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Abstract: The absence of standardized molecular profiling to differentiate uterine leiomyosarcomas
versus leiomyomas represents a current diagnostic challenge. In this study, we aimed to search for
a differential molecular signature for these myometrial tumors based on artificial intelligence. For
this purpose, differential exome and transcriptome-wide research was performed on histologically
confirmed leiomyomas (n = 52) and leiomyosarcomas (n = 44) to elucidate differences between and
within these two entities. We identified a significantly higher tumor mutation burden in leiomyosar-
comas vs. leiomyomas in terms of somatic single-nucleotide variants (171,863 vs. 81,152), indels
(9491 vs. 4098), and copy number variants (8390 vs. 5376). Further, we discovered alterations in
specific copy number variant regions that affect the expression of some tumor suppressor genes. A
transcriptomic analysis revealed 489 differentially expressed genes between these two conditions, as
well as structural rearrangements targeting ATRX and RAD51B. These results allowed us to develop
a machine learning approach based on 19 differentially expressed genes that differentiate both tumor
types with high sensitivity and specificity. Our findings provide a novel molecular signature for
the diagnosis of leiomyoma and leiomyosarcoma, which could be helpful to complement the cur-
rent morphological and immunohistochemical diagnosis and may lay the foundation for the future
evaluation of malignancy risk.

Keywords: leiomyoma; leiomyosarcoma; exome/transcriptome; mutational pattern; differential gene
expression; integrative analysis; diagnostic/prognostic biomarkers; machine learning; classification model
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1. Introduction

Uterine leiomyomas (LM) are benign tumors arising in the smooth muscle cells of
the uterine wall. They are the most common pelvic tumors in women, with a prevalence
of >80% for African American and ~70% for Caucasian women before 50 years of age [1].
Although LM are non-malignant tumors, the risk of hidden undiagnosed malignancy, such
as leiomyosarcoma (LMS), occurs in one among 498 uterine tumors [2–4].

Histological diagnosis is the gold standard option for myometrial tumors [5,6]. How-
ever, LM and LMS share clinical symptoms and morphological features [7,8], sometimes
hindering their differential diagnosis and introducing the risk of the future potential spread
of undiagnosed LMS with the use of power morcellators [9]. Besides, alternative invasive
approaches, such as laparotomy-based procedures, increase morbidity, mortality, and cost
for the patient and healthcare system [10].

Despite LM and LMS having been previously characterized at a molecular level [11–13],
the differential profiling of these myometrial tumors based on genomic/transcriptomic
characteristics could allow us a better understanding of the underlying tumorigenic pro-
cesses as well as to develop novel tools that may aid the current clinical diagnosis. Given
these challenges, we aim to discover specific molecular signatures for the differential
diagnosis of myometrial tumors.

In this study, we identified that LM and LMS have significant mutational heterogeneity
and differences in copy number alterations at the DNA level, while a specific transcriptomic
profile and multiple structural rearrangements were detected at the RNA level. With these
data, an integrated molecular analysis was performed to assess the effect of copy number
variants (CNVs) on gene expression. Targeted RNAseq data and artificial intelligence were
used to create a predictive model for the comprehensive molecular classification of LMS
and LM at the tumor-tissue level.

2. Results
2.1. Clinical Study Design

After obtaining informed consent from the eligible patients, tumor samples were
collected from women undergoing a hysterectomy or myomectomy as a surgical treatment
for a primary myometrial tumor. Following histological diagnoses according to WHO
criteria [14], a total of 106 selected LM and LMS samples were separated in two cohorts, the
experimental cohort and the validation cohort (Supplementary Figure S1). The epidemio-
logical, histopathological, and clinical outcomes of the patients involved in the study are
summarized in Table 1.

Table 1. Epidemiological, demographic, and clinicopathological outcomes of 56 patients diagnosed with
uterine leiomyoma (LM) and 47 patients with leiomyosarcoma (LMS) from the experimental cohort.

Characteristics LMS LM
Age

≤30 years - 2 (3.57%)
31–40 years 7 (14.89%) 17 (30.36%)
41–50 years 11 (23.41%) 33 (58.93%)
51–60 years 20 (42.55%) 2 (3.57%)
≥61 years 9 (19.15%) -

Not available (n) - 2 (3.57%)
Median (years) 53 44
Range (years 35–75 28–55

Ethnicity
Caucasian 36 (76.59%) 41 (73.21%)

African American 1(2.13%) 1 (1.79%)
Latin 4 (8.51%) 6 (10.71%)
Asian 1(2.13%) -
Arabic 1(2.13%) -

D
em

og
ra

ph
ic

va
ri

ab
le

s

Not available 4 (8.51%) 8 (14.29%)
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Table 1. Cont.

Characteristics LMS LM
Body mass index (kg/m2)

Median 27.15 24
Range 21.5–34.9 18.20–34.63

Not available (n) 21 13
Parity

Yes 23 (48.94%) 27 (48.21%)
No - 1 (1.79%)

Not available 24 (51.06%) 28 (50.00%)
Miscarriage

Yes 7 (14.89%) 15 (26.79%)
No 16 (34.05%) 13 (23.21%)

Not available 24 (51.06%) 28 (50.00%)
Menopausal status

Premenopausal 15 (38.30%) 46 (82.14%)
Postmenopausal 18 (31.91%) 2 (3.57%)G

yn
ec

ol
og

ic
ba

ck
gr

ou
nd

Not available 14 (29.79%) 8 (14.29%)
Pelvic mass

Yes 25 (53.19%) 28 (50.00%)
No 7 (14.89%) 20 (35.71%)

Not available 15 (31.92%) 8 (14.29%)
Abnormal uterine bleeding

Yes 17 (36.17%) 26 (46.43%)
No 11 (23.40%) 21 (37.50%)

Not available 19 (40.43%) 9 (16.07%)
Abdominal pain

Yes 16 (34.04%) 14 (25.00%)
No 11 (23.41%) 32 (57.14%)

Sy
m

pt
om

s

Not available 20 (42.55%) 10 (17.86%)
CT
Yes 14 (29.79%) 7 (12.50%)
No 16 (34.04%) 42 (75.00%)

Not available 17 (36.17%) 7 (12.50%)
MRI
Yes 5 (10.64%) 5 (8.93%)
No 22 (46.81%) 44 (78.57%)

Not available 20 (42.55%) 7 (12.50%)
Ultrasound

Yes 31 (65.96%) 49 (87.50%)
No - -

Not available 16 (34.04%) 7 (12.50%)
Tumor size (cm)

Median 13 7.4
Range mar-24 0.25–25

Not available (n) 17 10
Suspected uterine sarcoma

Yes 15 (31.91%) 5 (8.93%)
No 15 (31.91%) 44 (78.57%)

Im
ag

in
g

NA 17 (36.18%) 7 (12.50%)
Endometrial biopsy

Yes 15 (31.91%) 39 (69.64%)
No 17 (27.66%) 10 (17.86%)

Not available 19 (40.43%) 7 (12.50%)
Primary surgery

Laparoscopic hysterectomy 1 (2.13%) 12 (21.43%)
Laparoscopic myomectomy - 5 (8.93%)
Laparotomic hysterectomy 33 (70.21%) 21 (37.50%)
Laparotomic myomectomy - 11 (19.64%)Su

rg
ic

al
tr

ea
tm

en
t

Not available 13 (27.66%) 7 (12.50%)
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Table 1. Cont.

Characteristics LMS LM
Recurrence

Yes 19 (40.43%) 49 (87.50%)
No 9 (19.16%) -

Not available 19 (40.43%) 7 (12.50%)
Status
Alive 12 (25.53%) 48 (85.71%)

Deceased 12 (25.53%) -
Not available 23 (48.84%) 8 (14.29%)

Follow-up (months)
Median 24 -
Range 8–116 -

C
lin

ic
al

fo
llo

w
-u

p

Not available (n) 29 -

2.2. Identification of Differential Somatic Single Nucleotide Variants and Insertions/Deletions

We performed whole-exome sequencing in 44 LM and 34 LMS tumors to screen for
single nucleotide variants (SNVs) and insertions/deletions (indels). We detected 181,354
small variants in the LMS tumors, of which 171,863 were SNVs and 9491 were small indels.
In the LM samples, we detected 85,250 small variants, of which 81,152 were SNVs and 4098
were small indels. Among these variants, 27.63% where shared between LMS and LM,
while 34.56% were LMS-exclusive and 37.81% were LM-exclusive (in at least one sample).

Although comparative analyses of SNVs showed a similar distribution, LMS had
a higher mean number of alterations per sample compared to LM (p < 0.05). Then, we
focused on group-exclusive variants present in at least six samples of each group to find
exclusive variants involved in the pathogenic process of each group. As a result, we found a
total of thirteen variants affecting eight different genes exclusive to LMS (Figure 1A), while
we found a total of twelve mutations affecting twelve genes exclusive to LM (Figure 1B).
In both groups, these mutations were mostly missense mutations, although, in the LMS
group, there were other types of variants, i.e., in frame indels affecting the IQCJ-SCHIP1
gene, structural interaction variants affecting the GAPDH gene, and frameshift variants
affecting the EEF2 gene. Interestingly, most of the variants detected have been previously
reported in other cancer types in the COSMIC database (Supplementary Table S1).

Using this SNV information, we compared the mutational spectrum for the LM and
LMS tumors through the relative contribution of six base substitution types (Figure 1C),
which were then decomposed into two distinct mutational signatures (Figure 1D).

In an attempt to relate our findings to known mutational signatures, we searched
in the COSMIC database [15] and identified four (1, 5, 12, and 20) out of 30 existing
signatures (Figure 1E). Among them, signature 1 results from an endogenous muta-
tional process initiated by spontaneous deamination of 5-methylcytosine, while signature
5 exhibits transcriptional strand-bias for T > C substitutions at ApTpN context. We also
identified signature 20, which is associated with defective DNA mismatch repair due to
high numbers of small indels at mono/polynucleotide repeats. While these signatures have
already been identified across 40 different human cancer types, signature 12 represents a
novel mutational signature only present in these uterine tumors, showing similarities to
liver cancer and exhibiting a strong transcriptional strand-bias for T > C substitutions as
additional mutational features (Figure 1E).

Since we detected a molecular phenotype with a defect in the DNA mismatch repair
system, we next evaluated microsatellite instability (MSI) status to predict the outcome in
LM and LMS tumors, although no differences were found in the number of alleles or the
fragment size (Supplementary Figure S2).
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Figure 1. Comparative analysis of single-nucleotide variants (SNVs), insertions/deletions (indels), and mutational signatures for leiomyosarcoma 
(LMS) and leiomyoma (LM) samples. (A) Tumor profile of LMS-exclusive variants, including frequency and type of mutations. (B) Tumor profile of 
LM-exclusive variants, including frequency and type of mutations. In both cases, rows represent individual genes, while columns represent individ-
ual tumors. Bars illustrate the number of samples for each exclusive mutation. Types of mutations are annotated according to color. (C) Relative 
contribution of the indicated mutation types to the point mutation spectrum for each tumor type. Error bars indicate standard deviation over all 
samples. Total number of mutations for LM and LMS is indicated. (D) Relative contribution of each indicated trinucleotide changes to the two 
mutational signatures identified by non-negative matrix factorization (NMF) analysis. (E) Heatmap showing relative contribution of each mutational 
signature described in the COSMIC database for each sample. 

Figure 1. Comparative analysis of single-nucleotide variants (SNVs), insertions/deletions (indels), and mutational signatures for leiomyosarcoma (LMS) and
leiomyoma (LM) samples. (A) Tumor profile of LMS-exclusive variants, including frequency and type of mutations. (B) Tumor profile of LM-exclusive variants,
including frequency and type of mutations. In both cases, rows represent individual genes, while columns represent individual tumors. Bars illustrate the number
of samples for each exclusive mutation. Types of mutations are annotated according to color. (C) Relative contribution of the indicated mutation types to the
point mutation spectrum for each tumor type. Error bars indicate standard deviation over all samples. Total number of mutations for LM and LMS is indicated.
(D) Relative contribution of each indicated trinucleotide changes to the two mutational signatures identified by non-negative matrix factorization (NMF) analysis.
(E) Heatmap showing relative contribution of each mutational signature described in the COSMIC database for each sample.
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2.3. Identification of Copy Number Variants

We next compared the somatic copy number variants (CNVs) in LMS and LM. A total
of 14,467 CNVs were detected in LM, while 14,950 CNVs were detected in LMS. Despite the
similar results, Student’s t-test showed a significant difference in the mean values of CNVs
per sample between LMS (439.7) and LM (328.8) (p = 5.61 × 10−5). Because some CNVs
were present in more than one sample within each group, we filtered the unique CNVs
per group, obtaining a total of 8390 CNVs in LMS and 5376 CNVs in LM. In terms of their
structural nature, 18.2% of the CNVs in LMS were deletions, while 73.1% were duplications.
Specifically, 3.5% were LMS-specific deletions present in more than one sample, and 5.2%
were LMS-specific duplications present in more than one sample. In the LM group, 11.7%
of the CNVs were deletions and 84.5% were duplications, with only 0.1% tumor-specific
deletions and 3.6% tumor-specific duplications (Figure 2A). While the CNV profile for LMS
was heterogeneous and showed alterations in most chromosomes, the LM tumors had
recurrent losses in chromosomes 1, 13, 14, 15, and 22 and recurrent gains in chromosomes
12 and 19 (Figure 2B).

Kaplan–Meier survival curves were generated to assess the association between LMS-
specific CNVs and clinical prognosis based on overall survival. We selected 12 of the most
frequent LMS-specific CNVs present in at least 10 out of 34 LMS (Supplementary Table S2)
and found statistically significant differences between the patients with disruptions in at
least 67% of the CNVs. Remarkably, we observed a tendency where these patients with aber-
rant CNVs had shorter survival times than those with normal copy number values (diploid)
in these regions (Figure 2C). To account for possible confounding factors, we performed
a multivariate survival analysis, although, as expected, the results were non-significant,
probably due to the low sample size and the high number of variables included. Still, given
the potential clinical relevance of this finding, unsupervised hierarchical clustering using
the 370 genes included in these CNVs demonstrated a clear separation between the LMS
and LM tumors at the DNA level (Figure 2D).
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Figure 2. Comparative analysis of copy number variants (CNVs) in leiomyosarcoma (LMS) and leiomyoma (LM) samples and proximal effects from 
integrative analysis of CNVs and RNAseq data. (A) Distribution of CNVs per tumor type. (B) Genome-wide CNV distribution in LMS (left) and LM 
(right). In both cases, rows represent individual samples, while columns represent chromosomes. Types of CNVs are annotated by color, depending 
on if the deletion/duplication is detected in one sample (purple/blue) or two or more samples (green/yellow). (C) Kaplan–Meier plots showing the 
association between overall survival and alterations in at least 67% of the most frequent CNVs detected in LMS patients. (D) Heatmap of unsuper-
vised hierarchical clustering based on the 370 genes affected with the most common CNVs related to patient outcome. (E) Proximal effects from the 
integrative analysis of CNVs and RNAseq data. Boxplots show a region’s expression (y-axis, log of normalized counts per million reads mapped) of 
genes regulated by the specific region (x-axis) and colored by copy number state, represented as loss (blue), normal (orange), and gain (red) in LMS 
(upper) and LM (lower) samples. ** p-adjusted value < 0.01; *** p-adjusted value < 0.001. 

Figure 2. Comparative analysis of copy number variants (CNVs) in leiomyosarcoma (LMS) and leiomyoma (LM) samples and proximal effects from integrative
analysis of CNVs and RNAseq data. (A) Distribution of CNVs per tumor type. (B) Genome-wide CNV distribution in LMS (left) and LM (right). In both cases, rows
represent individual samples, while columns represent chromosomes. Types of CNVs are annotated by color, depending on if the deletion/duplication is detected in
one sample (purple/blue) or two or more samples (green/yellow). (C) Kaplan–Meier plots showing the association between overall survival and alterations in at
least 67% of the most frequent CNVs detected in LMS patients. (D) Heatmap of unsupervised hierarchical clustering based on the 370 genes affected with the most
common CNVs related to patient outcome. (E) Proximal effects from the integrative analysis of CNVs and RNAseq data. Boxplots show a region’s expression (y-axis,
log of normalized counts per million reads mapped) of genes regulated by the specific region (x-axis) and colored by copy number state, represented as loss (blue),
normal (orange), and gain (red) in LMS (upper) and LM (lower) samples. ** p-adjusted value < 0.01; *** p-adjusted value < 0.001.
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2.4. Proximal Expression Effects Inferred from Integration with CNVs

Because CNVs can involve a large region containing multiple genes, we integrated
the detected CNV regions with exome-wide gene expression data from RNAseq in LM
and LMS tumors (Supplementary Figure S3). As a result, we identified regions in the LMS
samples located in chromosomes 5, 11, 14, and 16 in which gains or losses were significantly
associated with changes in expression involving five genes (Figure 2E). Specifically, in
LMS (Figure 2E, upper), we detected TRIP13 with a positive correlation between gains
and higher expression, while losses were associated with lower expression. However, the
expression of other genes increased when there was a loss in the corresponding region
(CDKN1C) or decreased when there was a gain (BATF, DECR2, LUC7L), possibly due to
different mechanisms of regulating gene expression. The same analysis was performed in
the LM samples (Figure 2E, lower), showing regions located in chromosomes 5, 6, 7, 9, 11,
14, and 17. As in LMS, some genes showed a positive correlation between copy number
state and expression (ZSCAN9, MARK3, CHRNB1, WRAP53, YBX2), while, in the remaining
genes, gains in the chromosomal region were associated with lower expression values due
to more complex gene regulation.

2.5. Structural Rearrangements Affect Specific Regions and Genes in LM and LMS

Further, we identified high-confidence fusion transcripts in 29.5% of the LM cases and
61.8% of LMS arising from chromosomal rearrangements, resembling chromothripsis in
some cases, such as LMS25 and LMS26 (Figure 3A).

Chromosomes 3, 8, 11, 13, 17, and X were the most frequently affected in LMS
(Figure 3A), while chromosomes 1, 3, 6, and 14 were the most impacted in LM (Figure 3B).
Although no recurrent fusions were detected in any tumors, multiple rearrangements
targeting the chromatin remodeling protein ATRX were identified in LMS, and a known
oncogene, RAD51B, was identified in LM. Specifically, ATRX was fused with several gene
partners, such as TRAPPC9, RP11-56A10.1, and EZH1, resulting in a non-functional fusion
protein lacking the helicase ATP-binding domain and/or the helicase C-terminal domain in
the LMS tumors (Figure 3A). In the LM tumors, RAD51B was fused with HMGA2, NCOR2,
and NUDT3, indicating the potential of these fusions to drive tumorigenesis (Figure 3B).
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Figure 3. Structural variant plots of chromosomal rearrangements in leiomyoma (LM) and leiomyosarcoma (LMS). (A) Bar plot showing the number of
high-confidence fusions per LMS sample (upper). Bar plot and ideograms showing the most frequently affected chromosome regions in LMS samples (middle).
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Schematic representation of the gene sequence and functional protein domain for the most affected gene, ATRX, validated by immunohistochemistry (lower), using
glioma biopsies as a positive control (right). Scale bar represents 75 µM (n = 3). (B) Bar plot showing the number of high-confidence fusions per LM sample (upper).
Bar plots and ideograms showing the most frequently affected chromosome regions in LM samples (middle). Schematic representation of the gene sequence and
functional protein domain for the most affected gene, RAD51B, validated by immunohistochemistry (lower) and using gallbladder as a positive control (right). Scale
bar represents 75 µM (n = 3).
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2.6. Differential Transcriptomic Characterization of LMS versus LM

We next sought to identify differential gene expression footprints by the RNAseq
analysis of 44 LM and 34 LMS tumors. A class comparison detected a total of 489 DEGs, 416
significantly upregulated and 73 downregulated, between LMS and LM (FDR < 0.05 and
|logFC| > 2). Some of the most significant upregulated genes in LMS were validated by
RT-PCR, confirming significant overexpression and correlation between qPCR and RNAseq
(Supplementary Figure S4).

Next, unsupervised hierarchical clustering grouped the LMS samples in a homoge-
neous cluster of 29 samples, while 30 LM samples were detected in a separate cluster. Of
note, another cluster included the remaining LM with some LMS (LMS03, LMS11, LMS26,
LMS35, and LMS62) (Figure 4A). Based on the heatmap/dendrogram, these LMS samples
appeared closer to the LM group, suggesting that their molecular profile was more similar
to the LM samples than the LMS samples. This was in line with clinical information of the
corresponding patients as only one out of the five LMS patients died due to the disease,
while the other four are still alive, reinforcing that these tumors may have intermediate
characteristics but are closer to LM.

To better understand the molecular functions, biological processes, and pathways
differentially regulated by the 489 DEGs, we performed Kyoto Encyclopaedia of Genes and
Genomes (KEGG), Gene Ontology (GO), and Reactome enrichment analyses. In total, we
detected 10 KEGG pathways, 83 GO terms, and 92 Reactome pathways (Supplementary
Figure S5). Briefly, the 489 DEGs were mostly involved in cell cycle-associated processes
(e.g., nuclear division, chromosome segregation, regulation of cell cycle phase transition,
meiosis) according to all the databases (Supplementary Figure S5). In summary, these
results indicate that differences in the expression between LMS and LM occurred in genes
associated mainly with cell cycle and nucleic acid metabolism, suggesting that alterations
of these processes occur differently and have different consequences for each tumor type.



Int. J. Mol. Sci. 2022, 23, 2190 20 of 29Int. J. Mol. Sci. 2022, 23, x, FOR PEER REVIEW  20 of 30 
 

 

 
(A) 

Figure 4. Cont.



Int. J. Mol. Sci. 2022, 23, 2190 21 of 29
Int. J. Mol. Sci. 2022, 23, x, FOR PEER REVIEW  21 of 30 
 

 

 
(B) 

Figure 4. Cont.



Int. J. Mol. Sci. 2022, 23, 2190 22 of 29Int. J. Mol. Sci. 2022, 23, x, FOR PEER REVIEW  22 of 30 
 

 

 
(C) 

Figure 4. Transcriptional analysis and validation of the targeted gene panel on leiomyoma (LM) and leiomyosarcoma (LMS). (A) Heatmap of hierar-
chical clustering. Top dendrogram shows clustering of samples, and left dendrogram shows clustering of all differentially expressed genes. Colors 
in the heatmap represent gene expression intensities, with blue indicating low expression and red indicating high expression. The bar on top of the 
heatmap represents the group by color (green = LMS; pink = LM). (B) Heatmap showing clustering of samples using the normalized coverage data 
for each of the 19 genes. (C) Class probabilities predicted by the model for the test set, with the “warning range” highlighted in light orange. 

Figure 4. Transcriptional analysis and validation of the targeted gene panel on leiomyoma (LM) and leiomyosarcoma (LMS). (A) Heatmap of hierarchical clustering.
Top dendrogram shows clustering of samples, and left dendrogram shows clustering of all differentially expressed genes. Colors in the heatmap represent gene
expression intensities, with blue indicating low expression and red indicating high expression. The bar on top of the heatmap represents the group by color
(green = LMS; pink = LM). (B) Heatmap showing clustering of samples using the normalized coverage data for each of the 19 genes. (C) Class probabilities predicted
by the model for the test set, with the “warning range” highlighted in light orange.
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2.7. Model Creation and Validation for Differential Molecular Diagnosis of LMS and LM

To classify LM and LMS, we developed a machine learning approach based on the
transcriptomic signatures of each group since we found that management, analysis, and
biological comprehension were more straightforward when using RNAseq data. After
feature pruning, the final model was composed of 19 DEGs and was able to correctly
classify all the samples in the validation set.

Based on this model, we built a targeted sequencing panel using AmpliSeq technology
for the 19 selected genes, which was used to re-analyze all the previous LM and LMS
tumors (n = 44 and n = 32, respectively, since two LMS samples were filtered due to poor
sequencing quality) in addition to new samples (eight LM and ten LMS).

Next, the total 96 samples were randomly split into a training set to build the machine
learning model and a test set to validate the model (75% and 25% class-balanced samples
for the training and test sets, respectively). Specifically, the gradient boosting algorithm
was used to build a new model, which achieved optimal values of sensitivity and specificity
since it was able to correctly classify all the test samples. The feature selection resulted in
a final model that consisted only of 19 genes, out of which only three, COL4A5, MFAP5,
and ITGA9, were overexpressed in leiomyoma, while the rest were overexpressed in
leiomyosarcoma). The unsupervised clustering of the samples based on these 19 genes
allowed separation through a heatmap of two distinguishable groups of LM and LMS.
However, and resembling results from previous RNAseq analysis, two LMS (LMS26 and
LMS39) were clustered in a group opposite to those confirmed by pathology (Figure 4B).

Further, the model was used to classify the samples and to calculate class probabilities,
allowing a more fine-tuned classification of the samples, where we defined a “warning
range” for those tumors where the model was not confident enough, defined as probabilities
of <75% for each group (Figure 4C). Interestingly, this model could correctly classify
all the samples with high class probabilities, even for sample LMS39 with the lowest
LMS probability.

3. Discussion

The search for molecular criteria to differentiate uterine myometrial tumors represents
an important current diagnostic challenge, where molecular profiling could be a powerful
complement to current diagnosis based on the clinical presentation, imaging features, and
microscopic morphologic characteristics. Since our main aim was to build a preliminary
differential diagnostic tool, we have focused on the comparison between the most prevalent
benign myometrial tumors, LM, and the most aggressive ones, LMS.

While we are aware that excluding other tumor types, such as STUMPs, inflammatory
myofibroblastic tumors (IMT), or undifferentiated uterine sarcomas, is a relevant limitation
of our study, we decided to discard these samples in order to avoid introducing noise in
our molecular analysis, also considering that, given the low incidence of these tumors,
the fact that excluding them would not have a significant impact on our preliminary
classification tool.

Following a similar rationale, we chose to limit our analysis to only conventional LMS
and LM given the low prevalence of non-conventional variants and their differences, which
may also introduce noise in our analyses.

Consequently, in this study, exome- and transcriptome-wide analyses were performed
on histologically confirmed conventional LM and LMS to investigate molecular differences
between and within these two different entities.

In terms of small variants, we found that only a small percentage of variants (27.63%)
were shared by the two groups, while the rest were exclusive of LM or LMS, suggesting
independent mechanisms for tumorigenesis. Interestingly, we found the c.2443C > T
mutation in the REST gene involves the loss of the repressor in LM and promotes the
aberrant expression of GPR10 in the PI3K/AKT mTOR pathway [15]. Conversely, in LMS,
we detected three different mutations affecting the OBSCN gene, which has been proposed
as a molecular tool to differentiate LMS from gastrointestinal stromal tumors within a two
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gene-classifier [16]. Likewise, mutations in CCDC68 involving microtubule organization
have been reported in different cancer types [17,18]. Moreover, with variant information,
we detected for the first-time signature 12 of COSMIC as a mutational mark in LM and
LMS. While its etiology remains unknown, its presence has been associated with a small
percentage (<20%) of mutations in liver cancer [16].

Additionally, we found differences in the number and type of somatic CNVs, suggest-
ing that they could be used for the differential diagnosis of myometrial tumors. Further-
more, we provided novel insights into the potential usefulness of CNVs as a prognostic
biomarker for patients with LMS. However, the low number of samples available for the
survival analysis (mainly due to a lack of data resulting from the use of commercial samples
or censoring) is a strong limitation, and, thus, the tendency we observed should be carefully
interpreted and further explored and validated.

Because CNVs may cause changes in transcription levels associated with cancer [17],
we performed an integrative analysis on the CNV and expression data. Interestingly, we
found that alterations in specific CNV regions in LMS affected the expression of CDKN1C,
a cyclin/Cdk inhibitor that may act as a tumor suppressor [18].

Further, we screened transcriptomic data to detect fusions in LM and LMS. While no
recurrent fusions were detected in LMS or LM, multiple rearrangements targeted ATRX and
RAD51B, respectively. The loss of expression of ATRX has been associated to the Alternative
Lengthening of Telomeres phenotype, which allows tumor cells to escape programmed
cell death. In uterine LMS, this mechanism has been associated with a poor prognosis and
overall survival [19,20]. Additionally, we identified the RAD51B–HMGA2 fusion transcript
in LM, which may have a role in tumor progression, as previously described [21].

The transcriptomic results revealed 489 differentially expressed in LMS versus LM.
Although some of these genes have been reported [11,22,23], we identified specific DEGs in-
volved in mitotic spindle checkpoint regulation, including AURKA, SPAG5, NUF2, BUB1B,
and KIF14 [24], while the CCDC68 gene affected by a deleterious variant mentioned in
Section 2.1 is also involved in this process. The defective segregation of chromosomes and
microtubule–kinetochore–spindle formation cause tumor cells to become aneuploid, allow-
ing DNA-damaged cells to skip the spindle assembly checkpoint, suggesting a possible
molecular mechanism for the development of LMS. One of the most significant genes was
AURKA, a cell cycle protein that is also overexpressed in cervical [25] and ovarian [26]
cancers and seems to be key in the pathogenesis of LMS since its inhibition results in cell
cycle arrest and apoptosis in LMS cell lines [27].

Further analysis based on hierarchical clustering revealed some LMS samples that
unexpectedly clustered with LM samples. Accordingly, after reviewing the clinical features
and follow-up, we found that most of these patients exhibit higher overall survivals than
reported by previous retrospective studies [28]. These findings are consistent with our prior
premise that myometrial tumors can be differentiated based on their transcriptomic profiles.

We finally built a classification model composed of nineteen genes, sixteen overex-
pressed in LMS and three overexpressed in LM, possibly suggesting that the overexpression
of a small subset of genes results in a more disrupted molecular profile that is sufficient to
indicate that a tumor is more likely to be a malignant uterine leiomyosarcoma. The genes
in this panel are involved in different processes and functions, including DNA replica-
tion (BRCA2, CHAF1A, E2F7, and EXO1); DNA damage repair (ARHGAP11A and PBK);
extracellular matrix formation and interaction (COL4A5, ITGA9, and MFAP5), and, lastly,
segregation of chromosomes and microtubule–kinetochore–spindle formation (CCDC34,
CDCA5, CENPE, CENPF, CENPH, and MLF1IP), which, as we have mentioned, could be an
affected pathway in the tumorigenesis of LMS. As a result, our model could be a representa-
tion of the affected pathways that differ between LMS and LM, where the genes associated
with alterations in the extracellular matrix suggest the diagnosis of LM (since COL4A5,
ITGA9, and MFAP5 are the only genes overexpressed in LM), and the genes associated with
defective DNA replication or DNA damage repair or segregation of chromosomes suggest
the diagnosis of LMS.



Int. J. Mol. Sci. 2022, 23, 2190 25 of 29

Moreover, this model correctly classified all the samples in the validation set with high
sensitivity and specificity, while the class probabilities calculated for each sample showed
the predictions of the model were of high confidence (all >75% for their class). It is also of
note that, even though the unsupervised hierarchical clustering of global RNAseq showed a
mixed cluster of LMS and LM samples, the machine learning algorithm effectively classified
these samples, once again demonstrating the potential of the predictive tool.

Nevertheless, although promising, the genomic and transcriptomic outcomes are
based on the analysis of the entire tumor, which implies a technical limitation due to
intratumoral heterogeneity. Additional studies with larger numbers of samples are also
needed to validate and clinically use this tumor classification model.

In summary, our findings provide a novel molecular profile and candidate gene targets
to discriminate LM from LMS at the tumor-tissue level, establishing a potential diagnos-
tic tool that could be helpful to complement morphological and immunohistochemical
diagnostic features.

Accordingly, this molecular-driven test linked to functional histology might provide
a framework for objective and specific diagnosis at the tumor tissue level. The chal-
lenge, however, for both the pathologist and the physician, is how best to effectively
integrate this morphological and molecular information into a comprehensive diagnosis
and treatment plan.

4. Materials and Methods

Detailed description of the materials and methods used in this study are provided in
the Supplementary Materials and Methods (Appendix A).

4.1. Clinical Sample Collection

Use of human tissue samples was previously approved by the IRB of the hospitals
involved: Hospital La Fe, Valencia, Spain (24 July 2019), Hospital Virgen de la Arrixaca
Murcia, Spain (17 December 2019), Hospital Santa Lucía Murcia, Spain (28 January 2020),
and Fundación Instituto Valenciano de Oncologia (IVO), Valencia, Spain (2 December 2020).
All patients signed and provided written informed consent.

Briefly, formalin-fixed paraffin-embedded (FFPE) tumor samples were collected from
119 women undergoing hysterectomy or myomectomy as surgical treatment for primary
myometrial tumors (Supplementary Figure S1). Before further processing, anonymized
samples were evaluated by two pathologists with wide experience in gynecology, who
histologically confirmed a diagnosis of LM or LMS according to WHO criteria [14] and
provided us with paraffin blocks consisting of at least 85% of tumor tissue. Patients with
other gynecological tumors, disorders, malignancies, or diagnosed bacterial, fungal, or
viral infections were excluded (n = 16).

Specifically, Hospital la Fe contributed with 56 LM samples and 13 LMS tumors.
Hospital Santa Lucía provided to this study 6 LMS, 12 LMS came through Hospital Virgen
de la Arrixaca, while 3 LMS were provided by IVO, and 13 LMS were supplied by Origene
Technologies Inc. (Rockville, MD, USA). Selected LM and LMS samples were then split into
two cohorts: the experimental cohort, which was used to study global DNA and RNAseq
profiles (44 LM, 34 LMS), and the validation cohort, including additional new samples
(8 LM, 10 LMS) to perform targeted sequencing and model validation (Supplementary
Figure S1). Epidemiological, histopathological, and clinical outcomes are summarized in
Table 1. This study was registered on ClinicalTrials.gov (ID NCT04214457), and data were
monitored by a clinical research associate.

4.2. DNA Sequencing and Analysis

After nucleic acid isolation, DNA libraries were constructed using the KAPA Hyper
Prep kit (Roche, Basel, Switzerland) and enriched using a panel of 571 hematological-
associated genes. DNA sequence data were demultiplexed and aligned to the human hg19
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genome (CRGCh37) using BWA [29] and SAMtools [30] following the quality control and
metrics detailed in Supplementary Table S3.

Sequencing data were analyzed for small variants using Freebayes (https://github.
com/freebayes/freebayes, accessed on 31 December 2021) and annotated with SnpEff
(https://github.com/pcingola/SnpEff, accessed on 31 December 2021). Additional assess-
ment of somatic mutational signatures inferred from SNVs was done using MutationalPat-
terns [31]. Further analysis for microsatellite instability (MSI) was performed using a set of
six mononucleotide repeat markers (Supplementary Table S4) following published proto-
cols [32]. Lastly, we used CNVkit with default parameters (https://github.com/etal/cnvkit,
accessed on 31 December 2021), for CNV detection.

4.3. RNA Sequencing and Analysis

RNA libraries from 44 LM and 34 LMS were constructed using Truseq RNA exome
(Illumina, San Diego, CA, USA) and aligned to the human hg19 genome using STAR
(https://github.com/alexdobin/STAR, accessed on 31 December 2021) (Supplementary
Table S5) to estimate gene transcript abundance with HTseq (https://github.com/simon-
anders/htseq, accessed on 31 December 2021).

First, arriba (https://github.com/suhrig/arriba/, accessed on 31 December 2021)
was used for detection of fusions on RNAseq data, which were then validated by im-
munohistochemistry. Subsequently, differential expression analysis between LMS and LM
was performed using edgeR [33] and subjected to functional analysis. Some of the most
significant DEGs were finally validated using RT-qPCR (Supplementary Table S6).

4.4. Integrative DNA/RNA Analysis

To evaluate the association between CNVs and RNAseq counts, we used CNVRanger
(https://github.com/waldronlab/CNVRanger, accessed on 31 December 2021), excluding
genes with <20 counts per million (cpm) and CNV regions with <10 samples in a group
deviating from 2n, with a 1 Mbp window and p-value < 0.01 (Supplementary Figure S3).

4.5. Building and Validating the Classification Model

Since we found that analysis and clinical interpretation were more straightforward
when using RNAseq, we built a classification model with this data using caret package
(https://github.com/topepo/caret, accessed on 31 December 2021). For this purpose, our
sample cohort was randomly split, keeping balanced class distributions into a training (75%
of samples) and test set (25% of samples). We used the Adaboost algorithm on DEGs cpm
to perform a prior selection of predictor genes.

Validation of the model was next performed by re-sequencing LM (n = 44) and LMS
(n = 34) samples, adding a new set of 8 LM and 10 LMS samples. Briefly, RNA from
96 FFPE tissue sections was used to prepare libraries with a PCR/amplicon-based workflow
(AmpliSeq Library Plus, Illumina, San Diego, CA, USA).

Normalized coverage values were introduced in caret using the gradient boost-
ing algorithm [34]. Once the model was built, the test set was used to construct re-
ceiver operating characteristic curves (ROCs), also assessing sensitivity and specificity
(Supplementary Figure S6).

4.6. Statistical Analyses

Statistical analyses were performed using R (http://www.R-project.org, accessed on
31 December 2021). Two-tailed Student’s t-tests were used to compare quantitative clinical
variables in LMS and LM patients and for gene validation using RT-qPCR. All survival
analyses were achieved by Cox regression in a multivariate model to account for LMS
prognostic factors and compared between groups using the log-rank test. Correlation
between RNAseq and qPCR-based logFC was evaluated using Pearson’s correlation test.

https://github.com/freebayes/freebayes
https://github.com/freebayes/freebayes
https://github.com/pcingola/SnpEff
https://github.com/etal/cnvkit
https://github.com/alexdobin/STAR
https://github.com/simon-anders/htseq
https://github.com/simon-anders/htseq
https://github.com/suhrig/arriba/
https://github.com/waldronlab/CNVRanger
https://github.com/topepo/caret
http://www.R-project.org
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5. Conclusions

In conclusion, this study provides a novel molecular classification for leiomyoma and
leiomyosarcoma tumors and may be a helpful tool for current diagnosis, hopefully laying
the foundation for the future evaluation of malignancy risk.

6. Patents

A patent disclosure has been filed for the study under the inventors A.M., R.A., and
C.S. since 11 October 2021.
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RT-qPCR Real-time quantitative polymerase chain reaction
SNV Single nucleotide variant
STUMP Smooth uterine muscle of uncertain malignant potential
WHO World Health Organization

Appendix A

Appendix A contains an in-detail description of the materials and methods used
in this study, including nucleic acid isolation, quality control, and quantification; DNA
library preparation, targeted exome sequencing, and mapping; RNA library preparation,
sequencing, and mapping; detection of chromosomal rearrangements and validation;
differential expression analysis, validation by qRT-PCR and functional analysis, and gene
selection for classification model and validation.
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