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Abstract: Fear memory helps animals and humans avoid harm from certain stimuli and coordinate
adaptive behavior. However, excessive consolidation of fear memory, caused by the dysfunction of
cellular mechanisms and neural circuits in the brain, is responsible for post-traumatic stress disorder
and anxiety-related disorders. Dysregulation of specific brain regions and neural circuits, particularly
the hippocampus, amygdala, and medial prefrontal cortex, have been demonstrated in patients with
these disorders. These regions are involved in learning, memory, consolidation, and extinction. These
are also the brain regions where new neurons are generated and are crucial for memory formation and
integration. Therefore, these three brain regions and neural circuits have contributed greatly to studies
on neural plasticity and structural remodeling in patients with psychiatric disorders. In this review,
we provide an understanding of fear memory and its underlying cellular mechanisms and describe
how neural circuits are involved in fear memory. Additionally, we discuss therapeutic interventions
for these disorders based on their proneurogenic efficacy and the neural circuits involved in fear
memory.

Keywords: fear memory; post-traumatic stress disorder; hippocampus; amygdala; medial prefrontal
cortex; neural circuit

1. Introduction

Trauma is a physical or emotional response to a terrible event, such as an accident,
natural disaster, medical trauma, war, terrorism, violence, forced separation, or witnessing
a suicide. Trauma-induced fear is a normal reaction, resulting in temporary physiological
and behavioral states that return to baseline after a period of time. However, excessive
or repeated fear-based exposure to traumatic events can also lead to a pathological state
of fear that underlies anxiety- or trauma-related disorders such as post-traumatic stress
disorder (PTSD), which has a lifetime prevalence of approximately 3.6% according to
a worldwide survey by the World Health Organization [1]. Fear is a conscious state
consisting of both associative and nonassociative components, caused by exposure to real
or imaginary threats. Healthy individuals who have experienced situations that share
the characteristics of a traumatic event are able to discriminate traumatic memories from
new experiences and successfully encode these experiences as new and safe. In contrast,
individuals with PTSD or anxiety disorders may be unable to distinguish between their
traumatic experience and new nontraumatic experiences due to their issues with extinction
of fear-based traumatic memories, which leads to overgeneralization, excessive arousal,
fear responses, and anxiety. Individuals with fear-based disorders often have impaired
pattern separation, the process that minimizes overlaps between similar experiences and
distributes them. These responses are closely related to the activities of brain regions and
circuits, particularly the hippocampus, amygdala, and medial prefrontal cortex (mPFC).
The pivotal functions of these brain areas are the formation, organization, and storage
of new memories by comparing new sensory inputs to stored representations, as well as
pattern separation. Moreover, they connect with existing neural circuits to integrate new
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memories and guide behavior. As fear memories and imprinting are the basis of PTSD and
anxiety-related disorders, understanding the mechanisms underlying fear memories may
help develop treatment options for these disorders. In this paper, we provide an overview
of the hippocampus, its associated brain regions, and neural circuits for fear-based learning
and memory. Additionally, we introduce new methodologies and therapeutic interventions
for the treatment of fear-based disorders.

2. Methods

To conduct this review, we searched PubMed and Google for published papers that
focused on fear memory and fear memory-related neural circuits as well as therapeutic
interventions in preclinical and clinical studies on fear condition and perused them. The
search keywords included fear memory, neural circuits, proneurogenic efficacy, therapeutic
intervention, in vivo, and clinical study.

3. Fear Learning and Memory

Fear is one of the most basic human emotions triggered by perceived threats. It is a
survival mechanism that sends signals to our bodies to initiate a fight-or-flight response in
the face of danger. However, excessive or maladaptive fear learning and overgeneralization
lead to the development of psychopathology. These are major features of anxiety and stress-
related disorders, including PTSD, which can be viewed as a maladaptive fear response.
Furthermore, fear learning causes powerful, long-lasting, and imprinted memories, as the
acquisition of the memory (initial fear learning) is followed by a consolidation process in
which the memory is thought to be stabilized.

In experiments on laboratory animals, the biological and physiological mechanisms
of fear overgeneralization were evaluated using a fear conditioning paradigm [2,3]. Fear
conditioning consists of the repeated pairing of a neutral stimulus, such as light or tone
(conditioned stimulus (CS)), with an aversive stimulus, such as an electric footshock (un-
conditioned stimulus (US)). Presenting the CS alone after a few CS–US pairings can elicit
measurable physiological arousal and response tendencies (e.g., freezing), mimicking the
human conditioned fear response. This approach has provided insights into the neurobio-
logical mechanisms involved in fear learning, memory, extinction, and overgeneralization.

4. Fear Memory and Overgeneralization in the Hippocampus

The hippocampus is located in the temporal lobe, with a longitudinal structure that
can be functionally divided into the dorsal, intermediate, and ventral parts. Additionally,
the hippocampus can be transversely divided into the CA1, CA3, and dentate gyrus (DG)
regions. One of the pivotal functions of the hippocampus is the formation and reconstruc-
tion of memories by comparing new sensory inputs with stored representations, which, in
turn, guides appropriate behaviors. The dorsal and ventral hippocampus contribute to both
the consolidation of contextual and spatial memories and recall as well as fear memory gen-
eralization because the hippocampus receives afferent input from both the amygdala and
the septum, which play important roles in fear memory. Interestingly, there is evidence that
the subregions of the hippocampus have different effects on fear memory and extinction.
Temporary inactivation of the dorsal hippocampus using lidocaine impaired avoidance
behavior during retention, whereas inactivation of ventral hippocampus impaired fear
memory acquisition [4,5]. Therefore, the dorsal hippocampus plays an important role in
encoding fear memory, whereas the ventral hippocampus plays a role in fear expression.

Current research indicates that plasticity in the hippocampus (including the CA regions
and DG) plays a key role in fear memory along with plasticity in the amygdala, including
the lateral amygdala, basolateral nuclear complex, and central nucleus, and in the medial
prefrontal cortex (mPFC) [6]. Relative to other brain regions, the hippocampus is highly
sensitive to trauma and stressors. Magnetic resonance imaging analyses have often revealed
smaller hippocampal volumes in patients with PTSD, particularly in the CA3 and DG
regions, and may be considered as a risk factor for vulnerability to PTSD [7,8]. Consistently,
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animal studies using a single prolonged stress, which is widely used in animal studies on
PTSD and fear/anxiety conditions, reported that these conditions lead to dendritic atrophy
and loss of dendritic spines in the CA3 region, reduced hippocampal neurogenesis, and
mature granule neuronal death in the DG [9–14].

Newborn neurons are continuously generated from the division of neural stem cells
and neural progenitor cells in restricted regions of the hippocampus of the adult mammalian
brain; this process is known as adult hippocampal neurogenesis [15]. Newborn neurons
are generated in neurogenic niches, such as the subgranular zone and granule cell layer,
within the DG. Newborn dentate granule cells (DGCs) are affected by environmental
experience and may participate in hippocampal functions including learning, memory,
anxiety, stress regulation, and social behavior. These neurons are generated during the
maturation process, which includes the growth of axons and dendritic spines and the
formation of synaptic connections. The axons of newborn neurons, known as mossy
fibers, are connected to synapses with excitatory pyramidal cells in the CA3 and CA2
regions. Synaptic integration sets a time constraint on the contributions of newborn DGCs
to neuronal circuitry in the adult brain [16,17]. Functionally mature newborn neurons are
integrated into existing circuits and incorporated into the hippocampal network, which
plays a critical role in long-term spatial learning and memory, pattern separation, anxiety,
and fear generalization [18,19]. The existing neural circuits, as well as the integration of
newborn neurons into the neural circuitry, have been demonstrated to have abnormal
connections in fear-related disorders [20,21].

5. Hippocampus-Related Neural Circuits in Fear Memory

PTSD is characterized by heightened arousal and resistance to extinction of fear learn-
ing and memory [22]. Fear responses, including fear learning, regulation, and extinction,
do not occur due to the neural activities of a single brain structure, but rather as a result
of the organized activity of multiple brain regions mediated by the synaptic connections
between them. Fear conditioning causes the dissociation of brain neural circuits for fear.
Several key structures that generate and regulate fear responses to fear conditioning signals
have been identified. The hippocampus is primarily used for the encoding and initial
storage of contextual fear, whereas the amygdala is essentially used for modulation. There-
fore, understanding the neural circuits involved in PTSD is substantial for elucidating its
pathogenesis and developing therapeutics to treat it.

5.1. Limbic–Frontal Neural Circuits in the Hippocampus

The amygdala, prefrontal cortex, and hippocampus constitute the limbic-frontal neural
circuits and are identified as the three key brain regions involved in the learning, regulation,
and extinction of fear response in animals [23]. Human studies using functional magnetic
resonance imaging have also found that these regions are stimulated by fear conditioning,
suggesting the involvement of limbic–frontal neural circuits in this process [24,25]. The
neural circuits for fear response contain specific regions, and the amygdala, which is the
key region, is located within the medial temporal lobe of the brain. It receives input signals
from the thalamus and orchestrates responses to threatening signals by sending outputs
to the hypothalamus, basal ganglia, and brainstem to produce defensive behaviors [26].
The amygdala is closely connected to the hippocampus and sends signals to the neurons
within it which encode contextual information related to emotional and fear memories from
these signals. The hippocampus is involved in the extinction of fear memory and plays a
role in the downregulation of the amygdala’s response to these signals [27,28]. The mPFC
controls fear response, receives input from the hippocampus, and projects the output onto
the amygdala to regulate fear behavior [29]. Contextual expression of fear is influenced
by the prelimbic region of the dorsal mPFC, which receives inputs from both the ventral
hippocampus and the basolateral amygdala [30]. In contrast, activation of the infralimbic
regions of the mPFC is involved in the extinction and inhibition of fear conditioning [31].
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Thus, because of the functional interaction between the amygdala and ventral hip-
pocampus, any context associated with a traumatic event can cause fear and anxiety. Maren
and Hobin suggested that ventral hippocampal inactivation regulates the contextual mod-
ulation of spike firing in the lateral amygdala neurons after fear memory extinction [32],
suggesting that the neural projections of the hippocampus and amygdala mediate fear
extinction. During fear learning, several neurons that project directly onto the central
amygdala are activated, and downstream projections from the central amygdala initiate
physiological responses during fear conditioning [33]. The neurons involved in this process
are known as fear neurons. In contrast, the stimulus-evoked firing activity of fear neurons
are switched off during fear extinction via the activation of extinction neurons, which
effectively balances the fear response between the hippocampus and the mPFC.

5.2. The Trisynaptic Circuit in the Hippocampus for Fear Memory

The trisynaptic circuit is one of the neural circuits in the hippocampus that involves
three major neurons: DGCs, pyramidal neurons in CA3, and pyramidal neurons in CA1.
The entorhinal cortex transmits signals from the DG via granule cell fibers, which is known
as the perforant pathway. DGCs project onto pyramidal cells in the CA3 region via mossy
fibers. CA1 pyramidal neurons receive signals from the Schaffer collaterals of the CA3
pyramidal neuronal axons. Finally, this signal is passed down to the subiculum and into
layers IV−VI of the entorhinal cortex. This pathway is necessary for the storage of new
and remote memories and the memory consolidation process [34]. Following contextual
fear conditioning, blockade of CA3 output via the trisynaptic circuit using CA3-TeTX
transgenic mice impaired the acquisition and consolidation of memory when exposed to a
novel context of mild footshock [35]. Thus, activation of the trisynaptic circuit by the DG,
especially the CA3−CA1 synapse, is important for contextual fear conditioning [36].

5.3. Neural Circuitry Basis of Fear Memory

In animal studies, neural circuits related to fear learning, memory, and extinction have
been identified using chemogenetic/optogenetic techniques. Chemogenetic/optogenetic
techniques provide the ability to modulate neurons and glia in a cell-type, region-specific,
and gene-specific manner. Chemogenetics provide the ability to modulate neuronal firing
with designer receptors exclusively activated by designer drugs (DREADDs), whereas
optogenetics provide precision in controlling neuronal firing with light pulses [37–39].
There is strong evidence that neural connections between the hippocampus and amygdala
are involved in fear learning, memory, and extinction. Using chemogenetics through the
viral vector-mediated expression of the inhibitory muscarinic M4 receptor-based hM4D
(Gi)-coupled DREADDs, Ortiz et al. revealed that inactivating the anterior cingulate
cortex (ACC) or ventral hippocampus projections to the basolateral amygdala significantly
reduced fear generalization to a novel and nonthreatening response [40]. This indicates that
the ACC and ventral hippocampus, via projections to the basolateral amygdala, regulate
fear generalization. Zhang et al. found that the chemogenetic inhibition of excitatory
neuronal activity in the dorsal DG of the hippocampus is directly related to a higher
expression of fear memory [17]. In contrast, enhancing neuronal activity in the dorsal DG
using DREADDs (hM3D) or optogenetic stimulation reduced the percentage of freezing
time, suggesting a reduced expression of fear memory. Using optogenetic techniques,
Kheirbek et al. revealed that the dorsal DGCs control memory encoding (not retrieval)
of contextual fear conditioning, whereas the ventral DGCs did not affect contextual fear
memories but did reduce anxiety [41].

5.4. Cellular Factors in the Brain Involved in Fear Memory

The activation of the brain regions involved in each neural circuit following PTSD
or fear conditioning can be determined by alterations in the expression of neural activity-
related factors. De la Fuente et al. demonstrated that glucose consumption is low in the
brain regions known to be associated with memory consolidation, such as the hippocampus
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and amygdala, indicating low activity of energy-demanding processes, including gene
transcription and protein synthesis [42]. Hyperactivation of the amygdala has been associ-
ated with fear and hyperarousal in patients with PTSD [43]. During fear conditioning in
animal models of PTSD, the expression of c-Fos or c-Jun (neuronal activity-regulated genes)
is increased in several brain regions, including the amygdala, hippocampus, thalamus,
and prefrontal cortex [44,45]. Following fear memory extinction, there is a reduction in the
activity of fear neurons in the amygdala, and extinction neurons become active [33]. Activa-
tion and phosphorylation of extracellular signal-regulated kinase (ERK), cAMP-responsive
element binding protein (CREB), and brain-derived neurotrophic factor (BDNF) are key
factors in memory formation in the hippocampus and amygdala [46]. Several studies
have provided evidence that fear conditioning can induce transient activation of ERK and
CREB in these regions [47]. Activation of fear memory resulted in a transient increase in
the phosphorylation of ERK and CREB in the amygdala, hippocampus, and mPFC [48].
Chang et al. demonstrated that the expression of BDNF was significantly increased in the
amygdala and mPFC, whereas lower BDNF expression was observed in the hippocampus
during fear conditioning with footshock [49]. The neural connections were found to be
weak within the mPFC, amygdala, and hippocampus during fear conditioning with this
method. This evidence supports the idea that, within the amygdala, distinct circuits connect
with adjacent brain regions to mediate fear learning, expression, and extinction. Other
major cellular factors in the hippocampus that are involved in fear memory and memory
formation are the enhanced activities of calcium/calmodulin-dependent protein kinase II
(CaMKII), protein kinase A (PKA), and protein kinase C (PKC), which are closely associated
with synaptogenesis and long-term potentiation [50]. Inhibition of these factors in the CA1
region using direct inhibitors or antagonists has been shown to reduce learning and fear
memory extinction, indicating that these cellular factors are important for fear memory and
extinction [51].

Homocysteine is a sulfur amino acid formed by the metabolism of methionine to
cysteine. It exerts an excitotoxic action in organotypic cultures from the rat brain cortex and
hippocampus [52,53]. In neonatal rats treated with homocysteine, structural and functional
changes appear in the brain due to hyperactivity of excitatory neurons [54], resulting
in cognitive deficits [55]. Hyperhomocysteinemia has been reported in patients with
neuropsychiatric diseases such as Alzheimer’s disease, Parkinson’s disease, schizophrenia,
and depression [56]. In addition, hyperhomocysteinemia induces memory deficits via
neuronal loss in the hippocampal CA3 region and reduced CREB phosphorylation [57].
According to clinical statistics, serum homocysteine levels are dramatically elevated in
patients with PTSD [58,59]. Moreover, the anxious state in a healthy human is positively
correlated with homocysteine levels [60]. Put together, these reports suggest that stress or
stress-related fear and anxiety may be associated with high levels of serum homocysteine.

6. Therapeutic Interventions for Fear-Based Disorders via the Modulation of
Proneurogenic Activity and Neural Circuits

We summarized the therapeutic interventions for fear memory and extinction based on
the modulation of proneurogenic activity and neural circuits (Table 1). These interventions
act as neurogenic enhancers, either by modulating the neurogenic mechanisms discussed
in Section 5.4, or by modulating adult hippocampal neurogenesis, ultimately regulating
neural circuits related to fear memory. These therapeutic strategies can be used to treat fear-
related disorders by improving the function of the brain regions involved in fear memory,
particularly the hippocampus, amygdala, and mPFC, or by increasing the expression of
cellular factors. In addition, several drugs that act as pro-neurogenic inducers are effective
in the prevention of fear learning or extinction of fear memory and related disorders,
including PTSD.
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Table 1. Summary of therapeutic interventions modulating proneurogenic efficacy and neural circuits
for fear-based disorder.

Category Drug Model Treatment Effects Reference

NMDAR agonist D-cycloserine

SD male rat
Fear conditioning
(light, footshock)

15 mg/kg
s.c.

• Increased fear extinction [61]

SD male rat
Fear conditioning
(noise, light,
footshock)

3.25, 15, 30 mg/kg
i.p.
10 µg/side,
intra-amygdala
infusion

• Increased fear extinction [62]

SD male rat
Fear conditioning
(noise, light,
footshock)

30 mg/kg
i.p.

• Increased pERK, c-fos, and
iGluR subunits expression in
the amygdala and mPFC
(PL, IL) during fear
extinction period

[63]

Human
(28 participants
with acrophobia)

50, 500 mg/day
p.o.

• Reduction in intense fear of
heights within the virtual
environment

[64]

SSRIs

Sertraline
Wistar rat
Prenatal stress
(Immobilization)

5 mg/kg
p.o.
3 months

• Decreased anxiety-like
behaviors and prenatally
stressed behaviors

• Increased fear extinction

[65]

Paroxetine

CD1 mice
Social fear
conditioning
(unfamiliar mice,
footshock)

10 mg/kg
Drinking water
14 days

• Reduced long-term social
fear [66]

Fluoxetine

Wistar rat
Fear conditioning
(noise, light,
footshock)

10 mg/kg
i.p.
12 days

• Reduced fear response via
Trk receptor

• Negative correlation with
c-fos

• Increased BDNF levels in the
ventral hippocampus (acute
administration)/dorsal
hippocampus (chronic
administration)

[67]

Thy1-GFP mice
Fear conditioning
(light, footshock)

18 mg/kg
Drinking water
28 days

• Reduced freezing
acquisition in contextual fear
conditioning

• Increased hippocampal
neurogenesis, newborn
neuronal maturation, and
neuronal activity in
adulthood mice

[68]

Wistar rat
Fear-based chronic
mild stress

1 mg/kg
i.p.
21 days

• Decreased responsivity of
lateral septal nucleus
projections to the mPFC (PL,
IL) regions under stressed
conditions

[69]
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Table 1. Cont.

Category Drug Model Treatment Effects Reference

Citalopram

C57BL/6 mice
Fear conditioning
(noise, footshock)

10 mg/kg
i.p.

• Reduced generalization of
fear memory

• Enhanced extinction of fear
memory

[70]

SD rat
Fear conditioning
(noise, footshock)

10 mg/kg
i.p.
9 days, 22 days

• Reduced NR2B expression
in the amygdala [71]

Cannabinoids

Cannabidiol
(CBD)

C57BL/6 mice
Fear conditioning
(noise, footshock)

10 mg/kg
i.p.

• Reduced generalization of
fear memory

• Enhanced extinction of fear
memory

[70]

Wistar rat
Fear conditioning
(noise, footshock)

10 mg/kg
Infusion

• Disrupted memory
consolidation by reduction
of Arc expression in the
dorsal hippocampus

[72]

Tetrahydrocan-
nabinol (THC)

Human
(28 volunteers)
Fear conditioning
(noise, visual cue)

7.5 mg/day/once
p.o.

• Increased ventral mPFC and
hippocampus activation

• Decreased fear learning and
recall

[73]

Human
(77 volunteers)
Fear conditioning
(noise, visual cue)

7.5 mg/day/once
p.o.

• Enhanced fear extinction
recall with higher
hippocampus activation

[74]

Dopamine D2
receptor

Brexpiprazole
(agonist)

C57BL/6 mice
Fear conditioning
(noise, footshock)

0.3 mg/kg
i.p.
7 days

• Blocked the maladaptive
fear memory

• Promoted the reversal from
PTSD-like fear memory to
normal fear memory

• Normalized the
hyperexpression of c-fos in
the amygdala and
hippocampus

[75]

5-hydroxytrypta
mine (5-HT)
receptor

5-Carboxyami
dotrypamine
(agonist)

SD rat
Fear conditioning
(noise, footshock)

1 µg/µL
Infusion

• Activation of 5-HT1 receptor
in the lateral habenula

• Reduced fear acquisition
• Decreased long-term

potentiation and AMPAR in
the hippocampus

[76]

SR 57227A
(agonist)
Ondansetron
(antagonist)

Wistar rat
SPS model

3 µM/0.5 µL
2 µM/0.5 µL

• Increased expression of
5-HT3 receptor in the mPFC
(IL)

• Enhanced fear extinction by
ondansetron administration

[77]
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Table 1. Cont.

Category Drug Model Treatment Effects Reference

Neuropeptides

NPY

VGAT-cre mice
NPY-GFP mice
Fear conditioning
(noise, footshock)

Viral vectors
(hM3D/hM4D/
preproNPY)

• NPY selectively expressed
the GABAergic interneurons
in the hippocampal DG

• Enhanced fear extinction
• Decreased contextual fear

memory

[78]

C57BL/6 mice
Fear conditioning
(noise, footshock)

NPY3-36
(NPY receptor
agonist)

• Reduced c-fos-expressed
cells in the BNSTav

• Enhanced fear extinction
• Reduced fear reinstatement

[79]

NPS

DBA1 mice
Fear conditioning
(noise, footshock)

0.01, 0.1, or 1 nmol
NPS/side
Intra-amygdala
infusion

• Inhibited expression of fear
response [80]

C57BL/6 mice
Fear conditioning
(noise, footshock)

10 µM/0.5 µL
Intra-amygdala
infusion

• Increased extinction of fear
memory

• Restored excitatory synaptic
activity in lateral amygdala
projection neurons

[81]

NPS
receptor-deficient
mice
Fear conditioning
(noise, footshock)

1 nmol NPS/side
Infusion into the
lateral ventricle

• Inhibited spontaneous
locomotor activity

• No effect on fear learning
and adaptation

[82]

Abbreviations: 5-HT, 5-hydroxytryptamine; 5-HT1, 5-hydroxytryptamine (serotonin) receptor-1; 5-HT3, 5-
hydroxytryptamine (serotonin) receptor-3; BDNF, brain-derived neurotrophic factor; BNSTav, anteroventral
bed nuclei of stria terminalis; CBD, Cannabidiol; DG, dentate gyrus; GABA, γ-aminobutyric acid; pERK, phospho-
rylated extracellular signal-regulated kinase; GFP, green fluorescent protein; GluR, ionotropic glutamate receptor;
IL, infralimbic; i.p., intraperitoneal; mPFC, medial prefrontal cortex; NMDAR, N-methyl-D-aspartate receptor;
NPS, neuropeptide S; NPY, neuropeptide Y; NR2B, N-methyl-D-aspartate receptors 2B subunit; PL, prelimbic;
p.o., per oral; PTSD, posttraumatic stress disorder; s.c., subcutaneous; SD rat, Sprague–Dawley rat; SPS, single
prolonged stress; SSRI, selective serotonin reuptake inhibitor; THC, tetrahydrocannabinol; TrkB, tropomyosin
receptor kinase B.

D-Cycloserine is a partial agonist of the glycine site of the N-methyl-D-aspartate
(NMDA) receptor and has been reported to promote fear extinction in animals and hu-
mans [61,62]. In a previous study, the D-cycloserine-treated group exhibited lower levels of
fear than the saline-treated control group after the extinction period during fear training.
According to this study, D-cycloserine facilitated fear extinction with increased phospho-
rylated ERK expression in the mPFC and amygdala. Interestingly, the expression of c-fos
and phosphorylated ERK increased in the mPFC of untrained young rats, indicating that
D-cycloserine acts as a proneurogenic inducer [63]. In humans, D-cycloserine administra-
tion also attenuates fear extinction and slows reacquisition [64]. However, further studies
are required to demonstrate its efficacy in other fear-related disorders and neural circuits.

Sertraline and paroxetine, selective serotonin reuptake inhibitors (SSRIs), are com-
monly used to treat depression or anxiety-related disorders. These drugs are the first-line
treatment for PTSD. When sertraline was administered to prenatal stress-exposed offspring
rats, susceptibility to fear stress and traumatic events from mild footshock was reduced [65].
Paroxetine reduces social fear in unfamiliar mice that are exposed to social fear condition-
ing [66], suggesting the possibility of a novel treatment for fear-related disorders. SSRIs
that aim to increase BDNF/tropomyosin receptor kinase B (TrkB) signaling or hippocam-
pal neurogenesis may improve pattern separation and hippocampal function, improve
contextual processing, and help modulate fear responses [83]. Fluoxetine, which is also
an SSRI used for depression and fear/anxiety-related disorders, exhibited a BDNF/TrkB-
dependent effect on the extinction of fear memory in the dorsal and ventral hippocampus,
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as well as the amygdala and mPFC [67]. Although further studies are required, existing
research suggests that SSRIs modulate the activity of brain regions and neural circuits
related to fear memory. McAvoy et al. demonstrated that chronic treatment with fluoxetine
resulted in increased hippocampal neurogenesis, maturation of newborn dentate granule
neurons, and neuronal activity in adult mice, but not in middle-aged mice [68]. Contreras
et al. revealed that fluoxetine treatment regulated fear-based chronic stress associated with
the microcircuits of limbic–cortical circuits, particularly the lateral septal nucleus and the
mPFC [69]. Citalopram administration reduced the overgeneralization of fear memory and
extinction of fear learning in auditory cued fear conditioning [70]. Chronic administration
of citalopram reduced the expression of the NR2B subunit of the NMDA receptor in the
amygdala, which is important for synaptic plasticity and acquisition of fear [71]. Moreover,
although not a fear-associated model, there are reports that SSRIs regulate hippocampal
synaptic plasticity and structural remodeling by intervening in neural circuits [84–86]. This
evidence suggests that SSRIs may have therapeutic effects not only on fear memory but
also on fear-related disorders, as they influence neural circuit regulation.

Cannabinoids are compounds found in Cannabis sativa, also known as cannabis or
hemp. The most common cannabinoids are tetrahydrocannabinol (THC) and cannabidiol
(CBD). Evidence for the health benefits of CBD suggested that the anti-inflammatory, neuro-
protective, and antidepressant effects of CBD may help against psychiatric disorders, such
as anxiety and insomnia, and pain [87]. Preclinical studies reported that CBD increased the
survival of DGCs in mice and doublecortin-positive neuroblasts, thus promoting hippocam-
pal neurogenesis [88]. CBD administration also increases hippocampal BDNF/ERK/CREB
expression, which is important for neuronal survival and maturation [89]. These bodies
of evidence suggest that the therapeutic mechanism of CBD possesses proneurogenic effi-
cacy. In fear acquisition and memory, studies have reported that CBD relieved fear and
fear-related anxiety by reducing fear learning and memory [70,72]. Clinical studies have
reported the potential of THC to enhance neural circuits, particularly ventral mPFC and
hippocampus activation, to increase the extinction and recall of fear memory [73,74]. No-
tably, Rabinak et al. identified the fear-extinction circuitry that involved the ventral mPFC,
hippocampus, and amygdala, in a clinical study. These findings suggest that cannabi-
noids have proneurogenic properties, indicating it has therapeutic potential for fear-based
disorders, including anxiety and PTSD.

In addition, dopamine and 5-hydroxytryptamine (5-HT), which show pro-neurogenic
properties by increasing hippocampal neurogenesis and modulating neural circuits, also
exhibit effective responses to fear-related disorders [90,91]. A recent report suggests that
brexpiprazole, a dopamine D2 receptor agonist, is a possible new pharmacological drug
against PTSD that promotes the extinction of maladaptive fear memory and modulates
the hyperactivation of the amygdala and hippocampus [75]. Moreover, the activation of
5-HT1 receptor in the lateral habenula through an injection of 5-carboxyamidotrypamine
maleate salt (5-HT1 receptor agonist) decreased fear acquisition, which was accompanied
by decreased AMPA receptor in the hippocampus [76]. Mohammadi-Farani et al. found
that the activation of 5-HT3 receptors in the mPFC is an important mechanism of PTSD
and fear-related disorders [77]. The 5-HT3 receptor antagonist, ondansetron, increased the
fear extinction in an SPS-induced PTSD model, suggesting that blockade of 5-HT3 receptor
is a treatment for fear and fear-related disorder.
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Neuropeptides act as key modulators of hippocampal neurogenesis and hippocampus-
dependent memory via the modulation of the activity of neural stem cells and excitability
of DGCs [92]. In particular, neuropeptide Y (NPY) is a polypeptide neurotransmitter that
is widely distributed in the brain. The proneurogenic action of NPY on DGCs has been
reported both in vitro [93,94] and in vivo [95]. NPY promote the proliferation of neural
stem cells through ERK signaling [94]. Previous studies have reported that exogenous NPY
administration increased DGC proliferation and neuronal differentiation [95,96]. NPY is
considered an endogenous modulator of stress vulnerability and resilience that is selec-
tively released from hippocampal GABAergic interneurons and anteroventral bed nuclei
of stria terminalis [78,79,97]. NPY-expressing interneurons of the dorsal DG are activated
during fear response, leading to decreased contextual fear memory and increased fear
extinction [78]. Neuropeptide S (NPS) also exhibits proneurogenic activity and is involved
in modulation of fear memory. Exogenous injection of NPS into the cerebral ventricle or
amygdala reduces fear-conditioning activity [80] and increases fear extinction [81]. Interest-
ingly, NPS receptor-deficient mice exhibit generalization of fear memory and anxiogenic
phenotypes in a test of anxiety, fear, and stress behaviors, thereby demonstrating the role of
NPS in fear memory modulation [82]. Thus, these reports illustrate the important role of
neuropeptides in modulating fear memory and extinction.

7. Conclusions

In this review, we provide an overview of fear learning and memory associated with
PTSD and anxiety-related disorders (Figure 1). Furthermore, the cellular factors and neural
circuits involved in fear memory have been summarized, including the neural circuits of
the hippocampus and adjacent brain regions studied using novel circuit-based approaches
(e.g., chemogenetic and optogenetic techniques). Fear learning and memory depend on
the development of long-term potentiation in the hippocampus, amygdala, and mPFC.
Neural circuits in these brain regions play key roles in contextual fear, auditory fear, and
fear extinction. Previous studies have demonstrated that upregulated responsivity of the
amygdala and ACC reduces the responsiveness of the mPFC and the hippocampal function.
A recent case study has reported that healthcare workers, veterans, and children may
currently be particularly vulnerable to PTSD and stress- or fear-related disorders due to the
COVID-19 pandemic [98]. In addition, there have been reports of successful cases of anxiety
and stress relief by prescribing therapeutic drugs to such individuals [99,100]. However,
the research on neurocircuitry approaches in the relationship between the COVID-19
pandemic and fear-related disorders remains inadequate. Therefore, understanding the
neural mechanisms underlying fear memory is essential for the development of novel
treatments for psychopathology. Animals and humans differ greatly in the process of fear
acquisition and formation of fear memories. Since the process of acquiring fear is largely
diverse and the neural circuits involved are very complex, various animal model and
human studies should be conducted to characterize the cellular and molecular mechanisms
underlying fear-related disorders.
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