size
(H, W, D)

Stride
(H, W)

Activations 1

Unipolar EGMs,
LATs Bipolar EGMs

Conv2D 2 (5, 23, 64) (1, 1) 662 × 19 × 64 662 × 14 × 64
Batch Normalization 3 - - 662 × 19 × 64 662 × 14 × 64
LeakyReLU 2 - - 662 × 19 × 64 662 × 14 × 64
Max Pooling 2D 3 (3, 3, 64) (3, 3) 220 × 6 × 64 220 × 4 × 64
Dropout 3 - - 220 × 6 × 64 220 × 4 × 64
Conv2D 3 (5, 23, 64) (1, 1) 220 × 6 × 64 220 × 4 × 64
Batch Normalization 4 - - 220 × 6 × 64 220 × 4 × 64
Leaky ReLU 3 - - 220 × 6 × 64 220 × 4 × 64
Max Pooling 2D 3 (4, 4, 64) (4, 4) 55 × 1 × 64 55 × 1 × 64
Dropout 4 - - 55 × 1 × 64 55 × 1 × 64
Reshape 1 - - 55 × 64 55 × 64
GRU 1 32 units - 55 × 32 55 × 32
GRU 2 32 units - 32 32
Dropout 5 - - 32 32
Dense - - 1 1

1 The activations in the table are for 2500 ms signals at sampling frequency 500 Hz. The different activations for
the network input size variations can be extrapolated from the kernel and stride columns. CRNN, convolutional
recurrent neural network; H, height; W, width; D, depth; EGMs, electrograms; LATs, local activation times;
GRU, gated recurrent unit; ReLU, rectified linear unit.

4.6. Statistical Analysis and Performance Metrics

We present categorical values as absolute and relative percentages (frequencies), and
normally distributed variables are summarized by the mean and standard deviation (SD).
We tested the continuous variables using One-Way ANOVA, including Tukey honestly
significant difference (HSD). The analysis was performed in Python (PyCharm 2020.1.3,
JetBrains, Prague, Czech Republic) and JMP statistical software version 14.3.0 (SAS, Cary,
NC, USA). In all tests, a p-value < 0.05 was considered statistically significant.

To compare the models that presented the best performance in the classification
problem, we calculated their accuracy, precision, recall (sensitivity), specificity (selectivity),
and MCC correlation coefficient, as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
, (1)

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

Speci f icity =
TN

TN + FP
, (4)

MCC =
TP·TN − FP·FN√

(TP + FP)·(TP + FN)·(TN + FP)·(TN + FN)
, (5)

where TP, FN, TN, and FP stand for true positive, false negative, true negative, and false
positive, respectively, and are the elements of the confusion matrix that summarize the
prediction results of a model. MCC is the Matthews correlation coefficient that is commonly
used in machine learning to measure the quality of a binary classification problem and
provides a more reliable statistical rate using the values of the confusion matrix [54]. MCC
provides a high score if all four confusion values are good, and it proportionally takes into
account both positive and negative dataset elements.
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5. Conclusions

In this study, we propose a novel detection algorithm for rotational activity detection
based on CRNNs. The algorithm successfully detected the presence of rotors with an
accuracy of 80.04% using bipolar EGMs and 68.40% with unipolar EGMs and was compared
against two CNN models in the literature. The algorithm also outperformed the detection
capabilities over unipolar signals when bipolar EGMs were employed, while improving
the computational times compared to the aforementioned algorithm employed for labeling
the data. The results obtained by employing DL methods in clinical detection problems
open new research opportunities in cardiology.
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