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Abstract: (1) Background: We previously demonstrated that disruption of IP6K1 improves metabolism,
protecting mice from high-fat diet-induced obesity, insulin resistance, and non-alcoholic fatty liver
disease and steatohepatitis. Age-induced metabolic dysfunction is a major risk factor for metabolic
diseases. The involvement of IP6K1 in this process is unknown. (2) Methods: Here, we compared
body and fat mass, insulin sensitivity, energy expenditure and serum-, adipose tissue- and liver-
metabolic parameters of chow-fed, aged, wild type (aWT) and whole body Ip6k1 knockout (aKO)
mice. (3) Results: IP6K1 was upregulated in the adipose tissue and liver of aWT mice compared to
young WT mice. Moreover, Ip6k1 deletion blocked age-induced increase in body- and fat-weight
and insulin resistance in mice. aKO mice oxidized carbohydrates more efficiently. The knockouts
displayed reduced levels of serum insulin, triglycerides, and non-esterified fatty acids. Ip6k1 dele-
tion partly protected age-induced decline of the thermogenic uncoupling protein UCP1 in inguinal
white adipose tissue. Targets inhibited by IP6K1 activity such as the insulin sensitivity- and energy
expenditure-inducing protein kinases, protein kinase B (PKB/Akt) and AMP-activated protein kinase
(AMPK), were activated in the adipose tissue and liver of aKO mice. (4) Conclusions: Ip6k1 deletion
maintains healthy metabolism in aging and thus, targeting this kinase may delay the development of
age-induced metabolic dysfunction.

Keywords: IP6K1; aging; metabolism; adipose tissue browning; weight gain; insulin resistance

1. Introduction

The increased prevalence of obesity is a major health concern. Aging significantly
increases the risks of obesity and obesity-induced co-morbidities such as type-2 diabetes
mellitus (T2DM), non-alcoholic fatty liver disease/steatohepatitis (NAFLD/NASH), car-
diovascular disease and certain types of cancer [1–4]. Excess fat accumulation exacerbates
frailty in older persons. Conversely, metabolic dysfunction accelerates aging, as young
people with obesity and T2DM often exhibit features of accelerated aging [5].

Aging impairs functions of metabolic tissues such as adipose tissue, liver, and skeletal
muscle [5–7]. In young and healthy conditions, the white adipose tissue (WAT) stores
excess energy as triglycerides (TAG). Conversely, the mitochondria-enriched adipocytes
in the brown adipose tissue (BAT) and brown-like “beige” or “brite” adipocytes in certain
WAT depots (for example, the inguinal depot or IWAT) express mitochondrial uncou-
pling protein 1 (UCP1) to expend energy by thermogenesis. This process facilitates fat
loss and improves insulin sensitivity in rodents and humans [8–12]. Moreover, adipose
tissue is a major endocrine organ, secreting numerous adipokines that regulate energy
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metabolism, inflammation, and various other processes in the body [13]. Chronic en-
ergy accumulation in obesity and/or aging disrupts energy homeostasis, alters adipokine
secretion and immune response, causing adipose tissue dysfunction [14,15]. Dysfunc-
tional adipocytes release inflammatory cytokines that reduce their fat-storing ability and
increase the levels of non-esterified fatty acid (NEFA), which causes insulin resistance
and lipotoxic liver injury [16,17]. Age-induced depletion of brown/beige adipocytes and
subsequent loss of UCP1 have been shown to aggravate metabolic pathologies in rodents
and humans [5,18–20]. Moreover, obesity- and/or aging-induced hyperinsulinemia causes
pathway-selective insulin resistance in the liver, reducing glucose uptake and increasing
gluconeogenesis and de novo lipogenesis, which subsequently leads to hyperglycemia and
lipotoxic liver injury [6,16,17,21,22].

The characterization of novel proteins and/or pathways involved in metabolism and
aging is crucial to understand the mechanisms that regulate these processes, and to develop
therapeutic strategies to improve healthspan [6,23]. The use of new mouse models that
lack or overexpress a novel gene of interest is particularly useful in this regard. Using
various knockout mouse models, we previously discovered the inositol pyrophosphate
(5-IP7) biosynthetic enzyme inositol hexakisphosphate kinase 1 (IP6K1) as a novel target in
high-fat diet-induced obesity. A family of three IP6Ks synthesizes the biomolecule 5-IP7
in mammals by phosphorylating inositol hexakisphosphate (IP6) [24–28]. IP6K1 regulates
metabolic functions of adipose tissue, liver and pancreatic β cells, whereas IP6K3 mod-
ulates metabolism of the skeletal muscle [26,29–32]. IP6K1 impairs insulin signaling by
inhibiting the insulin effector protein kinase Akt, promoting high-fat diet-induced insulin
resistance [33]. Moreover, IP6K1 reduces whole-body energy expenditure by inhibiting
adipose tissue browning and thermogenesis [34]. IP6K1 diminishes energy expenditure and
stimulates fatty acid biosynthesis by inhibiting the metabolism enhancing AMP-activated
protein kinase (AMPK) [34,35]. IP6K1 also reduces serum levels of the insulin-sensitizing
and metabolically favorable adipokine, adiponectin [34,35]. Consequently, high-fat diet-fed,
whole-body- or adipocyte-specific Ip6k1-KO mice are protected from obesity, hyperin-
sulinemia, insulin resistance, and hepatic steatosis [33–35]. Moreover, whole-body- or
hepatocyte-specific Ip6k1 deletion protects mice from high-fat and high-cholesterol (West-
ern) diet-induced lipotoxic liver injury and NAFLD/NASH [36]. IP6K1 also promotes
insulin secretion from pancreatic β cells [31,32,37]. Accordingly, Ip6k1 deletion diminishes
insulin secretion whereas transgenic mice that express a hyperactive IP6K1 display aug-
mented insulin release, congenital hyperinsulinemia, and obesity [32]. In summary, IP6K1
regulates metabolism via pleiotropic mechanisms.

High-fat diet-induced obesity in rodents does not exactly mimic human obesity. A
major reason is that such high percentages of fat (40–60% kcals from fat) are not regularly
consumed by humans. Conversely, aged mice develop metabolic dysfunction despite
consuming a normal chow diet (~62%, ~25% and ~13% kcals, from carbohydrate, protein,
and fat, respectively). Mechanistically, high-fat diet-induced obesity is caused due to rapid
accumulation of fat, whereas aging-induced weight gain occurs because of fat synthesis
from carbohydrates over time. Thus, determining the impact of a protein on both models
of metabolic dysfunction is necessary. However, no studies have yet been done to define
IP6K1’s role in aging-induced metabolic dysfunction. To address this, here we compared
metabolic features of chow-fed, aged (22-months), WT and Ip6k1-KO (aWT and aKO) mice.
Female subjects are often overlooked in research, including metabolic research, despite the
sex-specific differences in phenotypes [38–41]. Therefore, in this study, we used mice of
both sexes.

2. Results
2.1. Body Weight and Composition
Whole-Body Deletion of Ip6k1 Protected Mice from Age-Induced Weight and Fat Gain

We determined whether aging differentially regulated body weight and composition
in WT and KO male and female mice. Young, chow-fed KO male mice displayed a slight,
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albeit significant reduction in body weight (Figure 1A), which conforms with previous
reports [33,37]. Interestingly, with age, WT males gained substantially more body weight
than KO males (Figure 1A,B). Body composition analysis revealed that total fat mass was
considerably lower in 12- and 22-month-old aKO, compared to aWT males (Figure 1C).
Total lean and fluid mass were also reduced in aKO males, although to a lesser extent than
fat mass (Figure 1C). The percent fat mass (normalized to total body weight) was also
significantly reduced in 12- and 22-month-old aKO male mice (Figure 1D). Percent lean
mass increased in 12-month-old aKO and was similar in 22-month-old aWT and aKO male
mice (Figure 1D). Percent fluid mass was similar in both genotypes.
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Figure 1. Whole-body deletion of Ip6k1 protected mice from age-induced weight and fat gain. Whole-
body deletion of Ip6k1 protected mice from age-induced weight and fat gain. (A,B). Ip6k1 deleted
(KO) male mice were substantially protected from age-induced increase in body weight. n = 5 and 10
for 2- and 12-month-old WT and KO; and 9 each for 22-month-old mice). (C). Total body fat, lean
and fluid mass were significantly reduced in aKO male mice. (D) Percent fat mass (normalized to
total body weight) was substantially less in aKO male mice. Percent lean mass was higher in 12M-old
aKO, whereas its was similar in 22M-old aKO and aWT male mice. Percent fluid mass was similar in
both genotypes. n = 5 and 10 for 12-month-old WT and KO; and 3 each for 22-month-old male mice.
(E,F) aKO (22-month-old) female mice were protected from age-induced increase in body weight.
n = 7 and 10 for aWT and aKO female mice. Number of mice (n) used in each experiment are presented
as individual datapoints. Mean ± s.e.m. values are shown within dot plots. For 2 independent data
sets, two-tailed unpaired Student’s t-test was used. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Aged (22-month-old) female aKO mice displayed an even greater difference in body
weight, compared to aWT mice (Figure 1E,F). Like males, both total and percent fat mass
were substantially lower in female aKO mice (Figure S1A,B). Total lean mass decreased but
percent lean mass increased in female aKO mice (Figure S1A,B). Fluid mass was marginally
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reduced in aKO females. Thus, aKO mice displayed an overall reduction in body size.
However, when normalized to body weight, Ip6k1 deletion specifically blocked aging-
induced accumulation of fat without significantly altering lean or fluid mass.

2.2. Serum Metabolic Profiles
aKO Mice Displayed Improved Serum Metabolic Profiles

Next, we checked whether the lean phenotype delayed age-induced metabolic aber-
ration in aKO male and female mice. aWT and aKO male mice displayed average serum
insulin levels of 2.9 and 0.74 ng/mL, respectively (Figure 2A). These values were 1.2 and
0.4 ng/mL in young WT and KO mice [37]. Thus, aKO mice maintained normal levels
of serum insulin. Moreover, ad libitum blood glucose levels were higher in aWT but not
in aKO mice (Figure S2A) (normal value ~120 mg/dL). Next, we tested the efficiency of
glucose disposal in aWT and aKO male mice in a glucose tolerance test (GTT). Although
fasting (16 h) blood glucose levels are similar in young WT and KO mice (~70 mg/dL) [37],
aging-induced increase in fasting blood glucose levels was less in aKO mice (average val-
ues were 126 and 150 mg/dL in aKO and aWT mice, respectively; 0 time point of GTT;
p = 0.0544; Figure 2B). Moreover, aKO male mice disposed of blood glucose more efficiently
than aWT in a glucose tolerance test (GTT) (Figure 2B,C). Both young WT and KO male
mice efficiently disposed of blood glucose following exogenous insulin injection (insulin
tolerance test—ITT) [37]. However, aKO but not aWT male mice showed improved glucose
disposal in an ITT (Figure 2D,E).

Ad libitum blood glucose levels were similar in aWT and aKO female mice (data not
shown). Yet, female aKO mice showed reduced serum insulin and improved glycemic
profiles in a GTT (Figure 2F–H). Exogenous insulin injection reduced blood glucose in
both female genotypes, albeit slightly more efficiently in aKO mice (Figure 2I,J). Different
glycemic profiles in aWT male and female mice in ITT indicated that aged males were
more insulin resistant than female mice, which is a commonly observed phenomenon
in mice [42].

Aging did not increase serum TAG levels in WT (compared to reported values in young
WT [43]). These values were lower in aKO, compared to aWT mice (Figure 2K,L). Serum
NEFA levels were higher in aged mice of both genotypes, compared to young mice [43].
However, the increase was less pronounced in aKO mice, and thus aKOs displayed reduced
serum NEFA levels than aWT mice (Figure 2M,N). Serum cholesterol and phospholipid
levels were largely similar (Figure S2B–E). These results suggest improved serum metabolic
profiles in aKO mice.

2.3. Energy Expenditure, Food Intake and Activity
aKO Mice Expended Carbohydrates More Efficiently Than aWT Mice

Like chow- and high-fat-fed young mice [35], aWT and aKO mice consumed similar
amounts of food (Figure S3A,B). When normalized to body weight, aKO mice exhibited a
slight but significant increase in food intake (Figure S3C,D). Slight increase in food intake
was presumably necessary to compensate for the negative energy balance in the aKO mice.
Total and ambulatory activity profiles were largely similar in both genotypes (Figure S3E,F).
Whole body energy expenditure studies showed that the volume of oxygen consumption
(VO2) was similar in both aged genotypes (Figure 3A). Accordingly, energy expenditure
(EE) was also similar in aWT and aKO mice (Figure 3B). However, the nighttime respiratory
exchange ratio (RER) was significantly higher in the aKO mice (Figure 3C). Thus, aKO
expended more carbohydrate and less fat than aWT mice during nighttime (Figure 3D,E).
The major source of energy in the chow-diet is carbohydrate. Thus, age-induced weight
gain in mice is largely due to increased lipogenesis rather than augmented accumulation of
exogenous fat, which is observed in high-fat diet-induced obesity. Efficient carbohydrate
oxidation reduced fat synthesis and accumulation, leading to leanness, and metabolic
improvements in chow-fed aKO mice.
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Figure 2. aKO mice displayed improved serum metabolic profiles. (A) aKO male mice were protected
from aging-induced hyperinsulinemia. n = 5 mice per group. (B,C) Male aKO mice disposed blood
glucose more efficiently than aWT mice following exogenous glucose injection (glucose tolerance test—
GTT). The assay was performed in 15-month-old mice. n = 4 and 5 for aWT and aKO mice, respectively.
(D,E) aKO but not aWT male mice efficiently disposed blood glucose following exogenous insulin
injection (insulin tolerance test–ITT). The assay was performed in 16-month-old mice. n = 4 and 5 for
aWT and aKO mice, respectively. (F) Female aKO mice were protected from hyperinsulinemia. n = 5
mice each group. (G,H) Female aKO mice displayed substantially improved glycemic profiles in a
GTT. The assay was performed in 15-month-old mice. n = 7 mice per group. (I,J) Female aKO mice
showed slightly improved glucose disposal in an ITT. The assay was performed in 16-month-old mice.
n = 7 mice per group. (K,L) Serum TAG levels were reduced in aKO male and female mice compared
to aWT littermates. n = 5 mice each group. (M,N) Both sexes of aKO mice displayed reduced serum
NEFA levels. n = 5 mice each group. Number of mice (n) used in each experiment are presented as
individual datapoints. Mean ± s.e.m. is shown within dot plots. For multiple comparisons, two-way
ANOVA with Holm-Šidák multiple comparison test and for 2 independent data sets, two-tailed
unpaired Student’s t-test were used. * p < 0.05, **p < 0.01, *** p < 0.001, **** p < 0.0001.
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Figure 3. aKO mice expended carbohydrates more efficiently than aWT mice. (A) aWT and aKO
mice consumed oxygen (VO2) to a similar extent. (B) Average energy expenditure (EE) was similar
in aWT and aKO mice. (C) The average nighttime RER value was significantly higher in aKO mice.
(D) aKO mice efficiently expended carbohydrate during nighttime. (E) During nighttime, aKO mice
oxidized less fat than aWT mice. n = 6 mice each group. Number of mice (n) used in each experiment
are presented as individual datapoints. Mean ± s.e.m. values are shown within dot plots. For 2
independent data sets, two-tailed unpaired Student’s t-test was used. ** p < 0.01.

2.4. Metabolic Parameters of Adipose Tissue and Liver
Age-Induced Metabolic Aberration in Adipose Tissue and Liver Was Ameliorated in Ip6k1
Deleted Mice

In high-fat diet-fed mice, IP6K1 promotes obesity and insulin resistance by reducing
insulin signaling and thermogenic energy metabolism in adipose tissue and liver [33,34,36].
Here, we checked whether these parameters were improved in aKO mice. aKO mice
accumulated substantially less fat in epididymal (gonadal in females) and inguinal adipose
tissue depots (EWAT/GWAT and IWAT) (Figures 4A and S4A, GWAT indicated by arrows,
Figures 4B and S4B). UCP1, which is known to be downregulated in aging [5,18–20],
was reduced in the IWAT of aWT, compared to young WT mice (Figures 4C and S4C).
Interestingly, UCP1 expression was higher in the IWAT of aKO compared to aWT, indicating
that the browning property was partly maintained in the aged IWAT following Ip6k1
deletion (Figure 4D). UCP1 levels in the BAT was similar in aWT and aKO mice (data not
shown), which is explainable as IP6K1 regulates browning of WAT without altering BAT
functions [34]. Like adipose tissue, liver weight was also reduced in male and female
aKO mice (Figures 4E and S4D). Microsteatosis developed to a much higher extent in aWT
compared to aKO mice (Figures 4F and S4E, indicated by arrows). Accordingly, aKO mice
accumulated less TAG in the liver (Figure 4G). IP6K1 diminishes insulin signaling and
energy expenditure by inhibiting the protein kinases Akt and AMPK [33–35]. Accordingly,
stimulatory phosphorylation levels of Akt (S473) and AMPK (T172) increased in the adipose
tissue and liver of aKO mice (Figures 4H,I and S4F–I).

Histology of EWAT showed reduced adipocyte size in aKO mice (Figure 4J). Obesity- or
aging-induced adipocyte dysfunction triggers infiltration of inflammatory M1 macrophages
and reduces the population of insulin-sensitizing M2 macrophages [44–48]. Infiltrated
macrophages form the crown-like structures in the adipose tissue, which was present
in aWT but not in aKO mice (Figure 4J, indicated by arrows). Moreover, markers of M1
macrophages such as Cd11c, Tnfα, IL1β and Cxcl2 were downregulated whereas the M2
marker Cd163 was upregulated in the EWAT of aKO mice (Figure 4K). Other inflammatory
markers IL6, IL1α and Cxcl1 and the M2 marker Arg1 were similarly but insignificantly
altered. Expression levels of F4/80 were unaltered, indicating that the total population
of macrophages was similar in the EWAT of aWT and aKO mice (Figure 4K). Like EWAT,
markers of the M1 and M2 macrophages were altered in the liver of aKO mice (Figure 4L).
Aging did not substantially increase serum levels of the hepatotoxicity markers aspartate
aminotransferase (AST) and alanine aminotransferase (ALT) in aWT mice. Therefore, levels
of these markers were largely comparable between genotypes with a slight reduction in
AST in the female aKO mice (Figure S4J–M).
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Figure 4. Age-induced metabolic aberration in adipose tissue and liver was ameliorated in Ip6k1
deleted mice. (A) aKO male mice displayed reduced fat accumulation in adipose tissue depots.
(B) Weight of epididymal and inguinal (EWAT and IWAT) adipose tissue depots was reduced in male
aKO mice. n = 6, and 8 for aWT and aKO mice. (C) Aging downregulated UCP1 protein in the IWAT of
WT mice. (D) UCP1 protein levels were higher in the IWAT of aKO, compared to aWT mice. (E) Liver
weight was reduced in aKO mice. n = 6, and 8 for aWT and aKO mice. (F,G) aKO mice exhibited
reduced micro-steatosis and TAG accumulation in the liver. n = 5 mice per group. (H,I) Stimulatory
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phosphorylation of Akt (S473) and AMPK (T172) increased in the liver and EWAT of aKO mice.
(J) Adipocyte size (EWAT) was reduced and crown like structures (indicated by an arrow) were
absent in the EWAT of aKO mice. (K) mRNA expression of Cd11c, Tnfα, IL1β and Cxcl2 were reduced
and Cd163 increased in the EWAT of aKO mice. IL6, IL1α, Cxcl1 and Arg1 were insignificantly altered.
F4/80 expression was similar in aWT and aKO EWAT. Ip6k1 expression was determined to confirm the
genotypes. n = 4 mice per group. (L) mRNA expression of Cd11c and Cxcl1 were diminished whereas
Arg1 was augmented in the liver of aKO mice. Tnfα, Cxcl2, IL6, IL1α, IL1β were downregulated and
Cd163 was upregulated to insignificant levels. F4/80 expression was similar in aWT and aKO liver.
n = 4 mice per group. (M,N) mRNA expression of p21 was significantly reduced in EWAT and liver
of aKO compared to aWT controls. p16 was also downregulated in aKO tissues albeit to insignificant
levels. n = 4 mice per group. (O,P) Aging upregulated IP6K1 at the protein level in EWAT and liver
tissues of WT mice. n = 4 and 5 and 5 and 7 per group for EWAT and liver, respectively. Number of
mice (n) used in each experiment are presented as individual datapoints. Mean ± s.e.m. values are
shown within dot plots. For 2 independent data sets, two-tailed unpaired Student’s t-test was used.
* p < 0.05, ** p < 0.01, **** p < 0.0001.

Improved metabolism and reduced inflammation may have delayed senescence in
the adipose tissue and liver of aKO mice, as the senescent markers p16 and p21 were
downregulated in the knockouts (Figure 4M,N). Finally, we determined whether IP6K1 is
an age-inducible protein in adipose tissue and liver. Aging upregulated IP6K1 protein but
not its mRNA expression in these tissues (Figure 4O,P and Figure S4N–P).

Although 22-month-old WT mice, used in this study, developed metabolic dysfunction,
we did not observe visual aging phenotypes in these mice. Compared to young WT
and KO [35], aWT and aKO mice displayed slightly reduced activity levels, although no
significant differences between genotypes were observed (Figure S3E,F). Skin texture and
hair quantity and quality appeared normal and were similar in both aged genotypes
(Figure 1B,F). Neither genotype developed cataract, kyphosis, or tumor. For senescence
and survival studies, 28–36-month-old mice are recommended [49]. Therefore, whether
improved metabolism in Ip6k1-deleted mice delays senescence and increases lifespan will
be tested in 36-month-old mice in future studies.

3. Discussion

Age-induced metabolic dysfunction of adipose tissue and liver increases weight and
fat gain and insulin resistance [5,19,20,50,51]. The current study shows that whole-body
deletion of Ip6k1 protects mice from age-induced weight gain, insulin resistance and
metabolic dysfunction by improving metabolic functions of these tissues. Although both
male and female aKO mice displayed overall metabolic improvements, the difference
in glycemic profiles was more robust in male than female aKO mice compared to their
respective aWT controls. This is explainable as male C57BL6 mice attain insulin resistance
faster than female mice with age [42].

Adipocyte- or hepatocyte-specific Ip6k1 deletion has been shown to improve metabolism
and insulin sensitivity in high-fat, high-cholesterol or high-fructose diet-fed mice [34,36].
Here, we observed improved serum, adipose tissue and liver metabolic parameters and
increased activities of the IP6K1 targets Akt and AMPK in these tissues of aKO mice.
IP6K1 also promotes insulin secretion from the pancreatic β cells [31,32]. Thus, improved
metabolic functions of these tissues contribute to the observed phenotypes in aKO mice.
However, IP6K1 is ubiquitously expressed, including in the brain [26,52,53], and therefore
the involvement of the hypothalamic-IP6K1 in metabolic regulation cannot be ruled out.
Hypothalamic-AMPK enhances food intake [54]. Thus, a slight increase in food intake
(when normalized to body weight) in aKO mice could be due to augmented AMPK activity
in the hypothalamus.

Despite increased UCP1 expression and AMPK activation, overall energy expenditure
was not increased in aKO mice. Although the reason is not entirely clear at this point,
substantial reduction in body fat over time may have readjusted the metabolic rate in aKO
mice. However, carbohydrate oxidation was higher, which explains reduced synthesis
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and accumulation of fat in the aged knockouts. This result is in line with our previous
findings that young, chow-fed Ip6k1-KO mice exhibit higher carbohydrate oxidation, and
IP6K1 reduces fatty acid biosynthesis in adipocytes [35]. Prolonged increase or decrease in
energy expenditure may have negative effects on healthspan [50]. Efficient carbohydrate
use may provide an alternative therapeutic strategy to ameliorate metabolic dysfunction
in aging. Other IP6K1-regulated processes may also contribute to age-induced metabolic
dysfunction. For example, IP6K1-generated 5-IP7 maintains the cellular polyphosphate
levels and pyrophosphorylates protein targets [55,56] that regulate glycolysis, chemotaxis
and phagosomal motility of macrophages [57–59]. Moreover, IP6K1, in coordination with
another inositol pyrophosphate biosynthetic enzyme, PPIP5K, generates IP8 [60], which
has also been shown to regulate energy metabolism [61]. Therefore, the observed metabolic
phenotypes in aKO mice may also arise due to a reduction in IP8.

Age-induced upregulation of IP6K1 explains why IP7 levels are higher in cells isolated
from older compared to younger mice [33,62]. Interestingly, protein but not mRNA levels of
IP6K1 increased in aged adipose tissue, indicating involvement of post-translational events
in IP6K1’s upregulation. IP6K2 is degraded via the ubiquitin-proteasomal system [63].
Future studies will determine whether IP6K1’s stability is regulated by similar mechanisms.
Moreover, IP6K1 is phosphorylated at serine residues 118 and 121, which regulates its
catalytic activity and interaction with metabolic proteins [32,64]. Whether aging induces
IP6K1′s activity and protein-protein interaction via these mechanisms will be tested.

Among other Ip6k isoforms, Ip6k2 is ubiquitously expressed, and its deletion decreases
metastasis [65]. Ip6k3 expression is limited to skeletal muscle and heart, and its whole-body
deletion improves skeletal muscle metabolism, protecting mice from age-induced fat gain,
insulin resistance and mortality [30]. Thus, targeting the IP6K pathway in general may
improve healthspan. Encouragingly, pharmacologic inhibition of this pathway has been
shown to ameliorate diet-induced obesity, insulin resistance, hepatic steatosis, osteoporosis,
chronic kidney disease, ischemia/reperfusion injury, and myocardial infarction in mouse
models [66–70]. Efforts are ongoing to develop potent and improved drug-like IP6K in-
hibitor compounds for clinical trials [71–73]. IP6K1 is relevant in human metabolic diseases
as its levels positively correlate with HOMA-IR (Homeostatic Model Assessment for Insulin
Resistance) in prediabetic subjects and negatively corelate to insulin sensitivity [74]. More-
over, IP6K1 is upregulated in the liver of NASH, cirrhosis, and hepatocellular carcinoma
patients [36,75]. Hopefully, inhibiting IP6K1 or the IP6K pathway will delay age-induced
metabolic dysfunction in humans.

4. Materials and Methods
4.1. Chemicals and Reagents

Unless otherwise stated, all the chemicals were purchased from Sigma/EMD Millipore,
St. Louis, MO, USA. Antibodies—IP6K1 (HPA040825), UCP1 (U6382), β-actin (A5316) and
GAPDH (G8795)—were from Sigma/EMD Millipore, St. Louis, MO, USA; p-AMPK (2535),
AMPK (2793), p-Akt (4060) were from Cell Signaling Technology, Danvers, MA, USA; Total
Akt (Sc-81434) were from Santa Cruz Biotechnology, Dallas, TX, USA. The insulin ELISA kit
(90080) was from Crystal Chem Inc., Elk Grove Village, IL, USA. ALT, AST, and TAG assay
kits were from Teco Diagnostics, Anaheim, CA, USA; insulin assay kit was from Insulin
was from Novo Nordisk, Bagsværd, Denmark.

qRT-PCR Primers (Forward and reverse).

Gene Sequence

Ip6k1
F: 5-TGGAAGTGGGGCAGTATGG-3
R: 5-CGTCGTACCGCATCATGCT-3

F4/80
F: 5-GGATATGGAAACTTCAACTGCAA-3

R: 5-CAAGTGTACAGAAGGAAGCATAAC-3
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CD11c
F: 5-CAAATAGGTGGCCTCTACAAATG-3

R: 5-GTAGGACCACAAGCCAACA-3

TNFα
F: 5-AGACCCTCACACTCAGATCA-3

R: 5-GAGTAGACAAGGTACAACCCATC-3

Cxcl1
F: 5-ACCGAAGTCATAGCCACACTC-3
R: 5-CTCCGTTACTTGGGGACACC-3

Cxcl2
F: 5-CCCAGACAGAAGTCATAGCCAC-3

R: 5-TGGTTCTTCCGTTGAGGGAC-3

IL6
F: 5-TGAGAAAAGAGTTGTGCAATGG-3
R: 5-GGTACTCCAGAAGACCAGAGG-3

IL1α
F: 5-AGGGAGTCAACTCATTGGCG-3
R: 5-TGGCAGAACTGTAGTCTTCGT-3

IL1β
F: 5-TGCCACCTTTTGACAGTGATG-3
R: 5-TGATGTGCTGCTGCGAGATT-3

Arg1
F: 5-TTAGAGATTATCGGAGCGCCT-3

R: 5-GTCTCTCACGTCATACTCTGTTTCT-3

Cd163
F: 5-ATTCAGCGACTTACAGTTTCCTC-3

R: 5-ACAAAGATGTCAGTCCATCATCA-3

P16
F: 5-ATGGGTCGCAGGTTCTTGG-3

R: 5-TGCCCATCATCATCACCTGG-3

P21
F: 5-TTGCCAGCAGAATAAAAGGTGCC-3
R: 5-GACGAAGTCAAAGTTCCACCGT-3

Hprt1
F: 5-CAAACTTTGCTTTCCCTGGT-3

R: 5-TCTGGCCTGTATCCAACACTTC-3

Rplp0
F: 5-AGATTCGGGATATGCTGTTGGC-3
R: 5-TCGGGTCCTAGACCAGTGTTC-3

4.2. Animals

Animal care and experiments were approved by the Saint Louis University School of
Medicine and The Scripps Research Institute Institutional Animal Care and Use Committee
(IACUC). Male WT and Ip6k1-KO (KO) mice on pure C57BL6 background were housed
in a 12 h light/12 h dark cycles at 23 ◦C and were fed a standard chow diet (Harlan
Laboratories # 2018SX). At indicated time periods, body weight and composition, energy
expenditure, blood glucose level, GTT and ITT were performed. After 22-months, mice
were fasted for 4 h (to minimize nibbling induced changes in metabolism and signaling) and
then euthanized by carbon dioxide asphyxiation. Tissues were processed for downstream
applications. To compare mRNA and protein expression in young vs. old mice, 2- and
22-month-old WT mice were used.

4.3. Body Composition Analyses by Q-NMR

Fat, lean and fluid masses of mice were measured using the Minispec LF-NMR (Bruker
Optics, Ettlingen, Germany) analyzer. Percent body composition was calculated based on
the total body weight of mice.

4.4. Ad Libitum Glucose Level and Glucose and Insulin Tolerance Tests (GTT and ITT)

Ad libitum glucose, GTT and ITT were performed in 14-, 15- and 16-month-old mice
following previously published procedures. For GTT, glucose (2 g/kg BW, i.p.) was injected
in 16-h-fasted animals. For ITT, insulin (0.75 U/kg BW, i.p.) was injected in 5h-fasted mice.
Blood glucose levels were measured by glucometer by puncturing tail veins of mice before
and after the indicated time periods of injection [33,36,66].
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4.5. Energy Expenditure and Locomotor Activity Studies

Mice were placed individually in metabolic cages with a precise thermostatic con-
trol in a Comprehensive Laboratory Monitoring System (CLAMS; Columbus Instruments,
Columbus, OH, USA) and were acclimatized for 36 h. Afterwards, oxygen consump-
tion, (VO2), carbon dioxide release (VCO2) and spontaneous locomotor activity were
measured for 48 h, following standard procedures [66,76]. Respiratory exchange ra-
tio (RER) and energy expenditure (EE) were calculated using the following equations:
RER = VCO2/VO2; EE (kcal/h) = (3.815 + 1.232 × RER) × VO2. Values were normalized
by lean body mass. Percent carbohydrate and fat expenditure was calculated following
standard procedures [35,77].

4.6. Food Intake Studies

Mice were singly housed and acclimatized in this condition for 2 days. On the day
of the experiment, the chow diet was weighed and then placed in the cage at 6 p.m. The
remaining amount of food was weighed in the following day at the same time to quantify
the 24-h food intake. This process was continued for 7 days. The average amount of food
consumed per mouse per day was calculated. The mice had full access to drinking water
throughout the study.

4.7. Blood Collection and Assessment of Serum Metabolic Parameters

Blood was collected from 4-h-fasted mice by cardiac puncture, and serum was prepared
following standard procedure. Serum TAG, NEFA, cholesterol and phospholipids were
measured at the Mouse Metabolic Phenotyping Centers (MMPC), University of Cincinnati,
College of Medicine Pathology & Laboratory Medicine. Serum insulin concentration was
determined by using an ultra-sensitive mouse ELISA kit (Crystal Chem, Elk Grove Village,
IL, USA). Serum AST and ALT levels were measured using commercial kits from Teco
Diagnostics (Anaheim, CA, USA). Hepatic lipid extraction for TAG measurement was
performed following a standard protocol [36].

4.8. RNA Isolation and qRT-PCR Studies

RNA isolation and qRT-PCR were conducted following a standard ∆∆CT method [36].
Hypoxanthine guanine phosphoribosyl transferase (Hprt1) and acidic ribosomal protein
large P0 (Arp) mRNA were used as controls for adipose tissue and liver, respectively. The
comparative threshold cycle method was used to calculate changes in mRNA abundance.

4.9. Histology

Adipose tissue and right lobe of the liver tissue were fixed in 10% neutral buffered
formalin for two days. Eight micron-sections were prepared and subsequently stained with
hematoxylin and eosin (H&E) [36,66].

4.10. Gel Electrophoresis and Immunoblotting

For immunoblotting, total protein was isolated by standard protein lysis RIPA buffer
containing the protease-phosphatase inhibitor tablet and quantified using a BCA protein
assay kit (Thermo-Scientific, Waltham, MA, USA). An equal amount of total protein was
loaded onto 10% SDS-PAGE. Proteins were detected by immunoblotting following our
standard protocol [66]. Densitometric analyses of protein bands were performed using the
ImageJ software (Java 1.8.0_172).

4.11. Statistics

For multiple comparisons, two-way Anova with Holm–Sidak multiple comparison
test was used. For two independent data sets, two-tailed Student’s t-test was used. Data are
presented as mean ± SEM (**** p < 0.0001, *** p < 0.001, ** p < 0.01 and * p < 0.05). Statistical
significance and area under curve (AUC) were calculated in GraphPad Prism software,
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v. 7. Immunoblots were quantified using ‘ImageJ’ software. Data are plotted for individual
animal to show number of animals per experiment.

Supplementary Materials: The following supporting information can be downloaded at: https:
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