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Abstract: Three artificial proteins that bind the gadolinium ion (Gd3+) with tumour-specific ligands
were de novo engineered and tested as candidate drugs for binary radiotherapy (BRT) and contrast
agents for magnetic resonance imaging (MRI). Gd3+-binding modules were derived from calmodulin.
They were joined with elastin-like polypeptide (ELP) repeats from human elastin to form the four-
centre Gd3+-binding domain (4MBS-domain) that further was combined with F3 peptide (a ligand of
nucleolin, a tumour marker) to form the F3-W4 block. The F3-W4 block was taken alone (E2-13W4
protein), as two repeats (E1-W8) and as three repeats (E1-W12). Each protein was supplemented with
three copies of the RGD motif (a ligand of integrin αvβ3) and green fluorescent protein (GFP). In
contrast to Magnevist (a Gd-containing contrast agent), the proteins exhibited three to four times
higher accumulation in U87MG glioma and A375 melanoma cell lines than in normal fibroblasts.
The proteins remained for >24 h in tumours induced by Ca755 adenocarcinoma in C57BL/6 mice.
They exhibited stability towards blood proteases and only accumulated in the liver and kidney. The
technological advantages of using the engineered proteins as a basis for developing efficient and
non-toxic agents for early diagnosis of tumours by MRI as well as part of BRT were demonstrated.

Keywords: recombinant protein engineering; ELP; binary radiotherapy; gadolinium contrast agent;
F3 peptide; RGD

1. Introduction

The search for new, safe methods of cancer diagnosis and treatment is still relevant.
Binary radiotherapy (BRT) is one modern type of radiation therapy, in which two factors
are used simultaneously to increase the local dose load on the tumour: (1) direct physical
targeting of the radiation beam to the tumour, which is provided by technical means,
and (2) administering specific radioenhancers that selectively accumulate in the tumour
and enhance the biological effect of radiation. The radioenhancers are usually complex
compounds containing high-Z elements (Z ≥ 53, for example gold [Au, Z = 79], bismuth
[Bi, Z = 83], hafnium [Hf, Z = 72], and gadolinium [Gd, Z = 64]). The interaction between
radiation and high-Z elements triggers a cascade of intracellular reactions that irreversibly
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damage cancer cells. This ensures a local dose increase during radiation therapy while
preserving the surrounding healthy tissues. Gd is attractive among high-Z elements because
it also has an abnormally high neutron capture cross-section (2.55 × 105 barns) [1]; that is,
it is one of the most effective components of neutron capture therapy (one of the variants of
BRT). Besides, Gd3+ can act also as positive contrast agent for magnetic resonance imaging
(MRI), thereby combining both diagnostic and therapeutic potential. Due to this potential,
Gd is a unique element for biomedical applications, in particular, for radiation therapy
under the control of MRI, a new method being developed thanks to recent developments
in magnetic resonance imaging systems combined with a linear accelerator [2,3].

In this regard, there is increased research into investigating existing and designing
new Gd-containing, dose-enhancing agents with improved characteristics, which are first
of all capable of selectively accumulating in the tumour and its microenvironment. The
question arises whether it is possible to use already existing Gd-containing contrast agents
(e.g., Magnevist® [gadopentetic acid], Gadovist, Optimark and Omniscan) with excellent
contrast properties for this purpose. There are data demonstrating that low-molecular-
weight complex compounds, like Magnevist®, despite good results in vitro [4], are often
inefficient in clinical trials [5] mainly due to rapid clearance from the bloodstream, lack of
specific tropism to tumour tissue, and a tendency to accumulate and be retained in some
types of healthy tissues (e.g., in the brain and bones) [6]. More promising results in terms
of selectivity (tumourotropy) are shown by Gd-containing nanoparticles. They accumulate
in tumours due to the enhanced permeability and retention (EPR) effect [1] caused by
the abnormal structure of blood vessels in tumours compared with normal tissues and
the presence of numerous tumour-associated macrophages actively capturing insoluble
particles. In this research field, only AGuIX® nanoparticles (NH TherAguix, France) have
successfully passed phase I clinical trials (NCT02820454, ClinicalTrials.gov) [7] and will be
tested in a phase II clinical trial (NCT03818386, ClinicalTrials.gov). AGuIX® nanoparticles
with a size of 5 nm have a polysiloxane core surrounded by Gd chelating complexes (usu-
ally 10); they were developed as a radiosensitiser for radiation therapy under the control
of MRI [8]. However, one should take into account the fact that in recent years the real
significance of the EPR effect for nanomedicine in relation to humans has been discussed ac-
tively and even disputed [9]. Therefore, the need for new Gd-containing preparations with
improved pharmacokinetic characteristics, selective accumulation, sufficient circulation
time in the bloodstream, and reduced toxicity, among other factors, remains acute. These
new compounds could be generated by functionalising the surface of nanoparticles with
specific peptides [10], polysaccharides [11], and other molecules involved in the receptor-
mediated accumulation of radiosensitising substances in the tumour itself or surrounding
tissues [12,13]. Research is also underway to create new targeted low molecular weight
chelating compounds [12].

Recombinant proteins such as a Gd carrier platform provide a promising alterna-
tive to synthetic polymers or low-molecular-weight molecules and have several advan-
tages. (1) They are completely biocompatible and biodegradable. (2) Unlike most chemical
polymers, they have a strictly deterministic size of the globule and, therefore, their bio-
distribution is more uniform. (3) A relatively small number of amino acids is sufficient to
create an almost unlimited number of protein molecules with a wide range of physicochem-
ical properties and functions. (4) The production of proteins occurs in biological systems;
this eliminates the need for the use of toxic chemicals for the synthesis of a medicinal sub-
stance. (5) Finally, because all living beings use proteins, there is a huge natural ‘database’
that can be used as a resource for creating new biomolecules [14,15].

There are a number of works on the design of protein contrast preparations with
Gd aimed at (1) enhancing contrast properties, (2) increasing ion selectivity and stability
of the carrier complex with gadolinium ion (Gd3+), and (3) improving targeting. One
group [16] developed a proteinaceous MRI contrast agent (ProCA32) based on rat and
human α-parvalbumin to detect micrometastatic liver tumours at an early stage. In another
study [17], the protein contrast agent ProCA1.GRP contained a fused gastrin-releasing
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peptide (GRP) for active targeting and imaging of prostate cancer and showed good re-
tention during intra-tumour administration. In another study, researchers developed
a ProCA32.collagen1 block with two Gd3+ binding sites and a GGGKKWHCYTYFPH-
HYCVYG peptide providing affinity for collagen I for visualisation of liver fibrosis [18].
Another group examined a two-domain fused Zarvin protein, which on the one hand
contained two high-affinity Gd3+ binding sites, and on the other hand was able to bind to
the constant part of therapeutic humanised immunoglobulin G (IgG) class antibodies [19].
In the above examples, the number of Gd3+ ions per protein molecule does not exceed two,
and the active targeting is directed to a single tumour surface marker. Besides, artificial
tumour-specific proteins conjugates (compositions) including different types of the listed
molecules (proteins, peptides, polymers, and chelators) could be used for the same pur-
pose [20]. This approach provides more accurate targeting, however, multi-stage synthesis
complicates the technology of obtaining the medicine and makes its quality standardisation
difficult. Taken together, these issues negatively affect the affordability of the drug for the
patient and decrease the reproducibility of the results of diagnosis or treatment obtained
with its use.

Considering the abovementioned points, this study pursued development of a com-
plex technical approach to create recombinant Gd3+-binding proteins that would meet the
principal requirements for application in BRT and MRI: (1) Proteins should be able to bind
as many Gd ions as possible and hold them firmly enough under physiological conditions;
(2) protein complexes with Gd should have contrast characteristics that are not inferior to
contrast agents currently used in MRI practice; (3) proteins should be synthesised in the
bacterial expression system in a soluble form with a high yield to ensure the technologi-
cal acceptability of the purification procedure; (4) high in vivo affinity and specificity of
the proteins to the tumours should be ensured by independently targeting two tumour
markers; and (5) the ligand peptides should be multimerised to achieve a cooperative
effect upon targeting the tumour receptor. It is known that oligo- or multimerisation of
functional blocks can be used to improve or create de novo certain properties of artifi-
cially designed proteins. For example, multimerisation of RGD-containing peptides could
lead to a multi-fold increase in the affinity of binding to target cells [21,22], and dimeri-
sation of cell-penetrating peptides could lead to an increase in the efficiency of capture
and cytoplasmic localisation [23,24]. However, it is obvious that the multimerisation of
individual parts of the protein without taking into account changes in the basic physical
and chemical properties of the protein in most cases would lead to adverse consequences,
such as instability of the globular structure and low solubility, aggregation, nonspecific
binding to various structures in vivo, loss of proteolytic stability, a drop in the level of
expression, etc. Therefore, in this work, an algorithm was used for coordinated multipli-
cation of several initially balanced protein functional blocks in terms of physicochemical
properties, whereafter the properties of the molecule as a whole did not change or changed
insignificantly. In general, artificial proteins were designed by taking into account the fact
that they should be immunologically compatible with the human internal environment,
non-toxic, and stable during expression in bacteria as well as at all stages of purification
and preparation of a complex with metal and upon administration in vivo. To comply
with these requirements, first, peptides from the composition of proteins encoded by the
human genome were used as initial modules, and second, their functional (biological)
and physicochemical (isoelectric point, hydrophobicity profile) properties were considered
when choosing the parental blocks.

Such a multilateral task was solved by designing individual functional protein blocks
with their subsequent combination and multimerisation in compliance with the above-
mentioned conditions. First, a Gd-binding domain (4MBS-domain) was designed as the
main core, which contained four Gd3+-binding centres derived from human calmodulin
alternating with elastin-like polypeptide (ELP) repeats derived from human elastin. The
latter were used as a structural component that creates a moderately hydrophobic environ-
ment and stabilises the overall globular structure of the 4MBS-domain. It was assumed
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that such moderate hydrophobicity, on the one hand, would give sufficient stability to
the Gd3+ complex with the chelator peptide and, on the other hand, would not interfere
with the access of water molecules to the first coordination sphere of Gd3+, which is im-
portant for the contrast characteristics of the designed protein. ELP peptides are well
known in structural biology; they are non-toxic, non-immunogenic, and have the ability
to undergo a controlled phase transition [25–27]. Two different tumour-homing motifs
were also included in the composition of each protein. One of them, the RGD peptide,
has affinity for integrin αvβ3 [28–31], which isone of the historically first known tumour
markers used in anti-cancer therapy. Integrin αvβ3 is abundantly present on the cell sur-
face of solid tumours of almost all known types, as well as on the vascular network of
tumours. The RGD peptide was included in three copies in all the proteins developed in
this work. As a second tumour-specific ligand, F3 peptide was used, which has affinity for
nucleolin [32–35]. Nucleolin is involved in the development of some pathological condi-
tions, including oncogenesis and viral infection [36]. Increased expression of nucleolin is
observed in some solid cancers and blood tumours. Of note, when overexpressed, nucleolin
can be localised not only in the nucleolus, but also transported to the plasma membrane [37].
Increased nucleolin in the membrane is observed not only on the surface of some types
of tumours, but also on activated lymphocytes; angiogenic endothelial cells; and other
cells involved in the processes of inflammation, angiogenesis, lymphangiogenesis, and
oncogenesis [38]. Nucleolin has been suggested as a promising target in the development
of targeted antitumor drugs [39]. In addition to serving as a tumour-homing component, F3
peptide, which has pronounced cationic properties (pI = 10.77), was used to compensate for
the negative charge of the 4MBS block (pI = 4.28) when designing the W4 domain. For this
reason, when designing the proteins, the W4 domain including F3 peptide and the 4MBS
block underwent multimerisation as a whole. Consequently, three similar proteins with
the total number of Gd3+-binding sites equal to 4, 8, and 12 were designed by dimerisation
and trimerisation of the W4 domain (one, two, and three copies, respectively). Green
fluorescent protein (GFP) was introduced to all three artificial proteins as an arbitrary
reporter facilitating experiments for testing its biological distribution in different systems.

A special technology for producing genetically stable plasmid constructs with mul-
tiple alternating tandem repeats was established. It includes a restriction/ligation step
using partially randomised initial blocks containing alternative synonymous codons and
interchangeable amino acids in all available positions. Translation initiation of the com-
mercially available vector pRSET-EmGFP (Thermo Fisher Scientific, Waltham, MA, USA)
was modified to increased protein yield in Escherichia coli. Taking into account the high
affinity of MBS for metal ions, the scheme includes a nickel ion (Ni2+) purification step after
conventional match chelate chromatography by using the Ni-NTA sorbent. The procedure
to generate pure protein complexes with Gd3+ derived from gadolinium nitrate [Gd(NO3)3]
was established taking into account the low solubility of Gd salts outside of pH 6.0–7.0.

The obtained complexes were tested for specific affinity to the U87MG human glioma
and A375 human melanoma cell lines compared with normal human fibroblasts by using
different methods including inductively coupled plasma atomic emission spectrometry
(ICP-AES) for the Gd assay, fluorescent microscopy, and cell flow cytometry. Protein
stability towards proteolysis was tested upon incubation with serum in vitro. Finally,
in vivo experiments using C57BL/6 female mice bearing tumours caused by grafting a
Ca755 murine adenocarcinoma were tested by using the E2-13W4, E1-W8, and E1-W12
proteins chemically labelled with cyanine 7 (Cy7). Taken together, our experimental data
provide evidence about the robustness of the proposed technology to produce Gd3+-binding
proteins; their specific tropism to human and murine tumour cells exemplified with U87MG
human glioma, A375 human melanoma, and Ca755 murine breast adenocarcinoma; the
high stability of the Gd–protein complexes in the bloodstream; and the low toxicity for cells
and animals in the absence of exposure to radiation.
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2. Results and Discussion
2.1. Protein Modelling
2.1.1. Construction of the Basic Metal Binding Domain Containing the 4MBS-Domain

Gd3+ can tightly bind to calcium ion (Ca2+) binding sites of natural biomacromolecules
because the radii of Gd3+ (0.99 Å) and Ca2+ (1.00 Å) are close [40–43], in addition to oxophilic
ligand preferences [44]. Thereby, Gd3+ can interfere in intracellular calcium-dependent
regulatory processes, an ability that is assumed to underlie the molecular mechanism of Gd
toxicity [45,46]. Based on this, human calmodulin was used as a natural prototype of an
artificial metal (i.e., Gd3+-binding protein domain). Directly using complete calmodulin in
its natural form is impossible because this protein is involved extensively in cell-signalling
regulatory networks. Therefore, the Ca2+-binding motif (D21-L33) was only used for de
novo design of the Gd3+-binding domain. Previously [47], the Ca2+-binding loop from this
amino acid sequence (D21–I28) was successfully used for complexation of Gd3+ within a
short synthetic chimeric peptide. The metal binding domain requires the following: (1) an
ordered structure, (2) an inert external surface of the native molecule compatible with
the prokaryotic environment during protein synthesis and the eukaryotic environment
when used for contrasting or therapy, and (3) rapid and efficient folding in E. coli upon the
synthesis (cysteine residues should be avoided). With all these considerations in mind, ELP
motifs were used as a domain-forming core. ELPs are a class of biopolymers that consist
of repeated pentapeptide sequences Val-Pro-Gly-Xaa-Gly (VPGXG, where Xaa can be any
common amino acid except proline), taken from human tropoelastin. This element has
been used widely in synthetic biology to create biomaterials with various functions and
properties [48]. Here, a metal-binding domain was constructed containing four identical
metal-binding motifs from calmodulin alternating with ELP motifs of the composition
2 × (E(Y)-M-E-M)-Eend, where E(Y) consists of two ELP repeats, one with Y (Tyr) and
another with S (Ser) as Xaa; M is the metal binding site included in the D21–L33 portion
of human calmodulin 1; E consists of four ELP repeats with S as Xaa; and Eend consists
of two ELP repeats with S as Xaa. The serine residue bearing a polar neutral side chain
was chosen as a guest Xaa in most ELP repeats to confer mild hydrophobic properties on
one ELP unit (the grand average of hydropathicity [GRAVY] index is 0.2, computed by the
EXPASy tool) to promote the formation of the hydrophobic core of the 4MBS-domain for
overall hydrophilisation of the whole domain (the GRAVY index is −0.469, computed by
the EXPASy tool) for solubility reasons.

Before designing an expression construct, the secondary structure of the whole 4MBS-
domain was predicted by using trRosetta (Figure 1). The molecular modelling forecasted
that the domain constructed by this method should have an ordered helix-coil conformation
where most of the metal-binding site sequences are fixed in the coil conformation, which is
beneficial for complexation with metal ions.
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Figure 1. Putative secondary structure of the 4MBS-domain, 3RGD-domain, and F3-peptide predicted
by trRosetta. MBSs are shown in the red font, α-helices are shown in boxes with yellow highlighting,
β-strands appear in boxes with blue highlighting, and the residues in the coil conformation are
highlighted with grey. The residues underlined with a straight line are putatively fixed in an ordered
conformation, while the residues underlined with a wavy line have a disordered conformation.



Int. J. Mol. Sci. 2022, 23, 3297 6 of 30

Next, the tertiary structure was modelled by trRosetta with restraints from both deep
learning and homologous templates [49]. It predicted the possible spatial arrangement
of the charged and hydrophobic regions within the 4MBS-domain. One of the predicted
models is shown in Figure 2A. The domain has a globule-like shape harbouring a mild
hydrophobic core surrounded by a hydrophilic envelope (the colour scheme is explained
in the Figure 2 caption). The metal binding sites (red protein backbone) are located in the
outer sphere. Similar results were obtained by trRosetta based on the de novo folding
model, guided by deep learning restraints. Therefore, using ELP repeats provided the
required globule-like structure of the designed MBS domain stabilised by hydrophobic
interactions in the inner sphere.
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Figure 2. (A). A graphical presentation of the 4MBS-domain generated by Cn3D4.3. The protein
sidechains and backbones are coloured based on the hydrophobicity scheme* of Cn3D4.3 with the
exception of MBSs, the backbones of which are shown in red. (B). The putative tertiary structure
of the designed proteins E2-13W4, E1-W8, and E1-W12 (from left to right) predicted by trRosetta
with restraints from both deep learning and homologous templates. The graphical presentation was
generated by Cn3D4.3. MBSs are shown in red, F3 peptide is shown in purple, RGD is shown in
magenta, and EmGFP is shown in green. The arrows indicate the 4MBS-domains. * Protein backbones
and sidechains are coloured according to their free energy of immersion in water. Blue is hydrophilic and red is
hydrophobic.

2.1.2. Construction of the RGD-Containing Region (3RGD-Domain)

A previous study provided examples of artificially created molecules containing
several RGD motifs that are capable of simultaneously binding several integrin αvβ3
receptors, as confirmed by electron microscopy [50]. Closely spaced RGD-containing
ligands immobilised on a substrate also cause integrin αvβ3 clustering [51–53]. A number
of studies have also demonstrated that a monomeric RGD motif or a monoclonal antibody
to integrin αvβ3 prevent clustering of these receptors [54]. Therefore, the RGD motif was
repeated to promote clustering and internalisation of the designed protein into the target
cells. Based on previous work [55], RGD was added in triplicate within the AVTGRGD
motif separated from each other by a linker of 12 amino acids–5 × (SG)GS. The secondary
structure of the whole 3RGD-domain predicted by trRosetta is shown in Figure 1.
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2.1.3. Linking the Designed Domains

F3 peptide has a large positive charge (pI 10.77) and does not have a stable confor-
mation (the computed instability index is 90.34). The secondary structure predicted by
trRosetta software includes mostly a coil conformation of the peptide bonds; an 8-amino-
acid-long helix is the only regular element of F3 peptide (Figure 1).

Because the MBS and RGD domains were predicted to have a globular conformation,
nucleolin-binding F3 peptide was used as a linker to connect two 4MBS-domains. Introduc-
ing F3 peptide to the designed protein of interest can putatively contribute to its ability to
target tumours due to specific affinity to the surface nucleolin and simultaneously endows
favourable physical and chemical properties such as hydrophilicity, stability, and neutral pI,
among other features (Table 1). These parameters of the de novo designed protein become
close to serum albumin that is likely beneficial for its longevity in the bloodstream. More-
over, F3 peptide is probably not involved in the formation of the MBS domain structure
and accordingly the predicted model of whole proteins (Figure 2). Therefore, it remains
entirely available for interaction with the cellular receptor.

Table 1. The physical and chemical properties of the designed MBS-proteins compared with bovine
serum albumin (BSA) (calculated by Protparam software).

E2-13W4 E1-W8 E1-W12 EmGFP BSA

MW, kDa 52.2 68.4 84.6 26.9 69.3

Theoretical pI 5.9 6.01 6.03 5.71 5.82

Ext. coefficient at 280 nm (1 g/L) 0.6 0.5 0.5 0.8 0.7

Estimated half-life:
-Lysate of mammalian reticulocytes, in vitro 30 h 30 h 30 h 30 h

-Yeast, within the cells 20 h 20 h >20 h >20 h
-Escherichia coli, within the cells 10 h 10 h >10 h >10 h

The instability index 31.07
(stable)

33.55
(stable)

31.07
(stable)

27.73
(stable)

40.28
(unstable)

Aliphatic index 55.85 53.44 52.07 77.82 77.46

Grand average of hydropathicity (GRAVY) −0.665 −0.679 −0.690 −0.491 −0.429

Estimated charge at pH 7.00 −6.2 −5.2 −5.1 −6.6 −12.2

With these considerations, F3 peptide and the 4MBS-domain were multiplied, with
the latter repeated several times within the E1-W8 and E1-W12 constructs. This decision
allowed endowing the constructs with favourable features like pI, stability, and GRAVY
(Table 1), as was achieved in E2-13W4.

GFP was included in the MBS-protein molecule because its fluorescence allows a
permanent visual tracing of its synthesis and distribution between the fractions along the
overall experimental course at stages of the producer strain cultivation, protein purification,
and uptake experiments. EmGFP was placed at the C-terminus of the fused protein to
serve as a reporter of protein folding. A C-terminal location is most adequate for this
role because acquiring the native conformation of the C-terminal portion of the protein
depends on the formerly nascent N-terminal portion more than vice versa. Comparison of
the forecasted 3D structures of the virtual MBS-proteins with and without EmGFP allowed
hypothesising that the globule stability of GFP and the artificially designed parts of MBS-
proteins are independent (data not shown). The physical and chemical properties of GFP
are comparable to those of the artificially designed parts of MBS-proteins (Table 1).

Amino acid composition of the functional units of the designed proteins is summarised
in Table 2.
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Table 2. Amino acid composition of the functional units of the designed proteins.

Symbol Function Source (Amino Acid) Sequence (Amino Acid)

M Metal binding site Calmodulin (human) (D21–L33) DKDGDGTITTKEL

ELP Forms the secondary
structure

Elastin (human) [VPGSG]

Immunoglobulin heavy chain junction region [VPGYG]

L Linker Small antibody fragment linker (single-chain
Fv fragment)

[G4S]2[G3S]1,
[SG]5GS

F3 Ligand of tumour receptors Non-histone chromosomal protein
HMG-17 (human)

KDEPQRRSARLSAKPA
PPKPEPKPKKAPAKK

RGD Ligand of tumour receptors Fibronectin (human) AVTGRGD

2.2. Engineering DNA Constructs

The proposed modular composition of the Gd3+-binding protein platform requires
development of a cloning technique allowing subsequent multiplication of short DNA re-
peats (MBS, RGD, ELP, and F3). Such DNA constructs often demonstrate instability in vivo
and in vitro. Besides, the cloning scheme must render an optimal codon composition that
would provide a high yield of the product when expressed in E. coli.

To design DNA oligonucleotides used for synthesis of the expression blocks, only
the codons preferably used in E. coli were chosen (https://www.genscript.com/tools/
codon-frequency-table, accessed on 12 February 2022). However, in view of the necessity
to reduce the length of perfect direct repeats and therefore prevent in vivo instability of
the constructs, different synonymic codons for Ser, Thr, and Leu were used. The length of
the purchased oligonucleotides was limited to 63 nt to prevent possible single-nucleotide
deletions that could appear due to incomplete condensation of phosphoimidates at each
step. In addition, constructing tandem repeats with minor variations within the functionally
uniform modules was required. Hence, the overall cloning scheme included stages of
tandemisation of the repeats and the stages of joining of the established tandems.

The multiplexing principle used in this work is shown in Figure 3. This principle is
based on restriction/ligation of an isocaudomers (i.e., pairs of restriction enzymes that
have different recognition sequences but render compatible sticky ends upon cleavage)
and uses the fact that upon homological ligation, the original site is retained, but upon
heterological ligation, there are hybrid sites recognised by neither of the involved restriction
enzyme. To realise this approach, a gene fragment to be multiplied must be flanked with
different restriction sites of isocaudomers and the recipient plasmid must have a single
site of isocaudomers. Simultaneous restriction and ligation in a single tube restores sites
that appear due to ligation of the fragments in unwanted orientations. Therefore, these
erroneous links are immediately broken, in contrast to the links between the fragments in
the correct orientation. Hence, unlimited tandemisation of the repeats in a direct orientation
can go on. The advantages of this technique are (1) rapid preliminary selection of co-directed
insertion with single primer PCR (Figure 3, right) and (2) the possibility to use the enzymatic
ligation assisted by nucleases ELAN principle for rapid tandem multimerisation of short
repeats [56]. In some cases, depending on the sequence to be tandemised, seamless linking
of protein motifs can be achieved; otherwise, a pair of amino acids encoded by a chimeric
restriction site is added between the linked monomers. In this work, the BglII/BamHI pair
was chosen, keeping in mind that the chimeric site encodes Gly-Ser. This amino acid motif
is hydrophilic, does not impact the tertiary structure, and can serve as a part of the linkers
between the protein domains.

https://www.genscript.com/tools/codon-frequency-table
https://www.genscript.com/tools/codon-frequency-table
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Figure 3. Principle scheme of cloning tandem repeats based on restriction/ligation of isocaudomers
used in this work.

The cloning scheme included the following main stages: (1) obtaining the MBS core
sequence encoding the M motif (derived from human calmodulin) alternated with ELP
repeats—the B77end block; (2) obtaining the nucleolin-specific F3-encoding unit with a
peptide linker in the C-terminal position—F3L block; (3) combining the B77end block with
the F3L block—the W4 block; (4) obtaining a unit encoding a triplicated RGD-derived
motif from human fibronectin with a linker in the C-terminal position—the RGD1(3) block;
(5) combining the RGD1(3) and W4 blocks within the pRSET-EmGFP expression vector—
the 13W4 block; (6) modifying a coding sequence just downstream of the translation
initiation site of pRSET as described previously [57]—the pE2-13W4 plasmid; (7) engineer-
ing a plasmid with a duplicated W4 block—the pE1-W8 plasmid; and (8) engineering a
plasmid with a triplicated W4 block—the pE1-W12 plasmid.

Thus, the plasmid construction scheme outlined in Figure 4 contains three stages
suitable for successive tandem multiplying of the inserted fragment. Table 3 presents the
multiplying potential of the initial plasmids.

All open reading frames (ORFs) were designed to exclude rare codons to ensure high
recombinant protein yield. The GC content was also considered to facilitate engineering
and protein yield. For practical reasons, however, it would be beneficial to further increase
protein yield. Based on these considerations, the backbone of the p13W4 plasmid was
modified slightly. It is known that varying the codon composition around the 5′-proximal
region of messenger RNA (mRNA) could control the level of expression of the recombinant
protein. Here, a predictive design method, UTR Designer [57], was used to determine the
length and nucleotide composition of this region. In this way (online calculator), A and C
nucleotides were preferable downstream from the ATG start codon of the 6His-tag in any
composition with a total length of 15 nucleotides. Given the codon usage of E. coli, amino
acids encoded by a combination of A and C, including an additional histidine adjacent
directly to the 6His tag, were chosen. Codon frequencies were also considered to maximise
protein production [58]. As a result, the site of the original pRSET plasmid (-cggggttct-) was
replaced by the site (-accaccccacaacac-) that encodes Thr-Thr-Pro-Gln-His, which also led to
replacement of the original 6His-tag to a 7His-tag. Two DNA variants of the insertion (E1
and E2) coding the same amino acid sequence were used. The above-mentioned procedure
allowed increasing the desired protein yield by ~60% compared with the initial yield, as
estimated by sodium dodecyl sulphate (SDS)-PAGE analysis of cell lysates, harbouring
p13W4 (parental translation initiation site derived from pRSET), pE1-13W4 (E1 variant)
or pE2-13W4 (E2 variant) (data not shown). Both variants provided a similar increase in
protein yield, so they were not distinguished in the protein investigation experiments.

The motif composition of all three expression plasmids is summarised in Table 4.
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Figure 4. Overall scheme for constructing the plasmids used in the work. All constructs
are based on the pJET1.2 vector backbone (at the top) or the pRSET-EmGFP backbone (at
the bottom). The colour codes are used to delineate the following amino acid sequences:
E(Y)-[VPGYG-VPGSG], E-[(VPGSG)4], M and M*-[DKDGDGTITTKEL], Eend-[(VPGSG)2], F3-
KDEPQRRSARLSAKPAPPKPEPKPKKAPAKK, L-[(G4S)2(G3S)1], and RGD-AVTGRGD(SG)5GS. The
enhanced expression peptide tag is marked with a grey star.

Table 3. The multiplying capacity of the initial plasmids for each essential motif per cloning cycle.

Motif Backbone
VectorPlasmid MBS F3 RGD ELP

pB7 2 - - 6 pJET1.2

pFLB77 4 1 - 14 pJET1.2

pRGD1(1) - - 1 1 pRSET-EmGFP
Enhancing protein yield—the pE2-13W4 plasmid.
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Table 4. The number of motifs in each plasmid.

Plasmid RGD F3 ELP MBS EmGFP

pE2-13W4 3 1 5 4 1

pE1-W8 3 2 10 8 1

pE1-W12 3 3 15 12 1

2.3. Protein Purification

Evaluation of the expression conditions revealed that when cultivated under similar
conditions, each protein yielded 40–50 mg per gram of biomass. Cultivation on nutrient-
rich media (e.g., Terrific broth or 2 × YT) provided no or a low yield of the product. By
contrast, slow growth in LB low-salt medium supplemented with glycerol as a carbon
source provided the optimum protein yield in this study. Moreover, the oxygen supply was
an important factor in both bacterial growth and recombinant protein synthesis and matura-
tion. Therefore, maximum agitation was applied in the case of a small-scale cultivation (up
to 50 mL) and forced artificial ventilation in the case of the large-scale cultivation (0.4–0.5 l).
In addition, overnight gravity sedimentation at 4 ◦C was used to achieve maturation of
the protein (including covalent automodification of GFP). Under these conditions, all three
proteins were synthesised with a maximum yield in a soluble form (Figure 5).
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Figure 5. (A) E2-13W4 within a crude Escherichia coli lysate after sonication and subsequent centrifu-
gation. (B) Analysis of the homogeneity of the purified MBS-proteins with 15% SDS-PAGE with
subsequent staining of the gel with Coomassie brilliant blue R-250. (C) Absorption spectrum of the
purified E2-13W4 protein (1.2 mg/mL) in 10 mM HEPES (pH 7.0). (D) The same solution of the
E2-13W4 protein exposed to 314 nm ultraviolet light.

The protein purification protocol includes convenient methods such as IEC and IMAC
with additional emphasis on metal elimination. The purified proteins were identified
by SDS-PAGE for protein size and purity (Figure 5B). The protein concentration was
determined by the BCA protein assay and confirmed by densitometry with GelAnalyzer
19.1. The protein purity determined by densitometry varied in the range of 96–98%.

The molar extinction coefficient of all three proteins at 487 nm was similar; it ranged
from 35,000 to 45,000 M−1 cm−1 depending on the cultivation condition and did not
depend on the type of protein. The absorption spectrum of the E2-13W4 protein is shown
in Figure 5C. The formerly reported molar extinction coefficient of the native Em-GFP at
487 nm was 57,500 (M−1 × cm−1) [59], which is just a little more than MBS-proteins.
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2.4. Size Measurement

DLS measurements showed that as expected, the size of the putative monomeric form of
MBS-proteins increased slightly alongside an increase in the molecular weight from E2-13W4
to E1-W8 to E1-W12 and reached approximately 100% by volume (Table 5 and Figure 6).

Table 5. Measurement results from the Malvern software.

Sample Name MW, kDa “Monomer”, d., nm % Mass, d., nm

E2-13W4 52.2 9.2 99.87

E1-W8 68.4 10.7 99.98

E1-W12 84.6 11.3 99.99

BSA 69.3 4.7 100.00
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The particle size calculation used by DLS is based on Brownian motion of the particles.
Despite the lower or almost equal molecular weight of E2-13W4, E1-W8, and BSA, the
size of the latter is smaller (4.7 nm) than the former (9.2 and 10.7 nm, respectively). This
fact probably reflects the disordered nature of MBS-proteins as suggested by the protein
structure modelling. A disordered protein conformation renders a larger thermodynamic
radius of the globule and therefore hinders its movement in solution. Experimental mea-
surements indicated that MBS proteins are able to conserve the globule size corresponding
to the presumed monomeric form under physiological conditions when incubated for 24 h
at 37 ◦C in 0.15 M NaCl (pH 7.0). Complexation with Gd3+ did not induce statistically
significant changes in the size of MBS proteins (data not shown).

2.5. Gd3+-Binding Affinity (mKd) and Binding Stoichiometry Determination

The equilibrium dialysis method [60–62] was used to determine the mKd of the MBS–
Gd3+ complex. This complex undergoes dissociation, see Equation (1), with a rate constant
determined by Equation (2). The free Gd3+ concentration that penetrates the semipermeable
membrane is the same in both chambers after equilibration and can be measured.

MBS− Gd3+ ↔ MBS + Gd3+ (1)

Kd =

[
MBS f ree

]
∗
[

Gd3+
f ree

]
[MBS− Gd3+]

(2)

The data obtained (Table 6) show that (1) the mean geometric dissociation constants
of MBS–Gd3+ complexes in all three proteins are similar, so multimerisation does not
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affect the binding properties of the 4MBS domain; (2) the 4MBS domain provides a good
Gd3+ binding capacity at physiological pH despite the presumed flexibility and disordered
structure of the whole proteins. For comparison, the mKd of Ca2+ with calmodulin varies
in the range of 3–20 µM [63].

Table 6. Mean geometric dissociation constants of MBS–Gd3+ complexes of proteins in 10 mM HEPES
(pH 7.0) at 25 ◦C.

Protein mKd (±Standard Deviation), µM

E2-13W4 0.21 ± 0.03

E1-W8 0.17 ± 0.02

E1-W12 0.19 ± 0.04

For each protein, the MBS and Gd3+ binding stoichiometries were determined by the
continuous variation method [64]. Briefly, a 50 µM solution of the Gd–XO complex in
20 mM HEPES (pH 7.0) was titrated with the corresponding protein in the same buffer.
Displacement of Gd3+ from the Gd–XO complex was determined by a change in the
absorbance at 570 nm [65]. Figure 7 shows the results of titration with the E2-13W4 protein.
Similar results were obtained with the E1-W8 and E1-W12 proteins. For convenience of
data processing, the optical density at 570 nm in Figure 7 is shown as the inverse. Thus, as
expected, for all three proteins the number of bound Gd3+ ions corresponds to the number
of binding sites in the protein molecule.
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Figure 7. Job graph for Gd3+ binding to the E2-13W4 protein. The observed maximum at
x = 0.5 corresponds to a stoichiometric ratio of 1:1. The results are represented as arithmetic means,
and the error bars represent standard deviations (n = 3).

2.6. Relaxivity and MRI

The in vitro relaxivity values of the designed E2-13W4-Gd4, E1-W8-Gd8 and E1-W12-
Gd12 complexes were measured at a field strength of 7 T to minimise the signal-to-noise
ratio (SNR) at pH 7.0 with the following parameters: TR = 16,000; TE = 7.1; TI = 50, 100,
200, 400, 600, 800, 1000, 1500, 1980). Table 7 shows that all three protein-Gd3+ complexes
exhibit similar r1 values, which are slightly higher than the r1 value of Magnevist®.

Table 7. Relaxivity values of protein-Gd complexes at pH 7.0.

E2-13W4-Gd4 E1-W8-Gd8 E1-W12-Gd12 Magnevist®

r1, mM−1 s−1 6.84 6.61 6.66 4.43
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Figure 8 shows that, at 100 µM Gd3+, the designed protein complexes were able
to introduce contrast enhancement in T1-weighted imaging at 1.5 T (a commonly used
value in clinical practice). Indeed, the theoretically predicted protein structure exhibits
low autonomous stability, which does not allow attaining high relaxivity of the MBS-Gd3+

complex. A higher relaxivity can be achieved by constructing a rigid frame around the
metal binding site [16,19,66]. While there are approaches to achieve a rigid frame, they are
not applicable in this work because non-natural amino acid blocks in the carrier proteins
must be minimised to avoid an immune response upon intravenous administration to
humans. The achieved relaxivity of the MBS-Gd3+ complexes is comparable to those of the
linear chelator Magnevist®.
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Figure 8. T1-weighted MRI of phantoms were made at 1.5 T, room temperature in correspondent
buffer (10 mM HEPES, pH 7.0) and 100 µM Gd3+ concentration. 3D SPGR TR = 500, TE = 10,
a = 40◦. (1)–H2O; (2)–Gd(NO3)3; (3)–Magnevist®; (4)-E2-13W4-Gd4 complex; (5)–E1-W8-Gd8 com-
plex; (6)-E1-W12-Gd12 complex.

2.7. In Vitro Assessment of the Stability of MBS-Gd3+ Complexes in the Presence of Serum

The stability of a contrast agents and therapeutics in the bloodstream is one of the
crucial factors for in vivo applications. In this study, the serum stability of the de novo
synthesised Gd-binding proteins was determined by incubating them with 50% human
serum at 37 ◦C for up to 72 h.

Surprisingly all three MBS-proteins in complexes with Gd3+ remained intact even after
72 h of incubation (Figure 9), indicating that the proteins are highly stable in blood.
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8, E1-W12. Lanes 1, 4 and 7 are samples before incubation; lanes 2 and 5 are 24-h incubation with
serum; and lanes 3, 6 and 8 are 72-h incubation with serum.

2.8. Assay of MBS-Protein Uptake by Tumour Cells Using Fluorescence Microscopy

To confirm the ability of the obtained MBS-proteins to interact with (or enter into)
tumour cells, in vitro experiments were carried out using the IN Cell Analyzer (fluo-
rescence microscopy). The U87MG cell line was chosen as a candidate due to expres-
sion surface nucleolin [67,68], which can serve as a receptor for F3 peptide [69]. More-
over, U87MG expresses abundant integrin αvβ3 ([5.2 ± 1.4] × 104 receptors/cell, or
18 ± 6 receptors/µm2) [70], which can bind the RGD peptide. The U87MG cell line al-
lowed estimating the theoretical contribution of both RGD and F3 peptide elements to the
overall specificity of the tumour markers when the affinity of E2-13W4, E1-W8 and E1-W12
were compared. All three proteins, alone or complexed with Gd3+, showed an excellent
visual ability to enter U87MG cells. Figure 10 shows an example involving E2-13W4. The
following observations were made. (1) There was no visual difference in the uptake level
between the studied MBS-proteins upon incubation of the cells with the proteins at equal
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molar concentrations in the medium. In this regard, it is noteworthy that at an equal protein
molar concentration, the average concentration of the RGD motif remains the same, but the
F3 peptide concentration increases two and three times in the series E2-13W4→ E1-W8
→ E1-W12 (Table 4). This fact may be explained by a high concentration of MBS-proteins
in the medium, perhaps exceeding the level of saturation of the respective cell receptors,
which eliminates the differences between them. (2) There was no difference in uptake upon
complexation of proteins with Gd3+, a finding indicating that proteins designed in such a
way can bind Gd3+ without affecting the targeting ability. (3) There was a slight increase in
protein accumulation upon cultivation of the glioma cells in the presence of 2 µM Mn2+

(Figure 10, right), which supports the suggestion that integrin αvβ3 is involved in this
process. Indeed, Mn2+ is a known powerful activator of the ligand-binding function of
integrins [71,72]. Interestingly, 2 µM Mn2+ in the cell culture medium was sufficient to
promote MBS-protein internalisation, while the previously used concentration of Mn2+ for
the activation of integrins was significantly higher (0.5–2.0 mM).
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Figure 10. Uptake of the Em-GFP (A), E2-13W4 protein (B,C) by U87MG cells during 24-h incubation
without (B) and with (C) 2 µM Mn2+. The green colour indicates protein and the blue colour indicates
cell nuclei stained with DAPI.

2.9. Flow Cytometry

Flow cytometry was performed to assess the share of the cells interacting with the
studied MBS-proteins. The U87MG human glioma cell line was again used because it
showed good uptake of MBS-proteins in the previous experiment. The A375 cell line was
also used because it has been demonstrated to express surface nucleolin (it selectively
binds the AS1411 nucleolin-specific aptamer) [73,74]. Integrin αvβ3 [75] or integrins β1
and β3 [76] have also have been reported as the surface markers of A375 cells. Freshly
prepared primary human PBMC were used as a normal blood cell reference. As shown
in Figure 11: (1) both tumour cell lines exhibited a good ability to bind the studied MBS-
proteins (experiments with the E1-W12 protein were carried out separately and revealed
similar results); (2) most of the tumour cell population was involved in the interaction;
(3) almost no PBMC bound MBS-proteins; and (4) the mean fluorescence intensity of A375
cells treated with MBS-proteins was somewhat higher than that of U87MG cells treated
with MBS-proteins.

2.10. In Vitro Accumulation of Gd3+ Carried by the MBS-Protein in the Cells

Despite the encouraging results of experiments using the IN Cell Analyzer and flow
cytometry, which showed a fast uptake of the studied MBS-proteins by tumour cells but
not normal blood cells, direct data about ability of these proteins to bear Gd3+ were of inter-
est. Therefore, comparative in vitro studies were performed to estimate the complexation
of Gd3+ and MBS-proteins in U87MG cells, A375 cells and hTERT-immortalised human
fibroblasts. ICP-AES was used for precise and sensitive measurement of Gd3+ after inciner-
ation. Commercial Magnevist® contrast agent and Gd(NO3)3 salt solution were taken as
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references. All preparations were equilibrated by using the same Gd3+ concentration. A
low Gd3+ concentration of 10 µM was chosen for in vitro binding experiments to adjust the
concentrations of the contrast agent to those accessible for in vivo application, where using
more carrier protein is not a cost-effective solution. The cells after incubation with the sam-
ples were harvested, quantified and incinerated, and the mineralised solution was analysed
by ICP-AES to determine the Gd3+ concentration normalised per 106 cells (Figure 12).
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Statistical analysis of the data using two-way analysis of variance (ANOVA) led to
the following conclusions. (1) The equilibrium Gd3+ concentration accumulated in each
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cell line after incubation with Gd(NO3)3 was ~6–12 higher than the concentration after
incubation with Gd3+ organic complexes. However, the spontaneous uptake of Gd3+ does
not exhibit specificity towards tumour cells. Complexation of Gd3+ with MBS-proteins
reduces the penetration ability of Gd3+ but confers a tumour-specificity on this process.
(2) Magnevist (a complex of Gd3+ with a linear ligand) exhibits very low or no specificity
towards the tumour cell lines versus normal fibroblasts. (3) Compared with the normal
fibroblast line, the U87MG and A375 cell lines exhibited significantly greater Gd3+ uptake
for all three proteins but not for the references. The ratios of uptake by tumour and normal
cells were 3.0–4.4 for U87MG cells and 2.3–2.6 for A375 cells (Table 8). (4) There was a small
but statistically significant decrease in Gd3+ uptake by U87MG cells in the order E2-13W4
→ E1-W8→ E1-W12. This pattern correlates with the decreasing RGD motif share in these
proteins, while the F3 peptide share remains constant (Table 8). This observation suggests a
predominant contribution of the RGD motif versus F3 peptide to deliver the MBS proteins
to U87MG cells. (5) In A375 cells, however, there was no difference in Gd3+ uptake between
the E2-13W4, E1-W8, and E1-W12 preparations. This observation suggests a predominant
contribution of F3 peptide rather than the RGD motif to allow the protein vector to enter
A375 cells.

Table 8. Concentrations of the samples and their functional elements during exposure and the Gd
accumulation ratio of tumour to normal cells.

Functional Elements of the Samples in the Cell Incubation Medium Results

Sample
Name

[Protein],
µM

[RGD] *,
µM

[F3] **,
µM

[Gd],
µM

U87/Fb
Ratio

A375/Fb
Ratio

E2-13W4-Gd4 2.50 7.50 2.50 10 4.4 2.3

E1-W8-Gd8 1.25 3.75 2.50 10 4.1 2.6

E1-W12-Gd12 0.85 2.55 2.55 10 3.0 2.4

Gd(NO3)3 10 - - 10 1.1 1.1

Magnevist® 10 - - 10 1.1 1.0

* determined as [Protein] × (RGD motif number per molecule); see Table 4. ** determined as [Protein] × (F3
peptide number per molecule), Table 4.

Taken together, these observations show that all constructed MBS proteins tightly
hold Gd3+ in the complex upon its interaction with cell receptors and internalisation.
They efficiently prevent spontaneous uptake of free Gd3+ by the cells and thus confer a
high tumour-directed specificity on its trafficking. Optimal doses and concentrations of
the contrasting agents based on the constructed MBS proteins need to be elucidated by
performing additional experiments.

Studies of the selective delivery of Gd to tumour cells have been and remain relevant
to improve the technical development of neutron/photon capture therapy. Without the use
of molecular delivery vehicles, the nonspecific uptake of Gd salt can reach very high values.
Gd might be coordinated with ligands present in the incubation medium, for example,
glucose [77]. To achieve specific delivery of Gd for neutron capture therapy or imaging
applications, nanocomposites are used based on chitosan nanoparticles [78], liposomes [79],
dendrimeric constructs [80], and single-walled carbon nanotubes [81], along with the study
of new complexing agents [82].

2.11. Ex Vivo Imaging

To test the biocompatibility and tumour tropism of the developed MBS proteins,
in vivo experiments were carried out. To this end, E1-W12 was chosen, containing the
maximum number of vector modules per molecule among all obtained proteins. This
protein was conjugated with a near-infrared (NIR) fluorophore, namely Cy7. This dye
was chosen for its spectral properties, which provide the maximum penetration ability of
the excitation light in the depth of the analysed tissue. The activated Cy7 dye reacts with
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amino groups of Lys residues, which are present both in EmGFP and F3 peptide. The latter
reaction is undesirable, as it can hinder binding of F3 peptide to its cell receptor (nucleolin).
To minimise the contribution of the unwanted Cy7 linkage, E1-W12 was chosen because it
contains three copies of F3 peptides per molecule, not one or two as in E2-W4 and E1-W8,
and the ratio of protein to be labelled to dye was set at 1:1 to 1:2.

C57BL/6 female mice were used in experiment as a syngeneic animal model for
Ca755 murine adenocarcinoma [83,84]. We assumed that a rapid growth of Ca755 grafting
induced tumours and, consequently, the formation of a tumour vascular network may
favour binding of the analysed MBS protein with the tumour-specific receptor. Animals of
each group were euthanised 1, 2, 4, or 24 h after E1-W12-Cy7 conjugate administration. A
qualitative ex vivo evaluation of E1-W12 protein content in the liver, spleen, kidney, brain,
blood, and induced tumour was performed with the IVIS® Spectrum imaging system based
on Cy7 fluorescence. Figures 13 and 14 show the organs and the blood samples of the most
representative animal from each time point. Figure 13 shows a set of organs taken from
each individual animal and located in the same position (denoted with digits on the right),
with blood samples in microtubes. Figure 14 shows the same organs and blood samples
arranged in rows to assess the effect of accumulation over time.
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Figure 13. Cy7 fluorescence intensity of the organs and the blood samples of the most representative
animal from each time point. Identities: 1—spleen; 2—blood sample in a microtube; 3—liver;
4—kidney; 5—brain; 6—tumour.
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The following observations were made from this experiment. (1) There was accumu-
lation in the liver, kidney, and tumour. (2) It can be assumed that the circulation time in
the blood is rather long, judging by the fluorescence of the blood samples, although it is
difficult to estimate more accurately in this experiment. (3) None of the animals died and
none exhibited any adverse reaction after administration of the E1-W12-Cy7 protein during
the experiment. (4) After 24 h, there was a clear difference between the tumour itself and
the surrounding tissue. When interpreting the results of an in vivo experiment testing
the bio-distribution of complexes of the studied proteins with Gd, a relevant question
is whether the distribution of Cy7 reflects the concentration and retention time of the
protein in the tissue, because in the inner medium of the body the protein can degrade to a
certain extent and release the dye, the pharmacokinetics of which will not coincide with
the pharmacokinetics of the protein.

3. Materials and Methods
3.1. Materials
3.1.1. Genetic Constructions

The CloneJET PCR Cloning Kit (Thermo Fisher Scientific, Waltham, MA, USA) was
used to obtain intermediate constructs by direct PCR and restriction/ligation cloning of
required genetic elements. The pRSET-EmGFP plasmid (Thermo Fisher Scientific) was used
as an expression vector containing the GFP gene. High-fidelity restriction endonucleases
BamHI-HF, BglII-HF, EcoRI-HF, NcoI-HF, and PstI-HF; T4-DNA-ligase; T4-polynucleotide-
kinase; and shrimp alkaline phosphatase (rSAP) were purchased from New England Biolabs
(Ipswich, MA, USA). The oligonucleotides were synthesised by the solid-phase method and
purified by preparative polyacrylamide gel electrophoresis (PAGE) by Syntol LLC (Russia).
Q5® High-Fidelity DNA Polymerase (New England Biolabs) was used for all polymerase
chain reaction (PCR). Ultrafree-DA Centrifugal Filter Units (Merck, Kenilworth, NJ, USA)
were used for DNA extraction from agarose gel. The ZymoPURE™ Plasmid Miniprep Kit
(Zymo Research, Irvine, CA, USA) was used for plasmid DNA purification. The authenticity
of the plasmids was confirmed by Sanger sequencing performed by Eurogen CJSC (Russia).
E. coli strain NiCo21(DE3) (#C2529H, New England Biolabs, Ipswich, MA, USA) was used
for cloning and expression experiments according to the manufacturer’s protocol.

3.1.2. Protein Purification

LB broth (Luria low salt, L3397-250G), lysozyme from chicken egg, AEBSF (A8456-
25MG), DEAE–Sepharose® CL-6B (CAS Number 57407-08-6), and other chemicals were
obtained from Sigma-Aldrich (St. Louis, MO, USA). HisPur™ Ni-NTA Resin (88221), PD-10
gravity flow desalting column (G-25), and the Pierce™ BCA Protein Assay Kit (23227) were
obtained from Thermo Fisher Scientific.

3.2. Software

SnapGene Viewer (GSL Biotech LLC, Chicago, IL, USA, available at snapgene.com)
was used to design and manage plasmid maps. Oligo Analyzer 1.0.3, a free software
program developed by T. Kuulasmaa, was used to design oligonucleotides. GelAnalyzer
19.1, a free software program developed by I. Lázár, was used for digital gel densitometry.
Secondary protein structure prediction and three-dimensional (3D) modelling was carried
out by using trRosetta [49]. Protein properties were predicted by using the EXPASy tool [85].
Cn3D4.3 software (available from https://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.
shtml, accessed on 12 February 2022) was used to design visual 3D models.

3.3. Cell Cultures

Human glioblastoma U87MG (ATCC® HTB-14™), human malignant melanoma A375
(ATCC® CRL-1619™), murine adenocarcinoma Ca755 (from the collection of NMRCO),
and hTERT-immortalised BJ-5ta human fibroblasts (ATCC® No. CRL-4001™) were kindly
supplied by the cell collection of the Blokhin National Medical Research Center of Oncology

snapgene.com
https://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml
https://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml
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of the Ministry of Health of the Russian Federation (Blokhin NMRCO). Human peripheral
blood mononuclear cells (PBMC) were isolated from blood collected from a volunteer.
Informed consent was obtained and approved at a meeting of the Local Ethics Committee
of the VIGG (Protocol No. 2 dated 10 June 2020).

3.4. Methods
Genetic Engineering Manipulations

The scheme of plasmid assembly is shown in Figure 4. Four double-stranded DNA
(dsDNA) blocks E(Y), M, E, and M* were obtained by pair annealing of synthetic oligonu-
cleotides at 90 ◦C for 2 min followed by cooling to room temperature (RT) over 20 min. The
oligonucleotide duplexes (0.1 pmol) were mixed and phosphorylated by T4 polynucleotide
kinase, followed by ligation with T4 DNA ligase according to manufacturer’s protocol. The
assembled product was used as a template for amplification with Bgl-E(Y) and Bam-M*
primers containing BglII and BamHI flanking sites, respectively. The 190 base pair (bp)
PCR product was used as an insertion DNA unit for cloning to pJET1.2blunt vector (step
I, Figure 4) according to the user manual provided by the manufacturer. The resulting
construct was denoted as pB7. The authenticity of the pB7 sequence was checked by
Sanger sequencing.

To duplicate the E(Y)-M-E-M* block, the 190 bp PCR product from the previous step
was digested with BglII and BamHI and ligated with the parental pB7 plasmid preliminarily
digested with BamHI and dephosphorylated by rSAP (step II, Figure 4). A clone containing
a duplicated E(Y)-M-E-M* insertion in a direct orientation was initially selected by negative
selection by colony PCR with the single primer Bgl-E(Y), then by mapping with BamHI
and PstI (a 716 bp fragment appeared). The resulting construct was denoted pB77. Its
authenticity was checked by Sanger sequencing.

The Eend fragment encoding an additional ELP block was obtained by annealing syn-
thetic oligonucleotides (End-for, End-rev). The oligonucleotides were mixed in the amount
of 1 pmol each, annealed at 90 ◦C for 2 min and then cooled to RT over 20 min, resulting in
a fragment with BamHI/BglII-compatible sticky ends. The fragment was ligated with the
pB77 plasmid DNA preliminary digested with BamHI and dephosphorylated by rSAP (step
III, Figure 4). The resulting construct was denoted pB77end. A clone containing an Eend
insertion was selected by colony PCR with the pJET1.2 forward sequencing primer and
End-rev (a 445 bp fragment appeared). Its authenticity was checked by Sanger sequencing.

A DNA unit including blocks F3 and L was obtained by annealing synthetic oligonu-
cleotides F3-1-dir, F3-1-rev, FL-dir, and Bam-L-rev. Each oligonucleotide was phospho-
rylated separately by T4 kinase in the presence of 1 mM adenosine triphosphate (ATP).
Oligonucleotides F3-1-dir, F3-1-rev, and FL-dir were mixed (0.1 pmol each); annealed at
90 ◦C for 2 min; and then slowly cooled to 58 ◦C with subsequent addition of 0.1 pmol of
the oligonucleotide Bam-L-rev and then immediate cooling to 4 ◦C. The mixture was then
supplemented with 0.5 mM dNTPs and 0.02 U/µL Q5-Polymerase and incubated for 2 min
at 72 ◦C to allow single-stranded regions to be filled. The mixture was diluted, ligated by
T4 ligase according to the manufacturer’s protocol, and used as insertion DNA for cloning
into the pJET1.2blunt vector. The resulting plasmid was denoted pFL16 (step IV, Figure 4).
Its authenticity was checked by Sanger sequencing.

pB77end was used as a template for PCR with the pJET1.2 forward sequencing primer
and the pJET1.2 reverse sequencing primer. The 519 bp PCR product was re-precipitated
to exchange buffer and digested with BglII and BamHI. The resulting 384 bp product was
purified by extraction from a 1% agarose gel after electrophoresis and ligated with pFL16
preliminarily digested with BamHI and dephosphorylated by rSAP. The resulting plasmid
was denoted pFLB77 (step V, Figure 4). The insertion block containing F3L-2(E(Y)-M-E-M*)-
Eend elements was denoted W4.

The pW4 plasmid was also created by inserting the amplified W4 fragment of the pFLB77
plasmid into the pRSET-EmGFP vector at BglII/EcoRI sites in the same PCR/restriction/ligation
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reaction set as described below (step VIII, Figure 4) to verify protein product expression before
further cloning.

The RGD-encoding DNA block was synthesised as a separate construct. First, two
synthetic oligonucleotides (R1-for, R1-rev) were annealed by mixing 1 pmol of each at 90 ◦C
for 2 min followed by cooling to RT for 20 min, subjected to one round PCR as described
above and then used as a template in PCR with another pair of primers (Bgl-R1-for, Bam-
R1-rev). The 73 bp PCR product flanked with BglII and BamHI sites was then digested
with BglII and BamHI, purified by extraction from an agarose gel after electrophoresis and
used as insertion DNA for cloning to an expression vector pRSET-EmGFP, preliminarily
cut with BamHI and dephosphorylated by rSAP (step VI, Figure 4). Colony PCR with
Bgl-R1-for and W4-seq-rev primers were used to determine both the presence and the
direct orientation of the insert. The resulting positive plasmid denoted pRGD1(1) was
used for subsequent insertion of the same 73 bp PCR product digested with BglII and
BamHI at the BamHI site. The abovementioned procedure was repeated two more times to
obtain the pRGD1(3) plasmid containing three tandem RGD motifs located upstream to
EmGFP (step VII, Figure 4). Colony PCR with one Bgl-R1-for primer was used for rapid
pre-selection of colonies with co-directed insertions. The authenticity of pRGD1(3) was
verified by Sanger sequencing.

To combine the RGD-encoding block with the W4 block (F3L-2(E(Y)-M-E-M*)-Eend),
the W4 gene fragment was amplified by PCR with primers (Bgl-F-for, Eco-W4-rev) and
pFLB77 as a template, rendering a 536 bp product. This product was purified by preparative
agarose gel electrophoresis, digested with BglII and EcoRI and ligated with the pRGD1(3)
plasmid cut with BamHI and EcoRI (step VIII, Figure 4). The resulting construct was
denoted p13W4. Its authenticity was checked by Sanger sequencing carried out by Eurogen
LLC (Russia).

To produce a plasmid providing elevated protein yield, p13W4 was used as a tem-
plate for a whole-plasmid PCR with preliminary phosphorylated primers Exp2-for and
Exp-rev (or Exp1-for and Exp-rev). The 4290 bp PCR product was ligated and used for
transformation of E. coli. The resulting plasmid was denoted pE2-13W4 (or pE1-13W4)
(step IX, Figure 4). Pre-selection was performed by colony PCR with primers Exp2-seq-for
and W4-seq-rev (or Exp1-seq-for and W4-seq-rev), resulting in a 901 bp fragment. The
authenticity of the pE2-13W4 and pE1-13W4 plasmids was checked by Sanger sequencing.

To multiply the W4 unit, the p13W4 plasmid was used as a template for PCR with
primers Eco-F-for and Eco-W4-rev. A 536 bp product flanked with EcoRI restriction sites
was obtained. It was purified by extraction from an agarose gel and cut with EcoRI. The
purified fragment was ligated with the pE1-13W4 plasmid preliminarily digested with
EcoRI and dephosphorylated by rSAP (step X, Figure 4). The resulting construct was
denoted pE1-W8. Its authenticity was checked by Sanger sequencing.

The 540 bp long product obtained by PCR of the p13W4 plasmid with primers Nco-F-
for and Nco-E-rev cut with NcoI was ligated with the pE1-W8 plasmid preliminary digested
with NcoI and dephosphorylated by rSAP (step XI, Figure 4). The resulting construct was
denoted pE1-W12. Its authenticity was checked by Sanger sequencing.

Plasmid maps and oligonucleotide sequences are listed in Supplementary
Information (Table S1).

3.5. Protein Purification
3.5.1. Culture Growth

A single colony of E. coli NiCo21(DE3) freshly transformed with the pE2-13W4, pE1-
W8, or pE1-W12 plasmid was inoculated into 500 mL of the cultivation medium (Luria
low-salt broth supplemented with 0.2% glycerol and 100 µg/mL ampicillin). The cultivation
was carried out in a hermetically closed 2.5 L plastic cylinder (20 cm in diameter) with
forced air ventilation through inlet and outlet tubing at 442 L/min and agitation at 100 rpm
for 19–22 h at 37 ◦C. The medium volume reduced twofold under these conditions.
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The culture was then incubated overnight in a glass cylinder at 4 ◦C for spontaneous
sedimentation of the cells. The concentrated cell suspension was then eventually precip-
itated by centrifugation at 10,000× g for 1 min. The yield of the wet cell biomass was
8.4 ± 0.8 g/L relative to the initial medium volume.

3.5.2. Cell Lysis and Clearing the Lysate

The cells were suspended in 10 mL of 2 mM EDTA. Sodium hydroxide was added to
the suspension at a final concentration of 10 mM, and then the suspension was agitated for
2 min and neutralised by adding concentrated Tris pH 8.0 to a final concentration of 100 mM.
Then, AEBSF (up to 2 mM) and lysozyme (0.02 mg/mL) were added, and the suspension
was incubated for 20–30 min at 37 ◦C. The resulting suspension of protoplasts was subjected
to homogenisation by sonication for 5–7 rounds under the following alternating regimes:
20 s treatment at 24–25% of the maximum followed by 25 s chilling on ice. The lysate
was subjected one to two times to freezing/thawing and clarified by centrifugation at
20,000× g for 15 min at 4 ◦C. The pellet was discarded; polyethylenimine was added to the
supernatant to a final concentration 0.2%, and the solution was incubated for 10 min at RT
and centrifuged at 20,000× g for 15 min at 4 ◦C. The supernatant was collected, filtered
through a 0.22 µm syringe cartridge, and used for further purification.

3.5.3. Ion-Exchange Chromatography

Three millilitres of DEAE–Sepharose® CL-6B were used to process a soluble protein
fraction obtained from 8–10 g of crude biomass. The resin was equilibrated with IEC
loading buffer (50 mM Tris [pH 8.0], 0.05 M NaCl). The cleared lysate from the previous
step was applied on the column and washed with 30 mL of IEC loading buffer. Desorption
of the protein of interest was carried out in IEC elution buffer (50 mM Tris [pH 8.0], 0.5 M
NaCl). The collected eluate was used directly for the subsequent purification step.

3.5.4. Metal-Chelate Chromatography

Five millilitres of the HisPur™ Ni-NTA Resin were used. The resin was equilibrated
with immobilised metal affinity chromatography (IMAC) loading buffer (50 mM Tris [pH
8.0], 0.3 M NaCl). The eluate from 3 mL of DEAE–Sepharose® CL-6B was applied on the
column, washed with 30 mL of the same buffer, and eluted with IMAC elution buffer
(50 mM Tris [pH 8.0], 0.5 M imidazole).

3.5.5. Metal Ion Elimination

The eluate from IMAC (total volume 10 mL) was supplemented with EDTA to a final
concentration of 10 mM and dialysed several times against 1 L aliquots of the following
series of dialysis buffers: (1) 50 mM Tris (pH 7.5), 10 mM EDTA, 0.02% sodium azide (NaN3)–
once; (2) 50 mM Tris (pH 7.5), 0.02% NaN3–twice; and (3) 50 mM Tris (pH 7.5)–once. Each
dialysis lasted for 24 h at 4 ◦C.

3.5.6. Desalting the Protein

Gel filtration on PD-10 desalting columns packed with Sephadex G-25 resin was used
to transfer the pure proteins of interest to 10 mM HEPES (pH 7.0). The pure proteins were
aliquoted and stored at −20 ◦C until needed.

3.6. Size Measurement

Dynamic light scattering (DLS) measurements were performed with the Zetasizer
Nano ZS (Malvern Instruments, UK) with laser 633 nm and θ = 173◦ at 25 and 37 ◦C
in 1 cm quartz cuvettes (Z276669-1EA, Sigma-Aldrich). Samples were taken in buffer
(10 mM HEPES [pH 7.0], 0.15 M NaCl) and analysed with standard settings. The data
were processed via the ‘high resolution analysis’ function of the Malvern software. All
measurements were performed independently three times, and the data were averaged.



Int. J. Mol. Sci. 2022, 23, 3297 23 of 30

3.7. Gd3+-Binding Affinity Determination

The equilibrium dialysis method was used to determine the geometric mean of the
dissociation constant (mKd) of the MBS–Gd complex [60]. Protein–Gd complexes were
prepared by mixing 2 mL of each protein in 10 mM HEPES (pH 7.0) with a stock aqueous
solution of Gd(NO3)3 at RT to obtain an equimolar ratio of MBS and Gd (492.6 µM).
Solutions were then put in dialysis devices (Slide-A-Lyzer™ MINI Dialysis Device, 10K
MWCO, 2 mL, 88,404, Thermo Fisher Scientific) and dialysed against 2 mL of 10 mM HEPES
(pH 7.0) (denoted ‘out’) for 24 h at 25 ◦C and 50 rpm to reach full equilibrium. The absence
of nonspecific losses of Gd during the experiment was confirmed by preliminary dialysis
with 2 mL of Gd(NO3)3 aqueous solution at the same conditions. The concentration of
free Gd3+ in the dialysis buffer was determined spectrophotometrically [86]. Briefly, 25 µM
xylenol orange (XO) indicator was added to 2 mL of the ‘out’ dialysis buffer and the Gd3+

concentration was determined by using a calibration curve of the standard Gd-XO solutions
at the same conditions. The experiment was repeated three times. The mKd of the MBS–Gd
complex of each protein was calculated by using Equation (3).

mKd =

[
Gd3+( f ree)

]
[MBS( f ree)]

[MBS : Gd3+]
(3)

3.8. Binding Stoichiometry Determination

The binding stoichiometry of MBS and Gd3+ were determined by the continuous
variation method [64] for all three proteins. Briefly, a solution of the 50 µM Gd–XO
complex in 20 mM HEPES (pH 7.0) was titrated with one of the proteins in the same buffer.
Displacement of Gd3+ from the Gd–XO complex was determined by change in absorbance
at 570 nm [65]. Titration was carried out at RT in a quartz cuvette with an optical path
length of 10 mm using a Varian Cary 50 UV-Vis spectrophotometer (Agilent, Santa Clara,
CA, USA).

3.9. Relaxivity Measurement

T1 relaxivity of the obtained complexes and Magnevist® were calculated per [Gd3+] as
described by Tamura et al. [87] A set of images of each sample (concentration 10–100 µM
Gd3+ in 0.3 mL of 10 mM HEPES [pH 7.0]) was obtained by using an inversion-recovery
sequence with the following parameters: TR = 16,000; TE = 7.1; TI = 50, 100, 200, 400,
600, 800, 1000, 1500, and 1980 (17 ◦C, 7T, Bruker BioSpin, ClinScan, Ettlingen, Germany).
The signal intensity (SI) of each sample at different TI values was measured using ImageJ
Software (National Institutes of Health, Bethesda, MD, USA). Curves of SI dependence
on TI for each concentration were constructed, and the T1 relaxation time was determined
by using Mathcad approximation (Needham, MA, USA). The dependence of reverse T1
relaxation time on the Gd3+ concentration was plotted, and T1 relaxivity was calculated as
the tangent of the inclination angle using Equation (4).

SI = k ∗ [1− (1− cos( f ))− e−
TI
T1 − 2 cos( f ) ∗ e−

TR− TE
2

T1 + cos( f ) ∗ e−
TR
T1 ] (4)

3.10. MRI of Phantoms

T1-weighted MR images of phantoms were acquired at 1.5 T and ambient temperature
in the appropriate buffer. The procedure used 3D spoiled gradient-recalled echo sequence
(SPGR) with TR = 500; TE = 10; and a = 40◦.

3.11. Assessment of Stability of MBS-Proteins in Complexes with Gd3+ in the Presence of Serum
In Vitro

The Gd3+ complex with MBS proteins encoded by the pE2-13W4, pE1-W8, or pE1-W12
plasmid was freshly prepared in 10 mM HEPES (pH 7.0) (MBS:Gd3+ molar ratio was 1:1);
incubated with 50% human serum over 0, 24, or 72 h at 37 ◦C; and subjected to native
PAGE. Gel images were acquired and analysed by laser scanning the gels with the Typhoon
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FLA 7000 instrument (GE Healthcare, Chicago, IL, USA); GFP fluorescence intensity of the
band corresponding to the untreated proteins in all samples was measured to estimate the
protein degradation.

3.12. Assay of MBS-Proteins Uptake by Tumour Cells by Fluorescence Microscopy

The U87MG glioblastoma cell line was cultured in 6-well cell culture plates in a 5%
CO2 atmosphere at 37 ◦C. Upon reaching 80% confluence, the proteins were added to the
medium at a final concentration of 5 µM (1/20 of the final volume) and incubated for 24 h in
a 5% CO2 atmosphere at 37 ◦C. One well was incubated with the proteins alone and another
well was supplemented with manganese (II) chloride (MnCl2) at a concentration of 2 µM.
The cells were then stained with 4′,6-diamidino-2-phenylindole (DAPI) (D1306, Invitrogen,
Waltham, MA, USA) for 5 min, washed twice with cold (4 ◦C) phosphate-buffered saline
(PBS), and analysed by using the IN Cell Analyzer 6000 instrument (Cytiva, Marlborough,
MA, USA).

3.13. Flow Cytometry

The U87MG human glioma and A375 human malignant melanoma cell lines and
freshly prepared human PBMC were used. The U87MG and A375 cells were plated at
a density of 5 × 105 cells per well in a 6-well cell culture plate and incubated in 10%
RPMI for 24 h in a 5% CO2 atmosphere at 37 ◦C. Human PBMC from a healthy volunteer
were isolated with a BD Vacutainer® CPT™ Mononuclear Cell Preparation Tube (#362753)
according to the manufacturer’s protocol and cultured in the same conditions. Proteins
were added to the tumour cells and lymphocytes at a concentration of 5 µM and incubated
for 24 h in a 5% CO2 atmosphere at 37 ◦C. The cells were then washed twice with PBS,
detached with Versene Solution (#15040066, Thermo Fisher Scientific), and analysed by
flow cytometry (NovoCyte, ACEA Bioscience, San Diego, CA, USA).

3.14. In Vitro Accumulation of Gd3+ in Cultured Cells

The U87MG human glioma and A375 human malignant melanoma cell lines were
used alongside human fibroblasts (as a reference). E2-13W4, E1-W8, and E1-W12 complexes
with Gd3+ were prepared by mixing the corresponding protein with the stock solution of
Gd(NO3)3 in 10 mM HEPES (pH 7.0) with a MBS:Gd3+ molar ratio of 1:1. An aqueous
solution of Gd(NO3)3 and commercial Magnevist (Bayer Pharmaceuticals AG, Germany)
MRI contrast agent were used as reference samples. The cells were plated at a density of
5 × 105 cells per well in a 6-well cell culture plate and incubated in 10% RPMI for 24 h
in a 5% CO2 atmosphere at 37 ◦C. The culture medium was then replaced with fresh
medium, and the Gd3+ concentration was adjusted to 10 µM in each well by using the
prepared complexes alongside the reference samples; the cells were then incubated for
another 24 h. The cells were then washed twice with 2 mL of Dulbecco’s PBS (NaCl
137.0 mM, KCl 2.7 mM, Na2HPO4 8.1 mM, KH2PO4 1.5 mM, pH 7.4). After counting the
number of the cells, they were harvested and used for Gd3+ analysis. Briefly, cell pellets
containing a known number of the cells were suspended in 50 µL of concentrated nitric
acid and incinerated by heating at 60 ◦C for 2 h; the solutions were diluted 100 times
or more with deionised water and filtered through a 0.45 µm Millex filter unit (Merck).
Determination of the average weight concentration of Gd3+ was carried out with a ICP-AES
(4200 MP-AES, Agilent, Santa Clara, CA, USA) using a calibration graph. For this, standard
Gd3+ solutions (500, 1000, 1500, and 2000 ppb) were prepared by diluting the Gd standard
solution (1 mg/mL) in 2% (w/w) nitric acid (HNO3) for ICP (Merck). A 2% aqueous
solution of HNO3 was used as a blank. All experiments were carried out in triplicate. The
Gd3+ concentration was recalculated per 106 cells; a standard error was calculated as the
variation between three parallel tests within the replicate.
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3.15. Ex Vivo Imaging
3.15.1. Labelling MBS-Proteins with Cy7 Fluorescent Dye

MBS-proteins were labelled with Cy7 fluorescent dye according to a standard proto-
col [88]. Briefly, 5 mL of E1-W12 (100 µM in 10 mM Tris buffer, pH 8.0) was mixed with
250 µL of cyanine 7-N-hydroxysuccinimide ester (4 mM in dimethyl sulphoxide [DMSO])
and incubated for 4 h at RT in the darkness. The labelled protein was purified from
low-molecular-mass impurities by size-exclusion chromatography on prepacked PD-10
(Sephadex G-25) column equilibrated with PBS (pH 7.4) according to the manufacturer’s
instructions. The protein conjugate was filtered through a 0.22 µm syringe filter for ster-
ilisation and elimination of aggregates. The protein and Cy7 concentrations in the final
solution were determined by spectrophotometry and confirmed by denaturing PAGE.

3.15.2. Animal Experiment

Female C57BL/6 mice (20–22 g, 8–9 weeks old) were purchased from Pushchino
Nursery (Russia). The mice were kept in standard cages at 21 ◦C. The photoperiod was
12 h of light and 12 h of dark per day. The animals had access to standard laboratory feed
and water ad libitum. Before the experimental procedures, the mice were anaesthetised by
intraperitoneal injection with fentanyl (0.05 mg/kg body weight), midazolam (5 mg/kg
body weight), and medetomidine (0.5 mg/kg body weight) in 0.9% sodium chloride
solution as described previously [89].

Tumour grafting was performed by subcutaneous inoculation of mice with a culture
of the Ca755 breast adenocarcinoma permanent cell line on the right hind paw (50 µL of a
14% tumour cell suspension in Hanks’ Balanced Salt Solution [HBSS]). Four experimental
groups of six animals each were formed once the tumours attained an average volume
of 100–150 mm3. Two hundred microlitres of E1-W12-Cy7 conjugate (corresponding to
1.27 mg [15 nmol] of E1-W12 and 5 µg [10 nmol] of Cy7) in PBS was administered in-
travenously. The animals were euthanised 1, 2, 4, or 24 h after E1-W12-Cy7 conjugate
administration. Subsequently, qualitative ex vivo evaluation of E1-W12 protein content in
the tumour, liver, spleen, kidney, brain, and blood was performed with the IVIS® Spectrum
imaging system (Perkin Elmer, Waltham, MA, USA) based on the Cy7 fluorescence.

In vivo experiments including intravenous administration of the tested MBS protein
samples labelled with fluorescent dye and euthanasia were carried out in accordance with
the ethical requirements of the European Convention for the Protection of Vertebrates used
for Experimental and other Scientific Purposes (ETS N123; adopted in Strasbourg 18 March
1986). The experimental protocol was approved at a meeting of the Local Ethics Committee
of the VIGG (Protocol No. 2 dated 10 June 2020).

4. Conclusions

Recombinant proteins have traditionally been perceived as a product with a high
manufacturing cost in comparison to products of chemical synthesis. Moreover, their
application for in vivo theranostics for BRT/MRI requires a thorough purification of the
substance to obtain endotoxin-free products. The recombinant proteins often demonstrate
instability in vivo, and products of their degradation are accumulated in the liver and
kidney. In the case of the Gd3+-binding preparation, this may cause intoxication of the
liver and kidney tissue with the heavy metal ion. By contrast, synthetic cyclic ligands, for
example, DOTA, traditionally used for manufacturing the currently used BRT/MRI agents
firmly retain Gd3+ until its excretion in the urine or bile. Recombinant proteins have a high
molecular mass compared with the popular cyclic chelators; therefore, the mass load of
the recombinant protein for delivery of a molar units of Gd3+ is usually high, a factor that
increases the already high manufacturing cost of the contrast agent. Taken together, these
considerations have generated scepticism towards the idea of producing BRT/MRI contrast
agents based on recombinant proteins. Our work provides evidence of highly efficient
protein carriers to solve this task.
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First, a challenging task of establishing a genetically stable construct made of multiple
tandem repeats was solved. This was achieved by randomly tandemising functionally
uniform but structurally divergent blocks containing synonymous codons or interchange-
able amino acid residues in calmodulin modules and ELP repeats. Tandemisation of the
initial blocks was carried out by a restriction/ligation procedure of the ‘semi-compatible’
sticky ends formed by BglII and BamHI restriction enzymes with subsequent PCR of the
polymerised repeats and in vivo selection of the cloned sequences in E. coli. As a result, the
W4 block with a high Gd3+ binding capacity due to multiple binding sites was established.
It had optimal chemical and physical properties denoted by the optimal ratio between
calmodulin modules with an acidic pI and cationic F3 peptide. The resulting pI somewhat
below 7.0 and moderate hydrophobicity conferred by the ELP repeats provided efficient
folding and a stable globular structure of the artificial domain, with a negligible or none
share of α-helices and β-strands in its secondary structure. Optimising codons near the
translation initiation site of the pRSET-GFP vector provided a high yield of soluble protein
in E. coli. The optimal pI reduced losses at the stage of the protein complex formation with
Gd(NO3)3, which is only soluble in a narrow pH range.

The use of multiple tumour-specific ligands (three RGD copies per molecule alongside
one to three copies of F3 peptide) provided a high selectivity towards the tested tumour
cells (U87MG human glioma and A375 human melanoma) compared with the normal hu-
man fibroblasts that were independently proved by three methods (fluorescent microscopy,
fluorescent flow cytometry, and metal assay in cells with ICP-AES). The proteins demon-
strated high proteolytic stability towards the human blood plasma proteases, an important
factor for long-term maintenance of the contrast agent in the bloodstream.

Finally, in vivo trials demonstrated an optimal biological distribution of the protein
in mice. A protein conjugated with Cy7 accumulated in the liver, kidney, and tumour,
but not in other healthy tissues. This observation suggests optimal recognition of even
small tumour foci in most tissues including breast, lung, and ovary cancer; gliomas and
neuroblastomas; metastases of melanomas; carcinomas of the stomach, intestine and colon;
sarcomas; and lymphomas. Taken together, our study proves that a complex approach
to designing Gd-binding proteins, including optimising the number of the metal binding
sites and tumour ligand peptides and using an efficient biosynthesis and purification pro-
cedure, allows overcoming major limitations of the recombinant technology for producing
BRT/MRI contrast agents. Moreover, this approach enhances the advantages of these
agents, including long-term stability in the bloodstream and a high specificity towards
small tumour foci, factors that are pivotal for early diagnosis and efficient elimination of
curable tumours at early stages of their development.
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