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Abstract: The aging of mammals is accompanied by the progressive atrophy of tissues and organs
and the accumulation of random damage to macromolecular DNA, protein, and lipids. Flavonoids
have excellent antioxidant, anti-inflammatory, and neuroprotective effects. Recent studies have
shown that flavonoids can delay aging and prolong a healthy lifespan by eliminating senescent cells,
inhibiting senescence-related secretion phenotypes (SASPs), and maintaining metabolic homeostasis.
However, only a few systematic studies have described flavonoids in clinical treatment for anti-aging,
which needs to be explored further. This review first highlights the association between aging and
macromolecular damage. Then, we discuss advances in the role of flavonoid molecules in prolonging
the health span and lifespan of organisms. This study may provide crucial information for drug
design and developmental and clinical applications based on flavonoids.

Keywords: flavonoids; macromolecular damage; health span; aging

1. Introduction

Aging is thought to be one of the risk factors for chronic diseases responsible for the
most morbidity, mortality, and health care consumption worldwide [1,2]. Such chronic
diseases include atherosclerosis, cardiovascular disease, stroke, most cancers, diabetes,
kidney failure, chronic lung disease, osteoporosis, arthritis, blindness, dementia, and
neurodegenerative diseases. Aging will also make people prone to geriatric syndrome and
to a decline in immunity and physical recovery. These chronic diseases often occur in older
individuals. By understanding how aging enables pathology, new therapeutics will arise
for multiple chronic diseases, providing an opportunity to extend the human health span
by targeting aging directly [3]. Therefore, finding anti-aging drugs that meet the safety and
effectiveness of long-term use has always been an important strategy for intervention in
the aging field.

Flavonoids are a diverse family of natural phenolic compounds commonly found
in fruits, vegetables, tea, wine, and Chinese herbal medicine [4]. Flavonoids have a ba-
sic C6–C3–C6 15 carbon skeleton composed of two aromatic rings and one pyran ring.
Flavonoid compounds are divided into six subclasses based on their carbon structure and
level of oxidation, which are flavones, flavonols, flavanones, isoflavones, flavanol, and
anthocyanins (Figure 1) [5]. In addition to the well-known antioxidant activity, flavonoids
also possess anti-inflammatory, vasodilator, anticoagulant, cardioprotective, antidiabetic,
chemical protection, neuroprotective, and anti-obesity activities [5]. Recent studies have
shown that flavonoids also have suitable anti-aging activities. The combination of quercetin
and dasatinib has been observed to eliminate senescent cells in vitro, improve physical
function, and increase the lifespan of mice in vivo [6]. More interestingly, in phase I clinical
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trials in patients with diabetic kidney disease [7] and idiopathic lung disease [8], dasatinib
administration with quercetin has been shown to effectively reduce the expression of the
aging markers p16 and SA-β-gal. More flavonoids, such as fisetin and luteolin, have also
been found to eliminate senescent cells and have anti-aging effects [9,10]. However, the
anti-aging mechanism of flavonoids is not yet fully understood, and more research is
needed to provide a basis for their clinical applications in humans.
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Here, we summarize the latest research progress on flavonoids with anti-aging benefits.
Particular attention is given to their effect on delaying the accumulation of unrepaired
damage in the cell by reducing the harm caused by macromolecules or enhancing the
repairability of the cell. The role of flavonoids in preclinical and clinical aspects is also
discussed. This has the potential to provide necessary information for the design and
development of drugs based on these compounds and the clinical use of anti-aging agents.

2. Cellular Senescence Is Driven by Unrepaired Damage

Although the current understanding of aging is still in the early stages of genetic
discovery, existing evidence shows that human aging is driven by the balance of damage
and repair processes and is affected by environmental exposure and genetics (Figure 2).
One of the characteristics of aging is its association with macromolecular damage. When
the organism cannot replace cells at will or dilute the damage, intracellular damage ac-
cumulates, hurting the host cell and other cells, impairing its function and ultimately
leading to age-related diseases and aging itself. The nine hallmarks of aging have been
summarized [2] and are widely recognized by aging research scientists. Genomic instability,
telomere attrition, epigenetic alterations, and loss of proteostasis are the primary causes
of damage. The most common types of macromolecular damage are DNA protein and
lipid damage.

2.1. DNA Damage and Repair

DNA damage has been thought to be a strong candidate as the primary cause of ag-
ing [11]. DNA damage includes oxidative modifications, single- and double-strand breaks
(DSBs), and mutations, both in vitro and in vivo [12,13]. Many studies have indicated
that DNA damage accumulation is associated with aging [14,15]. A complete DNA repair
system is also established to repair DNA damage in cells. Prominent DNA repair pathways
in mammalian cells are base excision repair (BER), mismatch repair (MMR), nucleotide
excision repair (NER), and double-strand break repair (DSBR). It has been observed that the
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ability to repair DNA damage decreases with aging [16]. Thus, unrepaired DNA damage
further accumulates during aging. Unrepaired DNA damage can cause genome instability
and induce a signal cascade that leads to cell senescence or death and related cell aging
phenotypes [17,18]. More than 50 DNA repair disorders have been described as having
varying degrees of overlapping phenotypes with aging, such as neurodegeneration, cancer,
and cardiovascular disease [19].
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Figure 2. Diagram of the major influences and mechanisms by which macromolecular damage
induces aging. Damage insults (genotoxic stress, oxidative stress, etc.) in genetic or environmental
factors damage macromolecules (mainly including DNA, proteins, and lipids) during the aging
process, causing intracellular damage to accumulate. At the same time, the repairability in the cell
declines with aging, which causes the accumulation of unrepaired damage in the cell. Accumulated
unrepaired damage can lead to mutations or chromosomal aberrations, leading to genome instability.
Severely shortened telomeres activate the DNA repair and damage response (DDR) and cause cell
senescence. Accumulated unrepaired damage affects autophagy and the ER-UPR and results in the
loss of protein complex stoichiometry. Mitochondrial dysfunction is driven by NAD+ deprivation
caused by nuclear DNA repair, mitochondrial autophagy defects induced by DNA damage, and
changes in the expression of mtDNA polymerase that affect mtDNA replication. The accumulated
unrepaired damage wreck the nutrient-sensing pathway, affecting repair and signal transduction.
The accumulated unrepaired damage induces cell senescence and leads to the exhaustion of the stem
cell pool through DDR-induced apoptosis, senescence, premature differentiation, and changes in
the niche of stem cells. Cell senescence affects cell-to-cell communication through inflammatory
cytokines and inhibitory growth signals.
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2.2. Protein Damage

Various internal and external factors constantly damage intracellular proteins. Dam-
age to proteins, in turn, may affect myriad intracellular pathways given their abundance.
Protein quality control (PQC) is critical to maintaining a functioning proteome. The quality
of the protein is guaranteed by the translation mechanism and the activity of auxiliary
proteins (including molecular chaperones), while degradation is controlled by autophagy
and proteasome functions. The accumulation of protein damage in the aging process
is mainly due to (i) decreased translation fidelity [20,21], (ii) downregulation of protein
chaperones [22,23], and (iii) decreased proteasome activity [24] and other factors in protein
synthesis and quality control. Damaged proteins contribute to proteostatic stress, the accu-
mulation of misfolded/aggregated proteins, and protein toxicity, which further aggravate
the senescence of cells.

2.3. Lipid Damage

Lipid damage is mainly due to lipofuscin, a nondegradable protein and lipid oxida-
tion product, which accumulates in senescent cells [25]. Lipofuscin is an autofluorescent
lipopigment formed by lipids, metals, and misfolded proteins, which is especially abun-
dant in nerve cells, cardiac muscle cells, and skin [26]. Lipofuscin is emerging as another
indicator of senescent cells in culture and in vivo [27,28]. Recent research results indicate
that lipofuscin can actively change cell metabolism, cell death, and apoptosis at different
levels by inhibiting proteasomes, weakening autophagy and lysosomal degradation, and
acting as a metal ion pool to cause ROS generation [29]. In addition, the dispersive nature
of the deposits distributed throughout the tissue may support the mechanism of lipofuscin
diffusion and seeding of new lipofuscin aggregates [30]. It should be noted that damage
accumulation continues even when cell division ceases and can continue for months or
even years.

2.4. Molecular, Cellular, and Systemic Consequences of Unrepaired Damage Accumulation

When damage accumulates, it will drive cell fate decisions and aging-related events.
Unrepaired damage is closely related to molecular consequences such as genome stability,
dysfunctional telomeres, epigenetic alterations, protein homeostasis, and intracellular
mitochondrial dysfunction during aging. Accumulating evidence suggests that DNA
damage is a significant driver of age-associated epigenetic changes [31,32]. DNA damage
may cause protein homeostasis stress by increasing transcriptional arrest (transcriptional
pressure) or transcription noise mediated by mutations or epimutations. This may affect the
assembly, stoichiometry, correct folding, and function of proteins and protein complexes,
leading to steady-state protein stress and aggregation. Age-related motor dysfunction and
damaged mitochondrial pathology were found in E3 ubiquitin ligase parkin-deficient mice,
indicating that impaired mitochondrial clearance caused by parkin deficiency may be the
basis of Parkinson’s disease pathology [33]. DNA damage repair itself can strain the protein
homeostasis mechanism [34]. Vegetarian food containing lipofuscin reduces the athletic
performance of young fruit flies, and the accumulation of AGE-modified protein and
carbonylation protein in the somatic tissues and the hemolymph is accelerated, significantly
reducing the health span of fruit flies [35].

Damage at the cellular level drives cell senescence and exhausts stem cell pools (Figure 2).
Compounds such as bleomycin, doxorubicin, or cisplatin often cause irreparable DNA
damage and drive cell senescence [36]. The translation error significantly increased in aging
flies, while increased fidelity of protein synthesis extended the lifespan across species [21].
Lipofuscin has been reported as a hallmark of senescent cells [37]. The accumulation
of damage in tissues can also affect the microenvironment in the stem cell niche or the
systemic circulation of factors that affect the aging of stem cells and organs. There have been
reports of the accumulation of age-related DNA damage in elderly Drosophila intestinal
stem cells [38] and intestinal crypts of mice [39]. Thus, damage to the cells accelerates the
senescence of cells and stem cells.
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The damage accumulation also affects the immune microenvironment and nutrient
sensing in aging. In C. elegans, DNA damage can trigger an innate immune response, en-
hancing proteostasis and systemic stress resistance [40]. The chaperone protein HSP70 acts
as a bridge between the ubiquitin E3 ligase PDLIM2 and the proteasome to inhibit proin-
flammatory NF-κB signaling [41]. Damage and repair systems regulate nutrient-sensing
pathways, including ILS, sirtuins, and AMP-activated protein kinase (AMPK)-regulated
mTOR pathways [42,43]. The DNA damage sensor ATM can activate the AMPK pathway
in response to energy changes. mTOR itself is transiently phosphorylated following DNA
damage in an ATR (damage sensor)-dependent manner [44]. The ubiquitin ligase complex
GID regulates AMPK activity and organismal lifespan [45].

In summary, the accumulation of damage is one of the leading causes of cellular
senescence, the systemic imbalance between cells, and the primary hallmarks of senescence.

3. Flavonoid Compounds Serve as Anti-Aging Agents

Over the last two decades, flavonoids have drawn attention as promising natural
dietary molecules to prevent aging and aging-related diseases. According to their different
ways of interfering with aging, anti-aging flavonoids are divided into senolytic flavonoids,
senomorphic flavonoids, and antisenescence activity (Table 1).

Table 1. Overview of the modulatory anti-aging effect of flavonoids and related mechanisms.

Flavonoids Structure Targets Activity Lifespan
Extension Reference

Senolytic

Quercetin
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3.1. Senolytic Flavonoids

Senescent cells and the senescence-related secretion phenotypes (SASPs) secreted
by them are essential factors leading to the aging of tissues and organs [6]. Therefore,
therapeutic approaches to specifically kill senescent cells can extend health span and
lifespan. “Senolytic” compounds can kill senescent cells [75]. Quercetin is effective against
senescent human endothelial cells in combination with dasatinib, which is more effective
in eliminating senescent MEFs [46], reducing the expression of SASP factors [47]. Moreover,
quercetin plus dasatinib has been proven to enhance health span and lifespan in old mice [6]
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and improve age-related diseases such as cardiovascular disease and temporomandibular
joint degeneration [76]. Furthermore, in an open-label clinical trial, within three weeks,
oral quercetin and dasatinib improved the 6-min walking distance, walking speed, and
ability to stand up from a chair and shortened the body function battery five days after the
last dose [5,77].

In a panel of 10 polyphenols examined, fisetin was potently senolytic in cultured senes-
cent murine and human fibroblasts, while luteolin had a weak effect on clearing senescent
cells. Fisetin increased the median and maximum lifespans of aged mice [9]. Notably, fisetin
treatment significantly reduced mortality, cellular senescence, and inflammatory markers
and increased antiviral antibodies when the SARS-CoV-2-related mouse β-coronavirus was
exposed to old mouse pathogens [78]. As fisetin has a good effect against inflammatory
factors, it has been used in clinical research to alleviate the dysfunction of COVID-19 and
the excessive inflammatory response in the elderly (NCT04537299). Burton et al. showed
that luteolin significantly reduced the proportion of microglia stained for IL-1β and IL-6 in
LPS-treated adult mice [10].

3.2. Senomorphic Flavonoids

Senomorphics refer to compounds and dietary supplements that can restrain senescence-
associated phenotypes by explicitly suppressing the SASP or proinflammatory secre-
tome. Recent research results also show that the flavonoids apigenin, kaempferol, and
4,4′dimethoxychalcone also have such “senomorphic” effects (Table 1). Apigenin belongs
to the flavone subclass of flavonoids and can delay the aging process by activating the Nrf2
pathway [79]. Apigenin partially inhibits SASP by inhibiting IL-1α signaling in human
fibroblast cell lines through IRAK1 and IRAK4, p38-MAPK, and NF-κB [49]. Kaempferol
is a flavonol, and it significantly inhibited IL-6, IL-8, and IL-1b expression but did not
considerably affect senescence itself in bleomycin-induced senescent BJ cells. A cellular
mechanism study showed that kaempferol in senescent BJ cells might be mediated, at least
in part, by interfering with IRAK1/IkBa/NF-kB p65 signaling [50,80].

3.3. Another Antisenescence Activity of Flavonoids

In addition, an increasing number of flavonoids have been proven to delay the aging
process. As shown in Table 1, these compounds include various subsets of flavonoids.
The flavonoid 4,4′-dimethoxychalcone (DMC) is derived from Angelica keiskei koidzumi, a
plant with longevity- and health-promoting effects in traditional Chinese medicine. DMC
extends the lifespan of yeast, worms, and flies and decelerates the senescence of human
cell cultures via GATA transcription factors to induce autophagy [51].

Naringenin and nobiletin are widely found in the fruits of Citrus L. plants in the
Rutaceae family. Both of them have antioxidant effects and can reduce ROS in senescent
cells. In addition, naringenin has a significant impact on reducing cardiovascular markers
of damage caused by aging [52]. The lifespan analysis experiment in Drosophila showed
that treatment with 400 µm/L of naringenin could prolong lifespan by up to 22.62% [53].
However, nobiletin’s role is mainly in regulating abnormal energy metabolism. Nobiletin
targets retinoid acid receptor-related orphan receptors (RORs) to remodel circadian and
metabolic gene expression, enhancing the circadian rhythm and preventing metabolic
syndrome [66]. Furthermore, nobiletin-RORs have been reported to optimize skeletal
muscle mitochondrial respiration and promote healthy aging in high-fat diet mice [67].

Genistein is an isoflavone derived from soy products. Genistein induces autophagy to
reduce cell senescence in vascular smooth muscle cells [55]. Genistein reduced age-related
increases in NF-κB activity and NF-κB-dependent proinflammatory gene expression in vivo
in rats; thus, it can be used as an anti-inflammatory compound [56]. Antisenescence effects
have also been reported for epicatechin. Epicatechin induces the reversal of endothelial cell
senescence and improves vascular function in rats [63]. Supplementation with epicatechin
has been observed to improve the survival rate of elderly mice and age-related phenotypes
such as skeletal muscle degeneration [64] and brain dysfunction [65].
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Myricetin and dihydromyricetin are produced in several plants, particularly in some
commonly consumed fruits and vegetables (strawberries, grapes). They have been ap-
proved as food supplements in Europe and the United States. Survival experiments
show that both compounds prolong lifespan [58,60]. Interestingly, myricetin and dihy-
dromyricetin have been reported to have anti-AD effects [81].

Rutin, a natural flavonoid glycoside compound, has revealed an extensive anti-aging
effect. Rutin can induce autophagy to extend the lifespan of Drosophila treated with
HDF [68] and can also effectively improve the metabolic dysfunction associated with
aging by regulating the IIS signaling pathway [69]. Moreover, the administration of rutin
reduces the expression of ROS and proinflammatory cytokines (TNF-α and IL-1β) in neu-
ronal cells, which can prevent the development of AD and protect the aging brain or slow
the neurodegenerative process [70].

Hesperidin is a flavanone glycoside derived from citrus that has been found to possess
various pharmacological properties including antioxidant, cholesterol-lowering, and anti-
inflammatory ones. Topical application of hesperidin can improve functional abnormalities
of the aging epidermis including abnormal epidermal permeability barrier function, epider-
mal differentiation, lipid production, and stratum corneum acidification [82]. Hesperidin
upregulated Nrf2 and reduced ROS, significantly prolonging the replicative lifespan of
yeast [71]. Hesperidin treatment also effectively protected the hearts of aged rats by upreg-
ulating the protein level of Nrf2 and increasing the activity of enzymatic antioxidants [72].
In addition, some other citrus flavonoids such as naringin, hesperitin, and neohesperidin
have also maintained ROS scavenging and potential anti-aging activities in yeast [83].

Theaflavins are derived from the conversion of catechins by endogenous polyphenol
oxidase and peroxidase during the production of black tea [84]. Studies have shown that
theaflavin can delay the excessive proliferation of intestinal stem cells, prevent intestinal
dysbiosis, and inhibit the activation of the Imd signaling pathway, thereby prolonging the
lifespan of Drosophila. At the same time, theaflavin is effective in preventing DSS-induced
colitis in mice [73]. Moreover, theaflavin can protect against oxidative stress-induced cel-
lular senescence by activating Nrf2 in a mouse osteoarthritis model [85]. Furthermore,
treatment of middle-aged mice with theaflavin 3-gallate reduced senescence in hypothala-
mic neural stem cells while improving senescence-related pathology [74].

In short, flavonoids with anti-aging effects are diverse in both their types and their
modes of action. Molecules of the same subclass also have anti-aging targets, showing that
more detailed research is needed to reveal their respective regulatory mechanisms.

4. Benefits of Flavonoids in Attenuating Aging Damage

Due to the important impact of damage on cellular and systemic aging, the removal
or repair of damage will help re-establish the equilibrium state of damage repair and, thus,
slow down the aging rate. Many findings suggest that flavonoids play an essential role in
reducing damage and rebuilding tissue homeostasis, as shown in Figure 3.

Flavonoids can reduce cellular damage caused by a variety of damage insults. Quercetin
protects red blood cells from oxidative stress and genotoxicity in vitro [86]. Quercetin can
also protect cells from the stress of misfolded proteins in the endoplasmic reticulum [87].
Genistein may significantly reverse the misfolding of the N-CoR protein induced by PML-
RAR by inhibiting the selective phosphorylation-dependent binding of N-CoR and PML-
RAR [88]. Kaempferol [89] and apigenin [90] may alter the protein associated with the
internal ribosome entry site (IRES) to limit viral infection and inhibit viral IRES-driven
translation activities. In this way, flavonoids can reduce cell damage from the source.

Many flavonoids can act on DNA damage in a variety of ways. The flavonoids luteolin,
naringenin, and rutin effectively attenuate UVB-induced DNA damage in vitro [91] and
in vivo [92]. Quercetin has been reported to effectively reverse 1,2-dimethylhydrazine-
mediated oxidative stress and DNA damage by targeting the NRF2/Keap1 signaling
pathway in rats [93]. Recently, nanocapsules containing dihydromyricetin were reported
to have a 50% sun protection factor (SPF-DNA) against DNA damage caused by UVB
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radiation and 99.9% protection against DNA damage induction [94]. It was also found
that epicatechin protects against DNA damage induced by N-nitrosodibutylamine (NDBA)
and N-nitrosopiperidine (NPIP) in human hepatocarcinoma cells [95]. The epicatechin
myricetin activates nonhomologous end-joining DNA double-strand break repair in human
small intestinal cells [96]. Therefore, flavonoids can reduce DNA damage and enhance the
DNA repair ability of cells, thereby reducing the accumulation of unrepaired damage.
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Oxidative damage is believed to play a key role in pathological processes related to
aging and age-related diseases, and its underlying biochemical mechanisms have been
elucidated in detail [2,97]. Antioxidant capacity is an important activity of flavonoids.
In APRE-19 cells, the solid dispersion of apigenin upregulates the expression of antioxi-
dant enzymes and upregulates autophagy through the Nrf2 pathway, thereby inhibiting
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retinal oxidative damage [98]. In a rat natural aging model, fisetin significantly reduces
pro-oxidants and increases the level of antioxidants to combat oxidative stress induced by
aging [99]. Dihydromyricetin can reduce the oxidative damage of human umbilical vein
endothelial cells induced by sodium nitroprusside by activating the PI3K/Akt/FoxO3a
signaling pathway [100]. Nobiletin attenuates palmitate-induced ROS and mitochondrial
dysfunction in cultured alpha mouse liver 12 cells [101]. In addition, naringenin [102],
luteolin [103], genistein [104], kaempferol [105], and quercetin [106] have all been observed
to inhibit oxidative damage in a variety of ways. Therefore, flavonoids may eliminate oxida-
tive damage in senescent cells and help cells to overcome aging and aging-related diseases.

Flavonoids are also involved in the process of reducing and removing protein damage.
Epicatechin upregulates eukaryotic translation elongation Factor 1A (eEF1A) through the
67 kDa laminin receptor [107]. Fisetin treatment of preadipocytes reduced the phosphoryla-
tion of the 70 kDa ribosomal protein S6 kinase 1 (S6K1). Nobiletin significantly blocked the
activation of Akt/mTOR signaling and significantly inhibited the phosphorylation of S6K1
and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) [108]. Phosphory-
lated S6K targets eIF4B and ribosomal protein S6 (RPS6). At the same time, 4EBP binds to
eukaryotic initiation factor 4E (eIF4E) at the eIF4E–eIF4G interaction interface to prevent it
from forming the translation initiation complex [109], thereby affecting translation fidelity.

Quercetin can specifically silence the expression level of HSP70. Previous studies
have shown that HSP90 inhibitors have senolytic activity [110]. Luteolin can alleviate
psoriasis’s pathological changes and symptoms by reversing the effects of IFN-γ and
HSP90 expression and exosomal secretion, regulating the proportion of immune cells and
inhibiting psoriasis. Myricetin interferes with the binding of HSP90β and TGF-β receptor
II, thereby preventing fibroblast activation. This indicates that flavonoids can also regulate
the activity of chaperone molecules. Proteasome activity and autophagy are important
parts of protein quality control and a meaningful way to eliminate damaged proteins.
Myricetin is reported to eliminate neurodegenerative protein aggregation by upregulating
the proteasome degradation mechanism [111]. Quercetin and rutin are positive regulators
of the Nrf2 transcription factor, which enhances the expression of proteasome catalytic
subunits in neurons [112]. Fisetin promotes the survival of nerve cells by enhancing the
activity of the proteasome when trophic factors are withdrawn [113]. Related reports
indicate that all flavonoids listed in Table 2 are involved in the regulation of autophagy
levels [114–121]. In summary, flavonoids can enhance protein quality control in various
ways, thereby reducing protein damage.

The removal of lipofuscin in cells results in reduced lipid damage, which is often
accompanied by improved aging-related pathology. Anti-aging studies on flavonoids have
shown that they also can minimize lipofuscin in cells. Several studies have shown that
kaempferol, myricetin, naringin, and quercetin can significantly reduce lipofuscin accu-
mulation in C. elegans, a marker of aging [58,122,123]. However, rutin and fisetin, which
also prolong the lifespan of nematodes, cannot delay the accumulation of lipofuscin in
cells [122,123]. Quercetin can also inhibit the development of lipofuscin-related autoflu-
orescence in senescent cells [124]. In addition, the accumulation of lipofuscin is closely
related to mitochondrial function and lipid metabolism [30]. Flavonoids regulate mito-
chondrial function; for example, luteolin increases mitochondrial respiration in primary
neurons [125]. Flavonoids can reduce lipofuscin in cells and affect the related processes of
lipofuscin production.

Collectively, flavonoids effectively reduce the damage of DNA, protein, and lipid
macromolecules by reducing the insults of damage. At the same time, they can improve the
ability of damage repair or clearance, thereby significantly reducing the rate of unrepaired
damage accumulating in cells. Due to the important role of unrepaired damage in inducing
cell senescence, cells or tissues can benefit from the anti-damage effects of flavonoids.



Int. J. Mol. Sci. 2022, 23, 2176 11 of 17

Table 2. Human clinical trials focusing on aging.

Flavonoid Therapy Indication Dose and Duration Trial

Quercetin (Q) +
Dasatinib (D)

Alzheimer’s disease

Q (1000 mg/day) + D (100 mg/day) administered
orally for 2 consecutive days every 15 days (2 days

on drug, 13 days off) for 6 cycles
NCT04785300

Intermittent D + Q administered for 2 days
on/14 days off for 12 weeks (6 cycles) NCT04063124

Age-related osteoporosis

D (100 mg/2 days) plus Q (1000 mg/day last for
3 days) taken orally on an intermittent schedule

(starting every 28 days) over 20 weeks, resulting in
five total dosing periods throughout the

entire intervention

NCT04313634

Accelerated-ageing-like
state post bone marrow

transplantation

Q (1000 mg/day) + D (100 mg/day) administered
orally for 3 consecutive days NCT02652052

Diabetic kidney disease Q (1000 mg/day) + D (100 mg/day) administered
orally for 3 consecutive days NCT02848131

Epigenetic aging
500 mg Q and 50 mg D oral capsules on Monday,

Tuesday, and Wednesday (3 days in a row) for
6 months

NCT04946383

Fisetin

Age-related osteoporosis

20 mg/kg/day for three consecutive days, taken
orally on an intermittent schedule (starting every

28 days) over 20 weeks, resulting in five total dosing
periods throughout the entire intervention

NCT04313634

Elderly syndrome 20 mg/kg/day, orally for 2 consecutive days NCT03675724

Elderly syndrome in old women 20/mg/kg/day, orally for 2 consecutive days, for
2 consecutive months NCT03430037

Osteoarthritis

Administered orally at 20 mg/kg for 2 consecutive
days, followed by 28 days off, then 2 more

consecutive days
NCT04210986

Oral fisetin 20 mg/kg taken for 10 days total NCT04815902

Diabetic and chronic kidney
disease 20 mg/kg/day, orally for 2 consecutive days NCT03325322

COVID-19 in hospitalized
patients 20 mg/kg/day, orally for 2 consecutive days NCT04476953

COVID-19 in outpatients 20 mg/kg/day oral for 4 days NCT04771611

Coronavirus disease 2019
(COVID-19) in nursing home

patients
20 mg/kg/day, orally for 2 consecutive days NCT04537299

Genistein
Alzheimer’s disease 60 mg of genistein BID for 360 days NCT01982578

Metabolic syndrome Genistein capsules of 25 mg each, 50 mg/day NCT04105023

Rutin Type 2 diabetes mellitus
Rutin 60 mg in combination with vitamin C 160 mg
three times daily in addition to usual antidiabetic

treatment for 8 weeks.
NCT03437902

5. Clinical Applications of Flavonoid on Aging

As mentioned above, preclinical results have shown that flavonoids have beneficial
effects in attenuating cell senescence. These beneficial effects of flavonoids could apply
to humans and are currently being tested in clinical trials (Table 2). Senolytic quercetin
plus dasatinib and fisetin have been used in the clinical treatment of osteoporosis, diabetic
kidney disease, Alzheimer’s disease, and other aging-related diseases. It is worth noting
that fisetin has been included in several clinical studies to improve the health of the elderly
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population with COVID-19. In addition, two clinical studies on the efficacy of fisetin in
reducing frailty and inflammation markers, insulin resistance, and bone resorption in the
elderly are also being recruited for. Other flavonoid- and aging-related clinical research is
rarely carried out, and only genistein has completed clinical trials in Alzheimer’s disease
and metabolic syndrome. Rutin and vitamin C have also been included in clinical studies
for type 2 diabetes mellitus.

In summary, although senotherapy consisting of flavonoids has been included in
clinical research on aging states and aging-related diseases, there are no definite experi-
mental results yet. The safety and possible side effects of the long-term use of flavonoids as
anti-aging drugs also need to be considered in future clinical research.

6. Concluding Remarks

Flavonoids can be used as senolytic drugs to remove senescent cells in tissues, improve
aging-related physiological phenotypes, and act as “senomorphics” to inhibit inflammation
and immune senescence caused by SASPs. In recent years, many flavonoids have also
emerged as anti-aging agents. For example, nobiletin can have an anti-aging effect by
inhibiting the ROR protein from regulating the circadian rhythm cycle. At the same time,
many studies have shown that flavonoids can eliminate the damage of macromolecules in
cells, improve the ability of DNA repair, and improve the level of protein quality control,
thereby reducing cell senescence and improving systemic aging. Due to the central role
of macromolecular damage in aging, flavonoid therapy will be an effective anti-aging
strategy. In addition, the flavonoids quercetin and fisetin have been included in a variety of
clinical studies on aging-related states. These preclinical and clinical studies on flavonoids
to delay aging provide an important data basis for applying flavonoids in treating aging
and aging-related diseases.

Although many studies have revealed the anti-aging beneficial effects of flavonoids,
attention should be given to the fact that the flavonoids currently used have unclear
toxicity and side effects of long-term continuous use, low solubility, rapid metabolism,
and poor absorption of dietary flavonoids in the gastrointestinal tract, which hinder their
pharmacological potential. Fortunately, the use of nanoparticle-based formulations of
flavonoids can significantly improve the pharmacology of flavonoids [126]. We have reason
to believe that with more research discoveries, natural product flavonoids will inevitably
enrich our anti-aging tool library more powerfully and provide alternative options for the
development and application of clinical anti-aging drugs.
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