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Abstract: The diagnosis and management of inflammatory bowel disease relies on histological as-
sessment, which is costly, subjective, and lacks utility for point-of-care diagnosis. Fourier-transform
infra-red spectroscopy provides rapid, non-destructive, reproducible, and automatable label-free
biochemical imaging of tissue for diagnostic purposes. This study characterises colitis using spec-
troscopy, discriminates colitis from healthy tissue, and classifies inflammation severity. Hyperspectral
images were obtained from fixed intestinal sections of a murine colitis model treated with cell ther-
apy to improve inflammation. Multivariate analyses and classification modelling were performed
using supervised and unsupervised machine-learning algorithms. Quantitative analysis of severe
colitis showed increased protein, collagen, and nucleic acids, but reduced glycogen when compared
with normal tissue. A partial least squares discriminant analysis model, including spectra from all
intestinal layers, classified normal colon and severe colitis with a sensitivity of 91.4% and a specificity
of 93.3%. Colitis severity was classified by a stacked ensemble model yielding an average area under
the receiver operating characteristic curve of 0.95, 0.88, 0.79, and 0.85 for controls, mild, moderate,
and severe colitis, respectively. Infra-red spectroscopy can detect unique biochemical features of
intestinal inflammation and accurately classify normal and inflamed tissue and quantify the severity
of inflammation. This is a promising alternative to histological assessment.

Keywords: vibrational spectroscopy; infra-red spectroscopy; colitis; inflammatory bowel disease

1. Introduction
1.1. Role of Histology in IBD

Inflammatory bowel disease (IBD) is a chronic inflammatory immune-mediated con-
dition with globally increasing prevalence with time [1]. Disease onset is common in
young adulthood and currently it is the fifth leading cause of years lived with disability
amongst digestive diseases [2]. Histological assessment of tissue obtained from surgical
specimens or endoscopic biopsies remains a cornerstone for the diagnosis and management
of IBD. The European Crohn’s and Colitis Organisation and British Society of Gastroen-
terology consensus guidelines continue to recognise histology, from either endoscopic
biopsies or surgical resections, as a key factor in IBD diagnosis. Endoscopic biopsy for
histological assessment is the gold standard of care for ongoing activity and dysplasia
surveillance [3,4]. With increased biological and small molecule therapies emerging for
IBD management, treatment targets, particularly in ulcerative colitis, are moving towards
histological remission, placing even greater reliance on histological assessment [5].
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However, histological evaluation of IBD for diagnosis, activity, and dysplasia assess-
ment is affected by multiple issues, including the lack of standardised and/or validated
diagnostic criteria, inter- and intra-observer variation and uncertainty regarding clinical
correlation [6]. Furthermore, the time taken for specimen processing, staining, and assess-
ment precludes its use for point-of-care diagnosis. Moreover, in addition to accumulative
cost with multiple specimens obtained during the patient’s lifetime, histological findings
do not predict disease course or treatment response.

1.2. Application of Biospectroscopy Technologies in IBD

Biospectroscopy allows for non-destructive, label-free biochemical analysis of biologi-
cal specimens through the measurement of absorbance from molecular vibrations. Fourier
transform infra-red (FTIR) spectroscopy uses an infra-red energy source to atomically
displace molecular bonds with quantitative analysis of the absorbance intensities. The
biological fingerprint is located at 1800–800 cm−1 and contains the most important infra-red
spectral regions of interest for biological specimens, which have been well-characterised.
Additionally, this can be coupled with a focal plane array detector and microscope, allowing
for collection of hyperspectral images that include both spectral, morphological, and spatial
information, providing an ideal method to study tissue specimens. Spectral data are then
routinely analysed via multivariate analyses that incorporate machine-learning algorithms
for exploratory analyses as well as classification models, ultimately to create reproducible,
automatable, and standardised results [7].

Published studies using this technology for intestinal inflammation are limited. Hu-
man studies using FTIR spectroscopy for IBD research have largely only investigated colitis
as a secondary comparator to colorectal cancer. Differences in the biochemical composition
of inflamed bowel compared with cancer [8–10] were demonstrated, with models showing
predictive capacity for cancer diagnosis. Studies applying FTIR to animal models of colitis
are also limited but have demonstrated that biochemical signatures can accurately classify
colitis in normal tissue [11] and serum [12,13], with a potential for monitoring treatment
response [14]. Most of these studies with intestinal tissue, however, do not distinguish
between the layers of the bowel or only include the mucosa with limited sampling of
random spectra only.

1.3. Aim and Hypothesis

The aim of this study is to characterise the tissue biochemistry of intestinal inflam-
mation using FTIR microspectroscopy and demonstrate that the spectra can be used to
accurately classify healthy tissue from colitis and further assess the severity of inflamma-
tion. We hypothesise that the biochemical composition of colitis is distinct and can be
quantitatively assessed using this technique. To our knowledge, this is the first study using
FTIR spectroscopy to assess the severity of intestinal inflammation.

2. Results
2.1. General Results

Over 500,000 spectra were collected from 99 sections of colon from 30 mice, creating
a large dataset which required data reduction, as described in the methodology. The
“biological fingerprint” region from 1800–800 cm−1 was used for analysis and the average
spectra for each intestinal layer are shown below in Figure 1.
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Figure 1. Representation of average spectra obtained from healthy tissue compared with severe co-
litis. (A) Comparison of average original spectra for controls and severe colitis across all layers of 
the bowel wall. (B) Comparison of average second derivative spectra for controls and severe colitis 
across all layers of the bowel wall. 

Figure 1. Representation of average spectra obtained from healthy tissue compared with severe
colitis. (A) Comparison of average original spectra for controls and severe colitis across all layers of
the bowel wall. (B) Comparison of average second derivative spectra for controls and severe colitis
across all layers of the bowel wall.
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We found that there was, overall, a higher absorbance intensity in the mean (baseline-
corrected) colitis spectra compared with control mice. The main protein peaks (amide I and
II located at 1700–1600 cm−1 and 1580–1510 cm−1, respectively) were the greatest in the
muscularis propria (MP) when comparing bowel wall layers amongst control and severe
colitis groups (Figure 1A).

Using second derivative spectra (Figure 1B), where the maxima have now become
minima, there were clear differences between the colitis and control groups, as well as
amongst the different layers of the bowel. Table 1 lists the infra-red absorbance band
assignments for the wavenumber values in the spectra of intestinal tissue corresponding to
their biochemical composition.

Table 1. Infra-red band assignments for intestinal tissue.

Wavenumber Values (cm−1) Band Assignment

~1743 Ester carbonyl (lipid) [10]

~1685 Amide I anti-parallel β-pleated sheet protein secondary
structure [12]

~1646 Amide I α-helix protein secondary structure [10]
~1639 Amide I β-pleated sheet protein secondary structure [15]
~1539 Amide II β-pleated sheet [15]
~1515 Amide II [16]
~1450 Carboxylate group (proteins) [17]
~1390 Lipids [16]
~1310 Amide III [10]
~1280 Collagen [15]
~1230 Collagen, nucleic acids [15]
~1200 Collagen [15]
~1151 Carbohydrates and glycogen [18]
~1115 RNA [12]
~1076 Mannose and glycoproteins, nucleic acids [12]
~1053 Glycogen and other carbohydrates [16]
~1028 Glycoproteins including glycogen [19]
~999 RNA [17]
~964 Deoxyribose (mainly DNA) [8]

The minima at the large amide I protein band shows that the protein configurations
in the mucosa (MC) and MP in both control and colitis are predominantly of α-helical
secondary structure (1646–1640 cm−1), whereas the main amide I protein conformation
for the submucosa (SubMC) has a shifted minimum located at 1635 cm−1 representing
the β-sheet protein conformation. The “collagen triplet” [20] can be clearly identified by
minima located on second derivative spectra at approximately 1280 cm−1, 1230 cm−1, and
1200 cm−1, although it should be noted that the 1230 cm−1 band also has a contribution
from an asymmetric phosphodiester stretch. The absorbance is greatest at the “collagen
triplet” for the SubMC, as the most abundant extra-cellular matrix is collagen. The glyco-
protein band at 1076 cm−1 has the highest absorbance in the MC spectra, likely due to the
presence of mucous produced from goblet cells (although nucleic acids also contribute to
the absorbance intensity at this wavenumber value). There are significantly fewer nucleic
acids in the MP layer compared with the other layers, as demonstrated by the band at
960 cm−1 which is assigned to the C-C and C-H deoxyribose in DNA [21].

Overall, there also appears to be greater variation amongst the spectra comparing
the different bowel wall layers (containing different structural elements) than between the
control and diseased groups.

2.2. Hyperspectral Image Analysis Results of Intestinal Mucosa
2.2.1. Biochemical Composition

The regions of predominant protein (amide I and II), glycogen, collagen, and nucleic
acids were quantitatively analysed as whole hyperspectral images (with each pixel repre-
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senting the integrated area under the corresponding spectra), as shown in Figure 2. The
same regions were then statistically analysed by comparing the integrated area under the
average spectra for the entire image for each of the mucosal sections (Figure 3).
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Figure 2. Comparison of the integrated areas under regions of interest in the spectra in healthy
tissue, mild, and severe colitis. (A) Quantitative representation of protein, collagen, and glycogen.
(B) Quantitative representation of RNA and DNA.
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Figure 3. Quantitative comparison of the biochemical composition between the mucosa of control
and severe colitis. (A) Integrated area under the bands representing protein, collagen, and glyco-
protein. (B) Integrated area under the bands representing RNA. (C) Integrated area under the band
representing DNA.
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The colon sections displayed in the hyperspectral images (Figure 2) are representative
sections acquired from control, mild, and severe colitis tissues. Corresponding H&E
sections demonstrate mild colitis defined by mucosa-limited intrusion of the inflammatory
infiltrate compared with severe colitis displaying marked transmural inflammatory cell
infiltrate and extensive epithelial ulceration [22]. In the hyperspectral images, the highest
and lowest intensity of the integrated regions of interest of the spectra are represented by
the red and blue hues, respectively, as shown in the adjacent colour bars.

Amide I and II (Protein): The amide bands are the main protein bands in the spectra of
biological materials. The integrated areas under the curve at 1700–1600 cm−1 (amide I) and
1580–1510 cm−1 (amide II) show increased quantities of protein with increasing severity
of inflammation in the colon on both hyperspectral imaging and in comparisons of mean
integrated areas under the curve for these bands (p < 0.000001).

Collagen: Collagen is represented in the integrated area under spectra over 1300–1200 cm−1,
including maxima at 1280 cm−1, 1230 cm−1, and 1200 cm−1. Hyperspectral imaging shows
that collagen does appear to be increased in inflamed mucosal sections, however, this did
not reach statistical significance when comparing mean integrated areas under the curve
(p = 0.15).

Glycogen: Glycogen has pure peaks located at 1151 cm−1, 1076 cm−1, and 1028 cm−1 in
the spectra. Hyperspectral imaging over the integrated area under 1250–1000 cm−1, repre-
senting glycogen content, shows that glycogen is highest in control mucosa which contain
glandular epithelia with mucin-producing goblet cells. Glycogen appears to be reduced
with increasing inflammation, potentially due to goblet cell depletion, a commonly featured
criteria in histological scoring systems of colitis severity along with erosions/ulceration
with loss of epithelium. However, comparing mean integrated areas under the average
spectra curve did not reach statistical significance (p = 0.57).

Nucleic acids: Hyperspectral imaging for RNA was performed by integrating the area
under the spectra in the region 1120–1080 cm−1 which includes both the RNA specific band
at 1115 cm−1 [23] as well as some nucleic acid phospholipid bands. Hyperspectral imaging
for DNA was performed by integrating the area under the spectra in the region from
979–948 cm−1 containing the known absorbance for DNA at 960 cm−1. As these tissues
have been fixed in formalin, most of the DNA would likely be in the dehydrated α-DNA
form [17]. The results of both the mean integrated area for DNA (p < 0.002) and mean
combined absorbance peaks for RNA (p < 0.000001) show that the greatest quantities of
nucleic acids are found in severe colitis due to the increase in inflammatory cell infiltration.

Subsequently, colitis and control tissue display broad differences in biochemical com-
position in hyperspectral imaging, particularly in the regions of protein, DNA, and RNA
which are increased with colitis. Hyperspectral imaging appears to also show increased
collagen and reduced glycogen in inflamed mucosa, however, this did not correlate with
statistical significance when comparing mean integrated areas under the spectral bands for
these respective regions. The differences in the mean integrated area under the collagen
and glycogen bands may be explained by sampling (as histologically graded severe col-
itis sections may still contain glandular epithelial mucosa) and the contribution of other
components, particularly nucleic acids, to the absorbance at these wavenumber values.

2.2.2. Artificial Neural Network Hyperspectral Image Classifier

Hyperspectral imaging classification using an artificial neural network (ANN) was
performed on representative sections of controls and severe colitis. Figure 4 shows that
using an ANN model (which was trained using only 10 spectra for each bowel layer)
accurately predicted both the spectra contained in its own image as well as a completely
independent test image (each containing up to 5000 untrained spectra). As the inflammatory
infiltrate in severe colitis contains dense nucleated material, the spectra from distinct layers
are more obscured and homogenous, which accounts for the image differences.
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Figure 4. Hyperspectral image classification using ANN for controls and severe colitis. The training
image depicts the classification performed on the entire original image using trained classes and the
validation image uses trained classes from an independent sample.

2.3. Tissue Colitis Classification
2.3.1. Spectral Biomarkers for Colitis

A partial least squares discriminant analysis (PLS-DA) was performed using the pre-
processed second derivative spectra from the region 1800–800 cm−1. This was performed
on the spectra from the individual bowel layers (MC, SubMC, and MP) as well as all the
layers combined.

The PLS-DA classification models using spectra from all bowel layers (five latent
variables, LVs), the mucosa alone (five LVs) and the submucosa alone (five LVs) were
highly accurate in classifying severe colitis and controls with cross-validated sensitivities
and specificities of 91.4% and 93.3%, 92.5% and 99.8%, and 96.9% and 94.1%, respectively.
The muscularis propria model (three LVs) had a slightly lower sensitivity of 85.8% and
specificity of 92.9%, but this is not unexpected as the utilized dextran sodium sulfate
(DSS) chemical colitis model does not typically result in transmural inflammation. The
submucosa spectra appeared to provide the best discrimination between inflammation and
normal tissue. The predominant wavenumber bands featured in the latent variables for the
model incorporating all bowel wall layers were the protein bands in amide I, particularly
the α-helix maxima at 1647 cm−1, but also other protein bands, such as 1481 cm−1, the
collagen/nucleic acid band at 1230 cm−1, and the glycoprotein bands at 1076 cm−1 and
1030 cm−1.

Figure 5A shows the PLS-DA model using spectra from all the bowel wall layers and
Figure 5B the summation of all five LVs used in the model which account for >99.5% of
the variability with labelled wavenumber values of contribution and interest. The PLS-DA
models for the individual bowel layers (MC, SubMC, MP) and the loadings from their
respective LVs are found in the Supplementary Materials (Figures S1–S3).

Quantitative analysis of biochemical composition corresponding to the significant
variable importance in projection (VIP) scores for the PLS model revealed highly statistically
significant differences between the control and the severe colitis groups, as shown in the box
plots represented in Figure 6A,B. They largely correlate with the protein peaks at amide I
(1700–1600 cm−1), amide II (1597–1496 cm−1), collagen (1284–1277 cm−1), glycoproteins,
and nucleic acids (1068, 1034–1030 cm−1), which have remained consistent findings in
our analyses.
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Figure 5. Partial least squares discriminant analysis model classifying spectra from all bowel wall
layers as healthy tissue or severe colitis. (A) Classification of spectra from all layers of the bowel into
controls and colitis. (B) All five latent variables included in the classification model for severe colitis.



Int. J. Mol. Sci. 2022, 23, 2849 10 of 19Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 10 of 19 
 

 

 
(A) 

 
(B) 

Figure 6. Significant VIP scores correlating to the PLS-DA classification model for healthy tissue and 
severe colitis from Figure 5. (A) Significant VIP scores representing amide I and II protein bands. 
(B) Other significant VIP scores, including those for glycoproteins and nucleic acids. 

2.3.2. Colitis Severity Classification 
Finally, a model was created to classify tissue spectra colitis severity into classes com-

prising controls, mild, moderate, and severe colitis. Firstly, unsupervised learning was 
undertaken using principal component analysis (PCA) of the pre-processed second deriv-
ative spectra. Figure 7A shows that controls, mild, and severe colitis spectra from the sub-
mucosa have accurately separated, largely due to the protein bands (1666, 1648, 1644, 
1620, and 1494 cm−1) demonstrated by the maxima and minima for the principal 

Figure 6. Significant VIP scores correlating to the PLS-DA classification model for healthy tissue and
severe colitis from Figure 5. (A) Significant VIP scores representing amide I and II protein bands.
(B) Other significant VIP scores, including those for glycoproteins and nucleic acids.

2.3.2. Colitis Severity Classification

Finally, a model was created to classify tissue spectra colitis severity into classes
comprising controls, mild, moderate, and severe colitis. Firstly, unsupervised learning
was undertaken using principal component analysis (PCA) of the pre-processed second
derivative spectra. Figure 7A shows that controls, mild, and severe colitis spectra from
the submucosa have accurately separated, largely due to the protein bands (1666, 1648,
1644, 1620, and 1494 cm−1) demonstrated by the maxima and minima for the principal
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component (PC) loadings for PC1 and PC2 on Figure 7B. The moderate colitis spectra are
not shown in Figure 7 as its data lie over the mild/severe clusters and obscure the image.
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Figure 7. Unsupervised classification of colitis severity using the submucosa tissue spectra in a PCA
model. (A) Plot of PC1 and PC2 using PCA from spectra obtained from the submucosa of healthy,
mild, and severe colitis demonstrating separation between these classes. (B) Loadings plot for PC1
and PC2 demonstrating key features in the wavenumber bands that separate the classes.
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PCA was also performed for variable dimension reduction prior to supervised machine-
learning classifiers. The number of principal components (PCs) was chosen to account for
at least 95% of the data and varied according to bowel layer. The remainder was thought
to be largely due to noise. Several complex machine-learning classifiers were used for
10 stratified independent test sets, with the final results averaged for all sections of the
bowel, altogether and individually (MC, SubMC, MP). The hyperparameters used in the
individual classification models are listed in the Supplementary Materials (Table S1).

A total of 280 separate models were analysed. Overall, models using spectra from
the submucosal section alone displayed the highest performance for severity classification
based upon metrics for area under the receiver operating characteristic (AUROC) and
classification accuracy (CA). From these submucosal classifiers, the best performing models
for identifying each class of severity (controls, mild, moderate, and severe) were selected
and stacked into an ensemble model which included an artificial neural network (ANN),
support vector machines (SVM), random forest (RF), and k-nearest neighbour (kNN)
algorithms. The average AUROC and CA (over 10 independent test sets) for the submucosal
stack classification model was AUROC 0.95, CA 0.91 for controls, AUROC 0.88, CA 0.81
for mild colitis, AUROC 0.79, CA 0.78 for moderate colitis, and AUROC 0.85, CA 0.88 for
severe colitis.

An example of the receiver operating curves for the final resultant stacked submucosal
model is shown in Figure 8.
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3. Discussion

This study has characterised the tissue biochemical composition of colitis and its sever-
ity using infra-red microspectroscopy, demonstrating that colitis tissue exhibits increased
quantities of protein, collagen, nucleic acids, but reduced glycogen when compared with
normal colonic tissue. Our study also confirms that FTIR spectroscopy can accurately
differentiate intestinal tissue samples of colitis from controls and classify the severity of in-
flammation based on the biochemical changes in tissue specimens. These results correspond
with the histological scoring in a gold-standard murine model for IBD with a high degree
of accuracy, particularly using spectra from the submucosal region for discrimination.

Lipid analysis has not been included as part of this biochemical compositional analysis
using FTIR spectroscopy, as the formalin fixation process has likely affected tissue lipid
composition and there are additional confounding bands from paraffin that obscure known
lipid absorbance bands. Studies using unfixed tissue have identified the lipid band at
~1460 cm−1 (also found in paraffin) to be of potential significance when comparing colitis
and colon cancer [10].

Our results highlight the potential of using FTIR spectroscopy to provide alternative
biochemical information with significant advantages over conventional histology. While the
technique we utilised does not necessarily provide individual molecular information, it does
provide an entire biochemical overview of the sample and macromolecular information and
has significant advantages. Infra-red spectroscopy preserves the sample, does not require
sample preparation or staining, and removes the need for physical storage of specimens for
over 10 years, as required in some countries. Some FTIR and Raman technologies allow
for portable collection of spectra, with rapid acquisition in the order of minutes, allowing
for utilisation as a potential point-of-care diagnostic with a potential application for use
during gastrointestinal endoscopy. Furthermore, tissue spectra obtained with FTIR are
reproducible and can avoid problems with subjective methods of assessment, including
histological scoring with intrinsic issues of inter- and intra-observational errors.

To our knowledge, this study provides the only information utilising FTIR spec-
troscopy to characterise and classify the severity of colitis based on layers of the bowel,
including the mucosa, submucosa, and muscularis propria. These findings are novel, as
we have found that the degree of spectral differences between intestinal tissue types are
more significant than those for varying degrees of inflammation within the same tissue
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type. Comparisons of our spectral results with the majority of published FTIR studies
using intestinal tissue are difficult, as the focus has mainly been on differentiating colitis
and colon cancer; the specimens are sufficiently variable to significantly affect spectral
characteristics or are acquired via different modalities of spectroscopy, such as Raman,
which cannot be directly compared. Subsequently, findings from the studies most relevant
to this field are discussed below.

Lasche et al. characterised the spectra of individual human bowel wall layers in the
context of colorectal adenocarcinoma [24]. While this is a different pathological condition,
when assessing the constituents of the layers of the bowel, similar to our findings, the
authors identified intense submucosal bands at 1235 cm−1 and 1281 cm−1, reflecting
higher quantities of collagen in the submucosa, and dominating protein signals in amide I
(1690–1620 cm−1) in the muscularis propria compared with the submucosa [24].

Katukuri et al. compared fresh colonic mucosal tissue from murine DSS colitis with
controls [11]. They identified important absorbance bands at 1072 cm−1 (C-N stretch of
glycoproteins), 1088 cm−1 (symmetric PO2

− stretch of nucleic acids), and 1740 cm−1 (C=O
stretch of phospholipids) to distinguish inflammation from normal mucosa with 92% sen-
sitivity and 83% specificity in a PLS model [11]. While the influence of the protein bands
from amides I and II had a much greater influence on our mucosal PLS-DA model for dis-
tinguishing severe colitis from healthy controls (see Supplementary Materials, Figure S1B),
when analysing wavenumber bands for significant VIP scores, the same phospholipid
band at 1739 cm−1 and glycoprotein band at 1072 cm−1 also featured. We also found
that the collagen band at 1280 cm−1 contributed to significant VIP scores. However, it is
difficult to directly compare our study results due to variations in sample morphology (full
thickness FFPE specimens vs. fresh mucosal tissue only) and their study did not explore
DSS colitis severity.

Although our results cannot be directly compared with inflammatory spectral biomark-
ers from Raman spectroscopy, biochemical differences in IBD have also been confirmed
using this technique. Unlike infra-red spectroscopy, Raman spectroscopy uses laser energy
to measure non-elastic light scattering to produce biochemical information. It has been
shown to distinguish tissue [25] and plasma samples [26] from IBD and healthy controls,
Crohn’s disease from ulcerative colitis [27,28], as well as active inflammation from mu-
cosal healing based on varying profiles in lipids, phosphatidylcholines, myoglobin, and
carotenoids [29–31]. Fibreoptic Raman probes have also been developed with the potential
for application in point-of-care endoscopy, as the spectra acquired are not obscured by the
presence of water in the colon [32].

Finally, spectral interpretation can be difficult, particularly in complex biological
specimens, such as tissues. Multiple molecules in tissue may contribute to the infra-
red absorbance intensity at a specific wavenumber value and differences in the spectral
waveforms for controls and colitis in tissue spectra appear subtle to the naked eye. In
this study, PCA demonstrated that the degree of variation amongst the bowel layers (and
subsequently different types of tissue, e.g., epithelium, extracellular matrix, and muscle)
was greater than the variation between colitis and controls in each respective bowel wall
layer. Subsequently, there is a need to use more sophisticated classifiers, such as those
in machine learning, to assist in assigning classes of biological spectra. However, it is
important to confirm that the features selected, in this case the wavenumber values, contain
valid biological information rather than noise. This study has shown through multiple
analytical modalities, including integrated areas under the spectral curve and assessing
LV and VIP scores in the PLS-DA model, that the differences separating controls and the
classes of colitis are consistent and biologically plausible. While sampling error remains a
source of potential bias, this also applies to histopathological specimens.

Nonetheless, this study presents promising applications for biospectroscopy in IBD.
Further studies are required using this technology to provide biochemical assessments for
diagnosis and activity assessment of human Crohn’s and ulcerative samples correlating
with validated endoscopic and histological scoring systems and clinical outcomes. Con-
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current paired assessments of other biospecimens, including serum or stool specimens,
may allow for an even less invasive method of colitis diagnosis and assessment. A pilot
study used surface-enhanced Raman scattering to differentiate spectra from the serum of
UC and healthy individuals with a sensitivity of 89% and specificity of 94% [33]. FTIR
serum studies of murine colitis models demonstrate that spectroscopy can detect differ-
ences in control and colitis groups [12] which normalise upon treatment with anti-tumour
necrosis factor alpha [13]. Furthermore, previous studies have consistently demonstrated
that FTIR spectroscopy can differentiate cancer, colitis, and normal tissue [8–10] with
sensitivities of 81–98% and specificities of 70–93%. This suggests that FTIR spectroscopy
may also be utilised for dysplasia surveillance in IBD, as it can distinguish inflammation
from malignancy.

4. Materials and Methods
4.1. Colitis Induction and Treatment Intervention

Intestinal samples were obtained from animal experiments that were approved by the
Monash University Animal Ethics Committee (AE#B12/02, 9 April 2015) and conducted
in accordance with the Australian Code of Practice for the Care and Use of Animals for
Scientific Purposes (2006). Chronic colitis was induced in 8-week-old C57/BL6 mice with
3 cycles of 1.5% (weight/volume) dextran sodium sulfate (DSS) via the oral route (n = 27)
over 9 weeks. Half of the murine cohort of DSS colitis (n = 14) were treated with weekly
intravenous human amnion epithelial cells at a dose of 2 × 106 cells for 4 weeks. This
intervention was shown to reduce histological and immunochemical severity of intestinal
inflammation and fibrosis [34].

4.2. Sample Preparation and Assessment

FFPE murine colon tissue sections were cut in 5 µm sections and placed on a reflective
slide (Kevley Technologies, Chesterland, OH, USA) then de-paraffinised with xylene. An
adjacent 5 µm tissue section was collected and stained with haematoxylin and eosin (H&E)
for histological comparison. Corroborative histological assessment of colitis severity was
conducted on the adjacent H&E slide using criteria with specific scoring features for
chemically induced colonic inflammation [22].

4.3. FTIR Hyperspectral Imaging Acquisition

For each mouse, 3 separate colitis sections were imaged as technical triplicates, and
for control mice, 6 different sections were imaged. Sections included the most and least
severely inflamed areas selected via histological assessment. Specific regions of interest
were obtained both collectively as an entire section and separately from anatomical layers of
the bowel—mucosa (MC), submucosa (SubMC), and muscularis propria (MP)—to reduce
sampling bias due to variable quantities of bowel wall layers. Images were acquired using
the Agilent Cary 670 FPA-IR coupled with the Agilent Cary 620 microscope in transflec-
tion mode with a 15× microscope lens objective. To achieve a high signal-to-noise ratio,
128 and 64 coadded scans were collected in each measurement for the background and
tissue, respectively, in the wavenumber region 1900–700 cm-1 using a spectral resolution of
8 cm−1 and 2 × 2 pixel aggregation giving a theoretical pixel size of 11 µm2.

4.4. Spectral Data Preprocessing

Data sampling, pre-processing, and analysis was undertaken with the licensed soft-
ware packages MATLAB (MathWorks, Natick, MA, USA), CytoSpec version 2.00.06 (Berlin,
Germany), Unscrambler version 11.0 (Camo Analytics, Oslo, Norway), Quasar 0.9.0
(Orange-Spectroscopy [35]), and PLS Toolbox (Eigenvector Research Incorporated, Wash-
ington, DC, USA). Spectral waveform image preparation was carried out using OPUS
version 8.0 (Bruker, Ettlingen, Germany).

Analyses was undertaken using the spectral range 1801–798 cm−1, designated the
“biological fingerprint” region, as no obvious biomolecule absorbance external to this range
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was apparent. Data preprocessing and outlier detection is required to improve analysis
and classification model performance [36]. This included removal of background spectra,
rubber band correction of the baseline for analyses that required integration over regions of
interest, and transformation to second derivative spectra using a Savitzky–Golay smoothing
function with nine points to a third-order polynomial and normalised using the standard
normal variate over the entire region for classification. The Savitzky–Golay algorithm
reduces random noise in the data, and normalization with SNV reduces multiplication
interference, slope variation, and scatter effects in the sample [10]. The entire dataset
(>500,000 spectra) was then averaged to approximately 25 spectra per sample to ensure a
balanced dataset, ease of data management, and reduce computation power requirements.

4.5. Spectral Data Analysis

Scheme 1 demonstrates the data analysis work flow used for this project.
Whole hyperspectral image analyses of the tissue sections were quantitatively as-

sessed by integration of the area under the spectra representing broad components of
protein, glycogen, nucleic acids, and collagen. Multiple unpaired t-tests using Welch cor-
rection for unequal variances were performed using GraphPad Prism version 9.0.0 for
Windows (GraphPad Software, San Diego, CA, USA) for comparison of peak absorbance
intensities and integrated areas under the spectra curve when comparing severe colitis and
control mucosa.

Hyperspectral image classification was performed using a three-layer artificial neural
network (ANN) with a single hidden layer accessed through the Stuttgart Neural Network
Simulator (University of Stuttgart) and incorporated into CytoSpec version 2.00.06. Super-
vised training of classes from MC, SubMC, and MP from control and severe colitis sections
was performed using only 10 spectra per class at 100 iterations to classify each training
image and an independent validation image.

A partial least squares discriminant analysis (PLS-DA) was performed using second-
derivative spectra, including all bowel wall layers as well as separate sub-analyses, using
spectra from the MC, SubMC, and MP in both control and severe colitis samples. This
was performed to identify potential colitis biomarkers by analysing the contributions
from the latent variables (LVs) and variable importance in projection (VIP) scores, which
were considered significant if greater than one. The numbers of LVs chosen were based
on selecting the minima values in the latent variable versus cross-validation error plots.
Cross-validation was performed using a venetian blind method. All wavenumber values
with a significant VIP score were further evaluated using multiple unpaired t-tests with
Welch correction to confirm that there was a statistically significant difference between the
controls and severe colitis at the averaged peak absorbance intensity per sample (for discrete
wavenumber values) or integrated area under the spectra (if the series of wavenumber
values correlated to a maxima).

Model classifiers for comparing colitis severity were created using machine-learning
algorithms chosen to suit multi-class classification [37]. Unsupervised analysis was under-
taken with principal component analysis (PCA), with the number of components chosen to
reflect at least 95% of the data; the details are discussed individually with models. PCA
was employed to explore features used for classification as well as for dimension reduction.
Supervised classification was performed using support vector machines (SVMs), artificial
neural networks (ANNs), random forests (RFs) and k-nearest neighbours (kNNs) for the de-
velopment of a classification model for colitis severity. The highest performing models were
stacked in an ensemble to improve performance. The hyperparameters used for individual
machine-learning classifiers are listed in Supplementary Table S1 in the Supplementary Ma-
terials. To prevent model overfitting, cross-validation was performed using both stratified
nine-fold cross-validation, initially, and later a randomized stratified independent test set
partitioned at 70% training and 30% testing on shuffled data. To reduce sampling bias from
this method, the modelling was repeated 10 times on 10 separate hold-out partitions, with
the average of the resulting evaluation metrics recorded. The distribution of the classes
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for the 10 partitions for training and testing are shown in Supplementary Figure S4 in the
Supplementary Materials.

5. Conclusions

Our study confirms that the biochemical changes in colitis as detected by FTIR spec-
troscopy are distinct compared with healthy controls and that, with multivariate analyses
using machine-learning algorithms, the biochemical data can be interpreted for colitis sever-
ity assessment. This proof-of-concept study shows that FTIR spectroscopy has significant
potential to assess inflammatory conditions, such as IBD, using a method that can be stan-
dardized and automated with potential application as a point-of-care diagnostic technique.
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