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Abstract: Burkholderia sp. SSG is a potent biological control agent. Even though its survival on the leaf
surface declined rapidly, SSG provided extended, moderate plant protection from a broad spectrum
of pathogens. This study used Arabidopsis Col-0 and its mutants, eds16-1, npr1-1, and pad4-1 as model
plants and compared treated plants with non-treated controls to elucidate whether SSG triggers
plant defense priming. Only eds16-1 leaves with SSG became purplish, suggesting the involvement
of salicylic acid (SA) in SSG-induced priming. cDNA sequencing of Col-0 plants and differential
gene expression analysis identified 120 and 119 differentially expressed genes (DEGs) at 6- and 24-h
post-treatment (hpt) with SSG, respectively. Most of these DEGs encoded responses to biotic and
abiotic stimuli or stresses; four DEGs had more than two isoforms. A total of 23 DEGs were shared
at 6 and 24 hpt, showing four regulation patterns. Functional categorization of these shared DEGs,
and 44 very significantly upregulated DEGs revealed that SSG triggered various defense priming
mechanisms, including responses to phosphate or iron deficiency, modulation of defense-linked SA,
jasmonic acid, ethylene, and abscisic acid pathways, defense-related gene regulation, and chromatin
modification. These data support that SSG is an induced systemic resistance (ISR) trigger conferring
plant protection upon pathogen encounter.

Keywords: Arabidopsis; cDNA transcriptome; Oxford Nanopore Technology (ONT) sequencing;
defense priming; induced systemic resistance (ISR); systemic acquired resistance (SAR); biocontrol
agent; leaf endophyte; Burkholderia sp.

1. Introduction

Plant diseases are significant threats to food security, and they are also a burden on the
global economy [1,2]. With increasing concerns on the cost, safety, fungicide resistance, and
environmental footprints of chemical control in plant disease management [3], biological
control becomes a promising alternative because it uses beneficial microorganisms that
have opposite features and multiple modes of action [4,5].

Beneficial microbes can directly kill or inhibit pathogens with antibiotic metabolites,
hydrolytic enzymes, siderophores and quorum quenching, nutrient, and space competition.
They can also suppress pathogens by preparing and improving the defense capacity of
plants or defense priming [6–8]. The latter modes of action focus on modulating the plant’s
immune system and hormone levels. Similar to plant pathogens, beneficial microbes can
produce microbe-associated molecular patterns (MAMPs) and interact with plants lead-
ing to pattern-triggered immunity (PTI) [9,10]. The identified MAMPs include flagellin,
lipopolysaccharides, glycoproteins, and chitin [6,11]. Beneficial microbes can also produce
other elicitors, including siderophores, antibiotics, and low molecular weight volatile com-
pounds derived from different biosynthetic pathways for improved plant immunity [12].
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These elicitors trigger the plant defense system at the point of recognition and lead to
immunity against pathogens in the whole plant or induced systemic resistance (ISR).

Generally, ISR is different from the systemic acquired resistance (SAR) that is usually
triggered by pathogens and mediated by the plant defense hormone salicylic acid (SA)-
dependent pathways where SA activates the expression of a set of pathogen-related genes
through a redox-regulated protein, Non-expressor of PR genes 1 (NPR1) [13]. Instead,
it is usually mediated by an SA-independent pathway where other plant defense hor-
mones jasmonic acid (JA) and ethylene (ET) are central players. Some beneficial microbes
are ET regulators by producing 1-aminocyclopropane-1-carboxylate (ACC) deaminase
that reduces ET levels while promoting plant growth and defense [14,15]. However, the
signaling pathways of ISR can be different depending on the microbial species and the
plant species [16–18]. The camalexin and glucosinolates mediated SA pathway [19] and
a pathway involving both SA and JA/ET signaling via NPR1 functioning in different
cellular components [6,20] have been reported for ISR. ISR involving other plant hormone
pathways such as abscisic acid (ABA) is also reported [21], although it is often associated
with herbivore-induced defense [8].

Both rhizosphere and phyllosphere beneficial microbes have been reported as ISR
inducers [6,18,22]. However, to date, most research on beneficial microbe-mediated ISR has
focused on rhizosphere microbes. There is increased attention to phyllosphere microbes [5],
but Burkholderia sp., a new group of promising biocontrol agents [23–25], has not been
included. We recently isolated an endophytic Burkholderia sp., SSG, from boxwood leaves,
which suppresses a broad spectrum of plant diseases caused by bacteria, fungi, oomycetes,
and viruses while promoting plant growth [26–28]. One interesting observation while
testing its disease control efficacy was that SSG did not survive more than a week on
the boxwood leaf surface [29], but it provided moderate protection to the plants that
were challenged with pathogens for more than a week [26,28]. This extended protection
implicates interactions between SSG and plants. SSG has a capacity to produce many
secondary metabolite clusters and products, including antibiotics, ACC, siderophores, and
other molecules that can be used as elicitors for ISR [27,30]. However, whether SSG may
trigger defense priming is yet to be elucidated.

Plant transcriptomes have shed light on plant responses to beneficial microbes [18,31,32].
RNA sequencing (RNA-Seq) provides far higher coverage and greater resolution of the dy-
namic nature of the transcriptome over previous Sanger sequencing- and microarray-based
methods [33]. Yet, RNA-Seq for transcriptome analysis relies on known reference sequences
that are not available for the plants we have tested with SSG. Therefore, this study used the
model plant Arabidopsis thaliana Col-0, and its SA mutant plants to elucidate SSG extended
plant protection beyond its normal survival time. cDNA of Col-0 treated with and without
SSG was sequenced and then compared to determine the transcriptional response to SSG.
Meanwhile, morphological responses of all test plants to SSG were also examined. This
study provides new insights into plant defense priming triggered by biological control
agents and the application of SSG-mediated ISR for plant health enhancement against
upcoming pathogens.

2. Results
2.1. Differential Gene Expression in Col-0 Treated with SSG at Two Sampling Times

EdgeR analysis showed the differential gene expression between plants treated with
SSG in Phosphate-Buffered Saline (PBS) and the control plants treated with PBS alone
at 6 and 24 h post-treatment (hpt) (Figure 1). The differentially expressed genes (DEGs)
were 120 and 119 at 6 and 24 hpt, respectively (Tables S1 and S2). Among the 120 DEGs
at 6 hpt (Table S1), 62 were log2 FC ≥ 2 (upregulation) while 58 were log2 FC ≤ −2
(downregulation). Among the 119 DEGs at 24 hpt, 64 were upregulated, and 55 were
downregulated (Table S2). The upregulated and downregulated DEGs were similar at 6 hpt
(Figure 1a) and 24 hpt (Figure 1b), but the upregulated genes were slightly fewer at 6 dpt
than at 24 hpt while the downregulated genes were counted opposite.
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cess, regulation of biological quality, and the responses to wounding and stimuli (Figure S4). 

The most statistically significant terms of 6 hpt and 24 hpt were related to stress or 
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the response to light intensity, protein folding, transmembrane transport, and chemical 
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groups involved response to Karrikin, oligosaccharide metabolic process, amine meta-
bolic process, regulation of immune system process, vitamin metabolic process, plant-
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Figure 1. MA plot based on the EdgeR analysis showing differences in measurements between
SSG-treated and control plants at 6 (a) and 24 hpt (b). M, log-fold-change (−log2 FC) (ratio of gene
expression calculated between the control and SSG treated plants). A, Average log CPM, or log2
(counts per million abundances, CPM). Schemes follow the same formatting.

2.2. Gene Ontology (GO) Analysis of DEGs with SSG

Functional categorization of DEGs (Figures S1–S3) indicated that SSG regulated genes
involving at least 42 biological processes (BP), 23 cellular components (CC), and 17 molecu-
lar functions (MF) terms at 6 hpt. Likewise, the DEGs at 24 hpt involved the same number
(42) of BP, 22 CC, and 19 MF (Figures S1–S3).

The GO term enrichment analysis on BP detected more terms: 67 significant GO
terms from the 6 hpt DEGs, and 217 significant GO terms from the 24 hpt DEGs (Table S3).
Together, 17 (7.3%) of these terms were uniquely associated with the 6 hpt DEGs, and 167
(71.7%) were uniquely associated with the 24 hpt DEGs, while a total of 49 terms (21%)
were shared between the 6 hpt and 24 hpt DEGs. Of those shared BP terms, they were
classified into five major functions, including secondary metabolic process, cellular process,
regulation of biological quality, and the responses to wounding and stimuli (Figure S4).

The most statistically significant terms of 6 hpt and 24 hpt were related to stress
or stimulus responses (Figure 2). The BP terms unique to 6 hpt were in four groups
involving the response to light intensity, protein folding, transmembrane transport, and
chemical homeostasis (Figure S5). Those unique to 24 hpt were in 18 groups, indicating that
extended exposure to SSG resulted in more complex biological processes. The eight major
groups involved response to Karrikin, oligosaccharide metabolic process, amine metabolic
process, regulation of immune system process, vitamin metabolic process, plant-type cell
wall loosening, proximal/distal pattern formation, and glycoside biosynthetic process
(Figure S6).
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Figure 2. Heatmap of the differentially expressed genes encoding the top 15 significant GO terms.
(a) Significant BP terms at 6 hpt. (b) Significant BP terms at 24 hpt. Overlapping genes were orange
and not overlapping genes were light blue. Schemes follow the same formatting.

2.3. Expression Patterns of DEGs Involving Responses to Biotic and Abiotic Stimuli and Stresses

DEGs in the SSG-treated Col-0 concentrated in BP involving biotic and abiotic stimulus
responses or stress (Figure 2) and differed in expression patterns (Figure 3a). More upregu-
lated DEGs encoded responses to biotic stimuli at both time points. A similar expression
pattern was found for the genes encoding the external stimuli response, indicating that the
plant detected MAMPs from SSG, and the response to biotic stimuli was augmented. A
small amount of DEGs encoded the response to light stimuli, and their expression pattern
was the opposite to responses to biotic stimuli (Figure 3a), suggesting a negative correlation
of plant light sensitivity with the response to biotic stimuli. The percentage of upregulated
and downregulated DEGs encoding other stimulus responses were similar, indicating the
homeostasis of these processes under the influence of SSG.

DEGs encode responses to biotic and abiotic stimuli and stresses involving a number
of CC and MF terms. Among the encoded CC terms, chloroplast was most predominant,
followed by cytoplast, cytosol, and nucleus (Figure 3b). For the encoded MF terms, activities
of hydrolase, transferase and catalytic, and binding activities of protein and other molecules
were predominant (Figure 3c). These abundant components and functions are likely the
niche of defense priming triggered by SSG.
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Figure 3. Percentage of differentially expressed genes (DEGs) by SSG for BP (a), CC (b), and MF terms
(c) at 6 and 24 hpt. The expressed genes were determined with EdgeR analysis and separated by
their regulation type, down or up. GO terms and functional categorization of the genes are generated
through TAIR (The Arabidopsis Information Resource). The GO term of interest in the same box of
color depicts a similar pattern. Schemes follow the same formatting.

2.4. Shared DEGs and Statistically Significantly DEGs at 6 and 24 hpt with SSG

Only 10% of DEGs were present at both 6 and 24 hpt. Twenty-three of the 239
DEGs detected were consistently regulated at both sampling points (Table 1). They were
responsible for 21% of all the significant BP terms involving responses to wounding and
stimuli and secondary metabolic process, cellular process, regulation of biological quality
(Figure S4).
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Table 1. Shared differentially expressed genes (DEGs) at 6 and 24 hpt with SSG.

AGI W Regulation
Log2 FC X

GO Biological Process Z

6 hpt Y 24 hpt

AT2G01070

D
ow

n
at

6
hp

t/
do

w
n

at
24

hp
t −2.8 * −2.8 * Transport

AT2G29450 −0.5 * −0.8 ** Response to oxidative stress, glutathione and toxin
catabolic process

AT4G38510 −6.3 *** −5.7 ** Actin filament capping, bundle assembly, and
depolymerization; ATP metabolic processes

AT5G15960 −0.7 * −1.0 ** Response to ABA, Response to osmotic stress, cold,
drought, light signaling

AT5G27540 −1.4 * −5.8 ***
Embryo development, mitochondrion organization,
ending in seed dormancy, regulation of mitochondrion,
pollen tube growth

AT5G63770 −1.9 * −1.7 * Leaf, root development, response to wounding and cold

AT3G06510

U
p

at
6

hp
t/

up
at

24
hp

t

5.6 ** 6.8 *** Response to freezing, cold; carbohydrate metabolic proc
AT3G24170 6.2 *** 6.4 *** Cell redox homeostasis, glutathione metabolic process

AT4G14400 3.4 ** 3.4 ***
Defense response to virus, bacteria, fungi, and
oomycetes; cell death, Response to SA, light, freezing;
SA signal regulation, protein ubiquitination

AT5G56870 5.4 * 5.7 **

Organic substance catabolic, immune system proc,
defense response to fungi, response to bacteria,
hypoxia, oxidative stress, wounding, light, water
deprivation; organic cyclic compound, leaf senescence

AT2G17200 5.5 ** 5.2 *
Epidermal cell differentiation, defense response,
ubiquitin-dependent protein catabolic proc, organelle
organization, response to lipid

AT1G57820

D
ow

n
at

6
hp

t/
up

at
24

hp
t

−6.3 *** 5.7 **
Chromatin organization, DNA methylation on cytosine,
protein ubiquitination, cell division, heterochromatin
assembly

AT3G47340 −1.3 *** 2.1 ***
Asparagine biosynthetic process, response to sucrose,
fructose, and glucose; darkness, cellular amino acid
catabolic proc

AT3G59930 −0.7 *** 0.7 * Response to light
AT4G35770 −0.6 *** 1.3 *** Response to ROS, aging, JA, wounding

AT1G13609

U
p

at
6

hp
t/

do
w

n
at

24
hp

t

2.1 *** −1.4 * Unknown

AT1G47395 1.9 *** −1.3 *** Positive regulation of iron ion transport, response to iron
ion starvation

AT1G47400 1.8 *** −2.0 *** Positive regulation of iron ion transport, response to iron
ion starvation

AT1G52400 0.7 *** −0.8 ***

Defense response to fungi; water deprivation, insect,
glucosinolate catabolic proc, protein polymerization,
ABA proc; ABA and salt response; stomatal movement,
regulation of ABA signaling

AT2G14247 1.6 *** −1.2 ** Glucosinolate catabolic proc, regulation of biological
quality Cellular response to hypoxia

AT4G25670 3.8 * −3.1 *
Response to cold, organonitrogen compound, water
deprivation, wounding; regulation of defense, defense
response to biotic stimulus, ABA signaling

AT5G14740 0.6 * −0.5 * Carbon utilization

AT5G57350 1.4 * −6.3 *** Proton and ion transmembrane transport, intracellular
pH regulation

W Gene identifier by Arabidopsis Genome Initiative (AGI). X the log2 ratio of gene expression between the control
and SSG treated plants calculated with the edgeR. Y hpt = hours post treatment, Asterisks denote difference
significance of gene expression with SSG measured with false discovery rate (FDR) * < 0.05, ** < 0.01, *** < 0.001.
Z GO terms generated through The Arabidopsis Information Resource (TAIR), representing biological process,
cellular component, and molecular function.

Eleven of these DEGs were consistently downregulated or upregulated at both 6 and
24 hpt (Table 1). Specifically, six DEGs were consistently downregulated. These genes
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mainly encoded transportation, protein modification, responses to ABA, and other abiotic
stresses. On the other hand, five DEGs were upregulated at both 6 and 24 hpt. These
genes mainly encoded the GO terms such as SA-biosynthesis and signaling and regulation,
pathogen defense, and stress response.

The rest of the 12 DEGs were first downregulated than upregulated or vice versa
(Table 1). Specifically, four DEGs were first downregulated at 6 hpt then upregulated at
24 hpt. These genes encoded JA-biosynthesis, reactive oxygen species (ROS) accumulation,
aging, and wounding responses. Likewise, eight DEGs were first upregulated at 6 hpt then
downregulated at 24 hpt. These genes were involved in response to iron ion (Fe) starvation,
ABS accumulation, signaling, defense regulation, and responses to biotic/abiotic stress
(Table 1). The expression patterns of shared DEGs at the two sampling points suggest
modulation of crosstalk of SA, JA, and ABA pathways by SSG.

DEGs encoding stress responses accounted for the greatest portion of BP terms at both
time points (Figures 2 and 3a). However, the majority of DEGs were not present at the same
time. To understand their roles in defense priming, the upregulated DEGs with FDR less
than 0.001 were searched for their GO function. A total of 19 of the 62 and 25 of the 64 these
DEGs were identified at 6 and 24 hpt, respectively. Among them, only AT3G24170 encoding
cell redox homeostasis was shared at both time points. Those induced at 6 hpt were more
and differed in functions from those at 24 hpt. The DEGs at 6 hpt encoded the processes
involving SAR, the production of ABA, hydrogen peroxide (H2O2), Fe starvation response,
and homeostasis, while those at 24 hpt encoded ABA production and ABA signaling and
JA production/signaling. DEGs encoding abiotic and biotic responses were also more
abundant by number and differed in functions at 6 hpt than 24 hpt. However, the DEGs
encoding biotic response was missing, and those encoding other biological processes were
much fewer at 6 hpt, indicating that SSG triggered abiotic responses followed by biotic
responses related to SAR and SA production/signaling (Figure 4).
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Figure 4. Upregulated DEGs in Arabidopsis Col-0 at 6 and 24 hpt with SSG at FDR < 0.001 determined
by EdgeR analysis. Functional categorization of the genes is based on GO annotation on TAIR (The
Arabidopsis Information Resource). The DEGs functions involving defense priming are bold.

2.5. Differential Transcript Usage (DTU) with SSG and Altered Expression Patterns

Analysis of differential gene expression at the exon count level with DEXSeq showed
that 308 and 245 transcripts were differentially expressed at 6 and 24 hpt, respectively
(Tables S3 and S4). The result suggested that two or more isoforms were used in the
regulation for some DEGs. More differential transcript usage (DTU) was detected at 6 hpt
than 24 hpt at a higher significance level. At 6 hpt, 211, 84 and 13 transcripts expressed
significantly at p = 0.05, p = 0.01 and p < 0.0001. A 24 hpt, 168, 63, and 13 transcripts
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expressed significantly at p = 0.05, p = 0.01 and p < 0.0001, suggesting that transcription by
SSG was more active early.

Analysis of DEG and DTU with stageR revealed 9 and 11 genes with isoforms that
showed statistically altered expression by SSG at 6 and 24 hpt, respectively (Figures S3
and S4). At 6 hpt (Figure S3), AT1G26440 had five isoforms, AT3G51840 and AT2G26910
had 4 isoforms, AT3G19960 had three isoforms and AT4G29010, AT4G32410, AT5G65780,
AT5G46020, and AT4G37990 had two isoforms. Genes with different isoforms at 24 hpt (Fig-
ure S4) included AT5G17920, AT5G13740, and AT2G12400 with four isoforms, AT2G47070,
AT2G27720, AT5G14060, and AT4G14210 with three isoforms, and AT4G13530, AT2G17220,
AT2G2133, and AT3G16400 with two isoforms. However, not all the isoforms responded the
same to SSG (Figures S7 and S8). Some isoforms expressed similarly in both mock and SSG
treated plants, either induced (co-up) or not induced (co-down), although the expression
levels may be different. Some isoforms were induced in the mock plant, but not the SSG
treated plants or another way around. The occurrence of isoforms and various expression
patterns of these genes suggested that SSG may induce alternative RNA splicing in plants
to produce proteins that can simultaneously modulate multiple processes/functions. Only
one out of 9 of these genes detected at 6 hpt encoded plant response to biotic stimulus,
whereas 3 out of 11 detected for the same process at 24 hpt (Table 2), suggesting amplified
plant defense priming from increased DEG diversity after treatment with SSG.

Table 2. Functional categorization of biotic stimulus-response DEGs with isoforms at 6 and 24 hpt.

AGI
Transcript

ID (Expression
Pattern) *

GO Biological Process GO Molecular
Function

GO Cellular
Component

6 hpt
AT4G37990

(isoforms = 2,
p = 0.0246)

P1 (down)
ID2 (up)

other cellular processes
response to biotic stimulus
response to external stimulus
other metabolic processes
cell death
response to stress
biosynthetic process
secondary metabolic process

catalytic activity
other binding

cytoplasm
plasma membrane

24 hpt
AT5G13740

(isoforms = 4,
p = 5.32E-13)

P1 (co-up)
ID8 (down)
ID4 (up)
ID10 (down)

other cellular processes
response to biotic stimulus
transport
response to external stimulus
response to chemical
other biological processes

transporter activity

vacuole
plasma membrane
cytoplasm
other membranes
mitochondrion

24 hpt
AT2G12400

(isoforms = 4,
p = 0.0244)

P1 (up)
JS2 (co-down?)
JS1 (co-down?)
ID3 (co-down?)

other cellular processes
response to chemical
other metabolic processes
response to abiotic stimulus
response to stress
growth
anatomical structure development
response to biotic stimulus
response to external stimulus
lipid metabolic process
cell growth
response to endogenous stimulus
signal transduction
other biological processes

unknown molecular
functions

other cellular
components
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Table 2. Cont.

AGI
Transcript

ID (Expression
Pattern) *

GO Biological Process GO Molecular
Function

GO Cellular
Component

24 hpt
AT3G16400

(isoforms = 2,
p = 0.0391)

P1 (co-up)
ID5 (up)

other cellular processes
other metabolic processes
secondary metabolic process
response to biotic stimulus
response to external stimulus
biosynthetic process
catabolic process

RNA binding
enzyme regulator
activity

extracellular region
nucleus
cytoplasm
cytosol

Functional categorization is based on TAIR (The Arabidopsis Information Resource). AGI: Gene identifier by
Arabidopsis Genome Initiative. * co-up or co-down: detected or undetectable transcripts were in most replicates of
both CK and SSG; up or down: detected or undetectable transcripts were only in most replicates of SSG; co-down?:
uncertainty of the pattern due to presence of the detected or undetected transcripts in only one replicate of SSG
samples. GO BP terms related to responses to abiotic and biotic stimuli are bold.

2.6. Biological Responses of Arabidopsis Col-0 and Mutants to SSG

SSG-treated Col-0 and mutant plants eds16-1, npr1-1, and pad4-1 did not differ from
the controls until five days post-treatment (dpt) when leaves of eds16-1 became purplish
or phosphorus (Pi) deficiency-like symptoms (Figure 5a). While SSG-treated Col-0, npr1-1,
and pad4-1 remained no symptoms even at 10 dpt (Figure 5a), the leaves of eds16-1 turned
darker after 5 dpt with SSG (Figure 5b). These results indicated that SSG neither affected
wild-type Arabidopsis nor the npr1 plants with a deficiency in SA transducer NPR1 and pad4
plants with a defect in producing phytoalexin and SA biosynthesis/signaling. Instead, it
affected eds16-1 plants with a deficiency in SA biosynthesis/signaling mediated by EDS16.
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To understand how SSG may affect pigmentation in the plant, we examined the DEGs
encoding chloroplasts where photosynthesis and pigmentation occur. Chloroplasts are
the most encoded cellular components (Figure 3b and Table 1). Seven AGI loci involving
activities in chloroplasts were identified in 23 shared DEGs at 6 and 24 hpt. For instance,
AT3G06510 (SFR2, SENSITIVE TO FREEZING 2) was consistently downregulated at 6 and
24 hpt. AT4G38510 (ATVAB2, V-ATPASE B SUBUNIT 2, VAB2) was consistently upregu-
lated at both time points. AT4G35770 (SEN1, Senescence-associated gene), together with
AT1G52400, AT2G14247, AT5G14740, AT5G57350, was downregulated at 6 hpt but upregu-
lated at 24 hpt. Purple pigmentation in leaves has been correlated with Pi deficiency [34].
Among these DEGs, AT4G35770 is related to Pi deficiency, which encodes a senescence-
associated gene [35]. Yet, the expression of AT4G35770 did not cause Pi deficiency symptom
on Col-0 (Figure 5a), suggesting disappearance of Pi symptom requires EDS16.

3. Discussion

This study with Arabidopsis transcriptome supported the hypothesis that SSG extended
plant protection by inducing plant defense priming. The leaf endophytic Burkholderia medi-
ated defense priming is different from the rhizobacteria that induce ISR, typically JA/ET
pathways without activation of PR genes [6], and phyllosphere commensals that trigger
defense priming through SA and JA pathways and upregulating PR genes mediated [18] in
many ways.

First, the priming involves a unique SA pathway. Detection of DEGs encoding SAR
(AT1G55490 at 6 hpt, AT5G60600 at 24 hpt) (Figure 4) suggests PR gene regulation and
SA usage in priming. Yet, none of the reported PR genes in the Arabidopsis plants colo-
nized by phyllosphere commensals were detected as DEGs, suggesting that the SAR is
a result of other PR genes. ACD6 (AT4G14400) is perhaps one of them, which as a DEG
consistently upregulated at 6 and 24 hpt (Table 1). ACD6 encodes a transmembrane protein
with intracellular ankyrin repeats and positively regulates cell death and defense, acting
in part via SA and the SA transducer NPR1 [36–38] and is a critical component in the
defense response against a broad spectrum of pathogens [39]. Although NPR1 was not a
DEG, AT4G02520 was detected among the very significantly upregulated DEGs at 24 hpt
(Figure 4). AT4G02520 may act similar to NPR1 since it is a binding protein of SA and
camalexin and a glutathione transferase [40]. Camalexin and glucosinolates mediated SA
pathway has been shown in defense priming induced by rhizobacterium [19], and the
resulting defense is effective as SAR [41]. Therefore, AT4G14400 and AT4G02520 may be
two important SA pathway regulators in the defense priming triggered by SSG.

Next, the priming also involves the JA pathway. AT4G35770 (SEN1) encoding JA
response was not induced in Col-0 at 6 hpt but 24 hpt. SEN1 is a senescence-associated
gene that is regulated by plant defense response linked signals and strongly induced by
phosphate starvation [35,42]. The induction of SEN1 in Col-0 indicates that SSG regulates JA
production and induces Pi deficiency in a delayed mode that may contribute to symptom-
less Pi deficiency on Col-0 (Figure 5a). SEN1 activation requires both SA and JA pathways
involving the functions of EDS5, NPR1, and JAR1 [42]. EDS16 is an isochorismate synthase
belonging to EDSs that are used by the TIR-NB-LRR class of R genes to promote system
acquired resistance (SAR) [43–45]. It is not clear how SSG may induce SEN1 in the absence
of DESs but based on the Pi-deficiency symptom on eds16-1. One possibility is that SEN1 is
induced immediately after treatment, leading to enhanced sensitivity to JA/ET signaling
and extensive Pi deficiency in eds16-1 due to lack of EDS16 or SA. Aging or built-up sugar
happens under low Pi availability, leading to changes in leaf pigmentation [34,46]. SEN1
has been associated with the dark-inducible (DIN) gene that participates in senescence and
pathogen invasion-related cellular events [47,48]. However, it is unclear whether it has any
linkages to the JASMONATEZIM-domain (JAZ) family that play a key role in regulation
between plant growth in response to light and defense against necrotrophic pathogens and
insect herbivores [49–51].
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Furthermore, SSG may trigger defense priming through regulating abscisic acid (ABA)
biosynthesis and signaling. ABA as an antagonist of SA has a negative effect on plant-
pathogen resistance. However, it plays a vital role in compatible mutualistic interactions
such as mycorrhizae and rhizosphere bacteria with plants and can be suppressed at im-
mune response [21]. The latter is evident in Col-0 plants treated with SSG. First, most
of the DEGs encoding ABA response or signaling were consistently downregulated or
became downregulated after an early upregulation at 6 hpt (Table 1). Second, DEGs such
as AT3G07160 (BETA-GALACTOSIDASE 4, BGAL4) (Figure 4) encoding callose deposition
in cell walls [52] were also upregulated at 6 hpt (Figure 4). Since ABA suppression can
result in callose deposition enhancement providing an additional layer of protection during
ISR [6], this upregulation of BGA4 may result from ABA suppression. On the other hand,
ABA suppression by SSG is not consistent. Many DEGs related to ABA production and
signaling were upregulated but mainly dependent on the lead time of treatment (Figure 4).
DEGs encoding ABA production, including AT1G52400, AT1G22930, and AT2G05520, were
mostly induced at 6 hpt, while DEGs encoding ABA signaling was primarily induced at
24 hpt (Figure 4). Although it is unclear how these DEGs led the priming, they may have
dual roles. ABA can induce stomatal closure to prevent pathogens from entry [53]. It
can also protect plants from pathogen infection through a distinct signaling pathway [31].
Thus, these DEGs for ABA production are likely used for priming for stomatal closure,
augmenting structure barriers. By contrast, those for ABA signaling may be used in defense
signaling crosstalk. JA/ABA has been identified as a positive pathway for resistance against
insects [54]. In this pathway, ABA co-regulates the transcription factors MYCs in branches
of the jasmonic acid (JA) signaling pathway. Although there were no DEGs related to MYCs
that were detected, upregulation of SEN1 encoding response to endogenous JA suggests
an operation of the JA/ABA pathway. SSG modulating the defense signaling crosstalk
among SA, JA, and ABA may result in priming for enhanced defense against upcoming
pathogens, although the molecular function of the crosstalk and how the crosstalk acts
when the treated plants challenge pathogens or other stimuli encountered remains unclear.
Endophytic Actinobacteria, a distinct bacterial group from Burkholderia, has been shown to
induce priming for SA or JA/ET pathways for challenging upcoming fungal or bacterial
pathogens [55]. SSG likely shares this ability and has a capacity to allow priming additional
defense hormone signaling pathways, which explains why moderate resistance is in com-
mon in almost all the test plants treated with SSG at a long lead time before inoculation
with pathogens [26,28].

Apart from triggering SA, JA/ET, and ABA-dependent priming, SSG also induces
other priming mechanisms, such as ET and Fe deficiency response and regulation. Ben-
eficial microbes-induced ISR overlaps with plant Fe deficiency response [56]. Fe defi-
ciency response can result from the Pi deficiency-induced JA pathway through signal
crosstalk [46,57]. It can also result from ethylene (ET) reduction that can be accomplished
by the ACC deaminase-producing bacteria such as SSG [14,30]. Indeed, DGEs that encode
Fe response to starvation (AT1G47395, AT1G47400), Fe homeostasis (AT2G41240), and
response to endogenous ET (AT2G05520) were among those very significant DEGs at 6 hpt
(Figure 4). This suggests that SSG stimulates ET production and the Fe-deficiency in the
plants shortly after its application. ET can play a dual role in activating Fe deficiency
responses and the onset of ISR [56]. AT1G47395 and AT1G47400 belong to FIT, the master
regulator of the Fe acquisition gene network [58].

In Arabidopsis, several molecular markers have been shown to be useful for detecting
the primed state [7]. Chromatin modification and activation of mitogen-activated protein
kinases (MAPKs) based transcription factors have been proposed as other possible mecha-
nisms of defense priming [7]. SSG may also be an inducer of such priming. AT1G57820,
namely VIM1, is the SET- and RING-Associated domain methylcytosine-binding pro-
tein and H3K9 methyltransferase. It encodes chromatin organization and DNA cytosine
methylation [59]. Chromatin modification can result in faster and stronger transcription of
defense genes and memory priming for future challenges [60–62]. VIM1 expression was
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first downregulated (6 hpt) and then upregulated (24 hpt) (Table 1), suggesting priming for
enhanced defense did not start until 24 hpt. Further investigation is warranted to deter-
mine whether the expression of VIM1 might have contributed to SSG long-lasting plant
protection from pathogens [26,28]. MAPKs activation-related DEGs such as AT4G09570
(CPK4) and AT5G01810 (CIPK15) are also DGEs identified at 24 hpt (Figure 4). Both genes
have functions in ABA signaling [63,64] thus they may serve as transcription factors in
ABA pathway priming, although it is unknown whether they may act the same as MPK3/6
to enhance defense gene expression.

A few DEGs are interesting due to their functions in stress, biotic and abiotic responses,
and relations to defense priming. For example, AT3G59930 encoding a defensin-such as
protein, DEFL, and AT4G37990 ELI3-2 Defensins (Table 2) have recently been shown to
confer broad-spectrum resistance to pathogens in crops [65]. DEFL functions at iron and
zinc homeostasis and stress response [66]. A few other DEGs with multiple isoforms
are also worth noting as mechanisms of defense priming (Table 2). These DEGs are
AT4G37990 (ELI3-2) that is associated with a new type of R gene RPM1 for SAR against
bacteria [67], AT3G24170 encoding cell redox homeostasis that is a critical scavenging
and antioxidant machinery to detoxify harmful ROS [68], AT5G13740 encoding response
to nematode, response to zinc ion, zinc ion homeostasis [69], AT2G12400 encoding ABA-
related transcription factors [70], and AT3G16400 with roles of the glucosinolate-myrosinase
system in plant defense responses [71].

4. Materials and Methods
4.1. The Plant Growth Conditions

Arabidopsis thaliana (Col-0) and SA-related mutants (all in the Col-0 background),
eds16-1, npr1-1, and pad4-1 [72] were used. Briefly, eds16-1 is a mutant of isochorismate
synthase; npr1-1 is a mutant of SA receptor protein NPR1; pad4-1 is a mutant of PhytoAlexin
deficient 4 gene. Col-0 or each mutant was seeded in 6 9-cm pots with autoclaved Mira-
cle Gro Moisture Control Potting Mix: Miracle Gro® perlite (Scotts Mira-Gro Company,
Marysville, OH, USA) at a 2:1 ratio. The plants were grown in a growth chamber at
25/20 ◦C with a 12/12 h light/dark cycle, watered as needed, and fertilized in the third
week with 20-20-20 liquid fertilizer (Scotts, Marysville, OH, USA). Four-week-old plants
were used for treatment. Plants after the treatment were grown under the same conditions
and watered as needed.

4.2. Preparation of SSG Inoculum

SSG strain stored at −80 ◦C was recovered on the potato dextrose agar (PDA) after
incubation at 28 ◦C for 48 h. A single colony of the recovered culture was then streaked on
nutrient agar (NB) in 100 cm plates and sub-cultured for another 48 h. For cell suspension
preparation, a dish of the subculture was scraped and mixed with 100 mL Phosphate-
Buffered Saline (PBS) to have a concentration between 108 and 109 CFU mL−1. The concen-
tration of the cell suspension presented as CFU was determined by plating 100 µL on PDA,
as previously described [73].

4.3. Plant Treatment

Plants were cover sprayed with SSG suspension in PBS at 108 to 109 CFU mL−1 or PBS
alone (for control plants) at 15 mL per pot. Each treatment had 3 replicates with 3 pots per
replicate, and treated plants were arranged in a randomized complete block design in a
moist storage plastic box with some water on the bottom. The box was lidded then placed
in a growth chamber until the first sampling.

4.4. Analysis of the Effect of SSG on Plant Gene Expression
4.4.1. Plant Sampling

Five Col-0 plants were sampled from each replicate pot at 6- and 24-h post-treatment
(hpt), rinsed twice in 2 L distilled water, and once in 1 L sterilized distilled water (SDW).
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All the plants of 3 replicates from the same treatment in an experiment were pooled as a
biological replicate and ground in liquid nitrogen and placed in 50 mL tubes and stored at
−80 ◦C for future analysis.

4.4.2. mRNA Extraction

Total RNA was first extracted from the 3 experiments for 3 biological replicates of each
treatment at 6- and 24-hpt. For each of the 12 samples, 1 mL of the frozen plant powder
was used to extract RNA by mixing with 5 mL TRIzol (Invitrogen, Waltham, MA, USA) in
a 15 mL tube as instructed by the manufacturer. For mRNA or polyA+ RNA extraction,
250 µg of the total RNA was used for each sample, and the extraction was conducted with
the mRNA Isolation Kit (Roche Applied Science, Penaberg, Germany). Both the total RNA
and mRNA were quantified using the QuantusTM Fluorometer with QuantiFluro® RNA
System (Promega, Madison, WI, USA).

4.4.3. Sequencing cDNA Proxy

The PCR-cDNA kit and barcoding protocol (PCB_9092_v109_revB_10Oct2019) of
Oxford Nanopore Technologies (ONT) were used for sample cDNA generation, barcoding,
and sequencing (ONT, Cambridge, UK). A total of 12 samples, including 3 biological
replicates of 2 treatments, the control and SSG, and 2-time points, 6- and 24-hpt, were
sequenced. For each sample, 2 ng of the polyA+ RNA was used at reverse transcription and
strand-switching, 5 µL of the reverse-transcribed RNA was used for selecting for full-length
transcripts and barcoding. For library preparation and sequencing, 12.5 ng of each of the
amplified cDNA barcoded samples were pooled to obtain total cDNA of 100 fmol after
DNA quantification using the QuantusTM Fluorometer with QuantiFluro® dsDNA System
(Promega, Madison, WI, USA) and size estimation. The size estimation was based on the
average of transcript sizes of Arabidopsis, which was approximately 2 kb.

4.4.4. Differential Gene Expression Analysis

cDNA fastq sequence data of the paired samples of 2 treatments (e.g., SSG/the control)
at 6 and 24 dpt were analyzed through pipeline-transcriptome-de (https://github.com/
nanoporetech/pipeline-transcriptome-de (accessed on 17 April 2021)) by following the
ONT community bioinformatics tutorial “Using cDNA sequence collections for differen-
tial transcript usage” (https://community.nanoporetech.com/knowledge/bioinformatics/
tutorials, accessed on 15 April 2021). The differential transcript usage (DTU) and differ-
ential gene expression (DGE) of paired samples were analyzed for the identification of
genes and transcripts that appear differentially abundant between the treatments with and
without SSG. AtRTD2 (Arabidopsis Thaliana Reference Transcript Dataset 2 [74], including
AtRTD2_19April2016.fa and AtRTD2_19April2016.gtf, were used (https://ics.hutton.ac.
uk/atRTD/, accessed on 17 April 2021). The workflow used tools, including Minimap2 for
mapping long sequence reads to the reference transcriptome, salmon for counting reads
that map to a transcript, and various R packages (edgeR, DEXSeq, DRIMSeq, and stageR)
for the statistical analysis of the gene and transcript associated mapping information.

4.4.5. Gene Ontology (GO) Enrichment Analysis and Functional Categorization of
Regulated Genes

The significant differentially expressed genes (DEG) in the 6 h and 24 h were, re-
spectively, selected as input for the via an online toolkit: The plant gene set enrichment
analysis [75]. This web server compiled many GO terms for Arabidopsis thaliana. The GO
gene sets contained 1,018,369 entries with the plant genes identified in biological process
(BP), cell component (CC), molecular function (MF). Fisher exact was used for statistical
testing. Benjamini–Hochberg post-hoc test was used to adjust multi-test p-values. The false
discovery rate (FDR) was set at 5%. Pheatmap [76] was used to visualize the overlapping
genes across the significant GO terms. The Reduce Visualize Gene Ontology (Revigo) web
server [77] was used to calculate the similarity of the significant GO terms and produce a

https://github.com/nanoporetech/pipeline-transcriptome-de
https://github.com/nanoporetech/pipeline-transcriptome-de
https://community.nanoporetech.com/knowledge/bioinformatics/tutorials
https://community.nanoporetech.com/knowledge/bioinformatics/tutorials
https://ics.hutton.ac.uk/atRTD/
https://ics.hutton.ac.uk/atRTD/
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visualization of the BP term classification. SimRel method was selected for the semantic
similarity measure. A. thaliana was used as a reference organism.

The differentially expressed genes at the 2 sampling points were categorized through
The Arabidopsis Information Resource (TAIR) using GO annotation search (https://www.
arabidopsis.org/tools/bulk/go/index.jsp, accessed on 9 December 2021). The search
results were used for functional annotation to understand the role of SSG in plant de-
fense priming.

4.5. Biological Responses of Arabidopsis to SSG

All treated plants in each experiment, including the control, were examined for physi-
cal changes at 1-, 3-, 5-, 7-, and 10-days post-treatment (dpt).

5. Conclusions

Analyzing Arabidopsis plants inoculated with the cell suspension of a burkholderial
biocontrol agent SSG revealed that SSG is a unique ISR inducer different from rhizobacteria
via JA/ET, and phyllosphere commensals via common SA and JA pathways. SSG uses
the transmembrane protein ACD6 and NPR1 -mediated SA pathways and SEN1 mediated
JA pathway that regulates JA production and induces Pi deficiency response. SSG also
regulates ABA biosynthesis and signaling, leading to callose deposition enhancement,
defense signaling crosstalk, and stomatal closure modulation. Additionally, SSG uses
other molecular mechanisms for plant defense priming. These include inducing response
to Fe deficiency, regulating ET, modifying chromatin through VIM1, activating MAPKs
(CPK4 and CIPK15), and regulating DEFL for iron and zinc homeostasis and stress, biotic
and abiotic responses. Thus, SSG is not only a pathogen suppressor and plant growth
promoter [26–28] but also a trigger of plant defense priming with diverse mechanisms. The
priming triggered by SSG can occur shortly after the application of the cell suspension
when the biocontrol agent is still alive, directly interacting with encountered pathogens. As
a result, the priming leads to broad-spectrum and long-lasting moderate plant resistance
even though SSG cells die-off, as demonstrated previously [26,28,29].
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