Supplementary Methods

Data collection: miRNA expression quantification data were downloaded from
the GDC Data Portal of NIH [1]. The miRNA-Seq miRNA expression
quantification corresponded to a total of 452 files for 448 cases. The respective
biospecimen, clinical data and sample sheets were also downloaded from the
GDC Data Portal. Tumor recurrence information was not available in these
summarized files, so we downloaded the full clinical data from Firebrowse [2].
The field
“patient.new_tumor_events.new_tumor_event_after_initial_treatment” was
selected as the one indicating recurrence and used as desired output in the
recurrence prediction problem. The field “sample type” was selected as the one
indicating primary or metastatic tumor and used as desired output in the
metastasis prediction problem.

Data preprocessing: Recurrence: Custom python scripts were created to
process the single miRNA expression quantification files and merge them in
one file with 452 samples (expression files) and 1881 features (miRNAs). Tumor
recurrence was also mined from the clinical data and matched to the samples
as labels with python scripts. Two samples of type Solid Tissue Normal and 13
samples with no reported information on tumor recurrence (one identical with
a Solid Tissue Normal) were excluded from further analysis giving us 438
samples with available tumor recurrence information. Out of these, 328
experienced a new tumor event and 110 did not. Among the 1881 miRNAs, we
excluded from further analysis miRNAs with zero counts in more than 70% of
the samples, thus narrowing the number of miRNAs down to 880 miRNAs.

Metastasis: Out of the 452 samples, two samples of type Solid Tissue Normal
were excluded from further analysis and one sample of type “additional
metastatic” was considered metastatic. Of the remaining 450 samples, 353 were
metastatic and 97 were primary tumors. Custom python scripts were created
to process the single miRNA expression quantification files and merge them in
one file with 450 samples (expression files) and 1881 features (miRNAs).
Among the 1881 miRNAs, we excluded from further analysis miRNAs with
zero counts in more than 70% of the samples, thus narrowing the number of
miRNAs down to 543 miRNAs.

Differential expression analysis: Statistical analysis was performed on the raw
read counts of the 880 and 543 miRNAs (for recurrence and metastasis,
respectively) with custom R scripts with the DeSeq2 method and correction of
p-values for multiple testing was performed using the Benjamini-Hochberg
FDR adjustment method [3]. Setting the adjusted p value threshold to 0.05, we
identified 203 (for recurrence) and 200 (for metastasis) statistically significant
differentially expressed miRNAs. Among the miRNAs with adjusted p value <
0.05, those with log fold change >1.5 and <-1.5 are presented in supplementary
Table 1.

Co-expression networks: Recurrence: One co-expression network based on the
880 miRNAs was created for the recurrent samples and one for the non-
recurrent samples with the Spearman correlation method, with minimum
threshold 0.55 and interval of trust 95% through InSyBio Bionets tool [4]. For
the category tumor recurrence, the network has 326 nodes 1834 edges and for
the category no tumor recurrence 353 nodes 1483 edges. The two networks
were compared with the Pagerank method with 90% confidence interval to find
significantly altered miRNAs between them. The 31 miRNAs which were
found to be significantly altered in the network level are presented in
supplementary Table 2. Merging the 31 miRNAs altered in the network with
the 203 statistically significant differentially expressed miRNAs resulted in the
7 miRNAs of the recurrence signature.



Metastasis: One co-expression network based on the 543 miRNAs was created
for the metastatic samples and one for the primary tumors samples with the
Spearman correlation method, with minimum threshold 0.55 and interval of
trust 95% through InSyBio Bionets tool [4]. For the metastatic category, the
network has 307 nodes 1081 edges and for the primary tumors category 272
nodes 1033 edges. The two networks were compared with the Pagerank
method with 90% confidence interval to find significantly altered miRNAs
between them. The 24 miRNAs which were found to be significantly altered in
the network level are presented in supplementary Table 3. Merging the 24
miRNAs altered in the network with the 200 statistically significant
differentially expressed miRNAs resulted in the 8 miRNAs of the metastasis
signature.

Classification models: The classification models for tumor recurrence and
metastasis were generated with a hybrid ensemble heuristic optimization and
classification method incorporated in the InSyBio Biomarkers tool [5]. The
heuristic optimization algorithm is used to (a) identify the optimal feature
subset to be used as input to the classifiers, to (b) select the most appropriate
classifier among Support Vector Machines and Random Forests and (c) select
the optimal parameters for the classifier, namely C and gamma of SVM and
number of trees for Random Forests. A multi-objective Pareto based approach
was used to reveal all the non-dominated solutions of the above-stated
optimization problem [6]. The weights used for the goals were Selected
Features Number Minimization 1, Accuracy 10, F1 score 10, F2 score 1,
Precision 1, Recall 1, ROC_AUC 1, Number of SVs or Trees Minimization 1.
Multiple models performing equally well on the user-defined goals are the final
outcome. These models are then combined in an ensemble manner to predict
tumor recurrence and metastasis [7].

The recurrence and the metastasis datasets were preprocessed with arithmetic
sample-wise normalization and split in training sets (70% of the samples) and
external test sets (30% of the samples) maintaining the proportion of recurrent
vs. non-recurrent samples (1st classification problem) and metastatic vs.
primary tumors samples (2nd classification problem). The two training sets
were used to generate classifiers and 5-fold cross-validation was used to
evaluate their predictive performance. For recurrence, the cross-validation
accuracy achieved was 91.51% with 92.65% specificity and 91.29% sensitivity.
For metastasis, the cross-validation accuracy achieved was 97.39% with 96.67%
specificity and 98.38% sensitivity. Machine learning algorithms have the ability
to learn linear and non-linear patterns from the data provided to them for their
training. Thus, testing the performance of a classification models with the
training data, or even with a cross-validation strategy favors the performance
of the classifier. A common practice to more strictly evaluate a classifier is to
calculate the predictive performance in samples not seen before by the
algorithm. Thus, we subsequently evaluated our models on the external test
sets (i.e., samples not seen before by the algorithm) achieving 73.85% accuracy
with 79.09% specificity and 88.78% sensitivity in recurrence prediction. The
respective metrics in the external test set for metastasis prediction were 88.78%
accuracy with 82.40% specificity and 98.10% sensitivity.

Incorporation of clinical data: The clinical features explored for predicting
tumor recurrence were sample_type, age_at_index, ethnicity, gender, race,
ajcc_pathologic_m, ajcc_pathologic_n, ajcc_pathologic_stage,
ajcc_pathologic_t, ajcc_staging_system_edition, primary_diagnosis,
prior_malignancy, prior_treatment, patient_tumor_tissue_site (with the
naming convention kept as in the original data). The feature
ajcc_pathologic_stage had more than 10% missing values and was excluded
from further analysis. The remaining features were preprocessed with
arithmetic sample-wise normalization and k-nn missing values imputation.
These clinical features were merged with the 7 miRNAs of the recurrence
signature and together increased the predictive performance on the external
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test set from 73.85% accuracy, 79.09% specificity and 88.78% sensitivity to
85.38% accuracy, 88.35% specificity and 92.86% sensitivity. The combined
signature that yields these results consists of 5 miRNAs hsa-mir-1226, hsa-mir-
1306, hsa-mir-205, hsa-mir-376b, hsa-mir-3917 and 3 clinical features
Sample_Type, ajcc_pathologic_t and ajcc_staging_system_edition.

miRNA target genes: CM RNA-Seq data for the same patients” samples were
downloaded from the GDC Data Portal of NIH. Genes with zero counts in more
than 70% of the samples were excluded from further analysis. The Spearman
correlation method was used to identify correlations of each of the signature
miRNAs to genes. Genes negatively correlated to miRNAs are putative targets.
Setting the Spearman rho threshold to <-0.25 reveals 947 genes negatively
correlated to the recurrence signature miRNAs and 1419 genes negatively
correlated to the metastasis signature miRNAs. The signature miRNAs were
also searched for predicted targets in the miRDB database and ncRNASeq tool
with confidence scores 0.65 and 0.3, respectively [8,9]. Merging the results,
reveals 136 genes as potential targets of the recurrence signature miRNAs and
245 genes as potential targets of the metastasis signature miRNAs.

Functional and pathway enrichment analysis: Functional and pathway
enrichment analysis was performed with DAVID v6.8 tool. The 136 miRNA
target genes associated with recurrence and the 245 miRNA target genes
associated with metastasis were explored for enrichment in GO biological
processes, GO molecular functions and KEGG pathways. The terms they were
enriched in with a p value threshold of 0.05 are presented in supplementary
Tables 4 and 5, respectively.

Visualizations: Visualizations were performed with the R package corrplot
and Cytoscape v3.8.2.
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Supplementary Table S1. Differentially expressed miRNAs in recurrence and metastasis with adjusted p

value <0.05. Only miRNAs with log fold change >1.5 and <-1.5 are presented.

miRNA Recurrence log2 Fold Change Metastasis log2 Fold Change
hsa-mir-519d 4.10 =
hsa-mir-206 2.92 -
hsa-mir-519a-2 2.88 -
hsa-mir-520b 2.49 -
hsa-mir-133b 2.31 -
hsa-mir-519a-1 2.27 1.85
hsa-mir-526b 2.24 1.94
hsa-mir-520a 2.22 -
hsa-mir-1323 2.13 -
hsa-mir-675 1.84 1.92
hsa-mir-512-1 1.78 -
hsa-mir-518a-2 1.77 -
hsa-mir-518b 1.74 -
hsa-mir-512-2 1.72 -
hsa-mir-135a-1 1.61 -
hsa-mir-137 1.60 -
hsa-mir-3923 1.52 -
hsa-mir-153-2 1.21 1.55
hsa-mir-203a -3.71 -5.35
hsa-mir-205 -3.69 -5.56
hsa-mir-203b -3.03 =




hsa-mir-944 -2.51 -3.41
hsa-mir-200c -2.00 -2.99
hsa-mir-141 -1.89 -2.68
hsa-mir-892a -1.63 -

hsa-mir-891a -1.59 -1.94
hsa-mir-200b -1.58 -2.88
hsa-mir-200a -1.47 -2.42
hsa-mir-224 -1.16 -1.58

Supplementary Table S2. 31 miRNAs significantly altered between the co-expression network of recurrent

samples and the co-expression network of non-recurrent samples. Their log?2 fold change and adjusted p value

are also presented.

miRNA log?2 Fold Change | Adjusted p value
hsa-mir-1180 -0.02 0.92
hsa-mir-1226 0.39 0.01
hsa-mir-1291 -0.12 0.65
hsa-mir-1301 0.03 0.84
hsa-mir-1306 0.25 0.03
hsa-mir-155 0.44 0.05
hsa-mir-193a 0.09 0.60
hsa-mir-205 -3.69 1.03E-14
hsa-mir-25 0.02 0.87
hsa-mir-339 -0.12 041
hsa-mir-345 0.04 0.83
hsa-mir-3614 0.02 0.95
hsa-mir-3652 0.55 2.34E-03
hsa-mir-3680-1 | 0.21 0.31




hsa-mir-3680-2 | 0.11 0.70
hsa-mir-376b 1.06 2.40E-03
hsa-mir-3917 0.39 0.02
hsa-mir-423 -0.02 0.81
hsa-mir-4533 -0.51 0.36
hsa-mir-4725 0.08 0.84
hsa-mir-4772 0.38 0.08
hsa-mir-516b-2 | 1.48 0.06
hsa-mir-548ag-2 | 0.15 0.81
hsa-mir-5699 0.05 0.81
hsa-mir-589 0.03 0.85
hsa-mir-616 0.26 0.14
hsa-mir-652 0.08 0.59
hsa-mir-671 -0.19 0.10
hsa-mir-760 0.21 0.37
hsa-mir-877 -0.15 0.40
hsa-mir-93 -0.20 0.16

Supplementary Table S3. 24 miRNAs significantly altered between the co-expression network of metastatic
samples and the co-expression network of primary tumors samples. Their log2 fold change and adjusted p

value are also presented.

miRNA log?2 Fold Change | Adjusted p value
hsa-mir-324 -0.02717 0.822165
hsa-mir-345 0.200647 0.133668
hsa-mir-328 -0.12088 0.421828
hsa-mir-616 0.165563 0.344759




hsa-mir-3610 0.339103 0.049814
hsa-mir-3605 0.230905 0.069731
hsa-mir-589 0.041708 0.746174
hsa-mir-1248 0.194373 0.241891
hsa-mir-671 -0.24244 0.027927
hsa-mir-339 -0.02803 0.830344
hsa-mir-185 -0.09129 0.466247
hsa-mir-760 0.503684 0.012509
hsa-mir-186 0.290805 0.000389
hsa-mir-4772 0.043223 0.844644
hsa-mir-30c-1 -0.16449 0.225337
hsa-mir-3615 0.245396 0.036379
hsa-mir-6842 0.450524 0.003272
hsa-mir-6125 0.317634 0.126056
hsa-mir-3680-2 | 0.302132 0.180251
hsa-mir-25 -0.02416 0.822165
hsa-mir-210 0.29431 0.136062
hsa-mir-1976 0.444564 0.000327
hsa-mir-4443 0.347378 0.225337
hsa-mir-944 -3.41097 8.62E-37

Supplementary Table S4. Functional enrichment analysis of the 136 genes targets of the 7 recurrence miRNAs

Fold
Category Term P-Value
Enrichment
4.60E-
BP transcription, DNA-templated 06 2.342525
3.00E-
MF metal ion binding 2.175737

05




6.10E-

MF protein binding 0 1.3451
5
2.80E-
MF ATP binding o 2.258328
1.20E-
MF transcription factor activity, sequence-specific DNA binding 03 2.488528
1.30E-
MF siRNA binding 03 52.75313
1.50E-
MF nucleic acid binding 03 2.427893
1.60E-
BP protein phosphorylation 03 3.347687
1.70E-
MF protein tyrosine kinase activator activity 03 46.89167
1.80E-
MF chromatin binding 03 3.597826
3.00E-
MF DNA binding 1.932811
03
3.10E-
BP negative regulation of transcription, DNA-templated 03 3.059209
4.80E-
BP regulation of transcription, DNA-templated 03 1.937709
4.90E-
MF protein kinase C activity 03 28.135
5.50E-
BP regulation of autophagy 03 11.10215
5.70E-
BP phosphorylation 03 6.938843
7.00E-
BP phosphatidylinositol-mediated signaling 03 6.546078
7.20E-
MF kinase activity 03 4.085996
7.80E-
MF proline-rich region binding 22.21184
03
9.50E-
MF methyl-CpG binding 03 20.09643
positive regulation of transcription from RNA polymerase II 1.00E-
BP 2.12197
[promoter 02
1.20E-
BP embryonic pattern specification 18.10133
02




1.20E-

KEGG_PATHWAY|Proteoglycans in cancer 0 4.211633
2
1.20E-
BP peptidyl-serine phosphorylation - 5.551074
1.30E-
KEGG_PATHWAY|Adherens junction 7.909169
02
1.40E-
MF protein kinase activity 0 3.134819
2
1.40E-
BP convergent extension - 138.7769
1.40E-
BP neural crest formation - 138.7769
1.50E-
BP positive regulation of protein tyrosine kinase activity 0 16.01271
2
1.50E-
MF signal transducer activity - 4.1375
1.50E-
KEGG_PATHWAY|Wnt signaling pathway - 5.086513
1.70E-
BP macroautophagy - 7.304045
1.70E-
MF protein kinase binding - 2.993085
1.80E-
BP insulin receptor signaling pathway 0 7.116762
2
1.80E-
BP regulation of phosphatidylinositol 3-kinase signaling - 7.116762
1.90E-
KEGG_PATHWAY|Aldosterone synthesis and secretion - 6.932729
1.90E-
BP face morphogenesis - 13.87769
2.00E-
KEGG_PATHWAY|Ras signaling pathway - 3.727109
2.00E-
KEGG_PATHWAY|Fc gamma R-mediated phagocytosis - 6.685131
2.10E-
BP RIG-I signaling pathway - 92.51791
2.20E-
KEGG_PATHWAY|ErbB signaling pathway - 6.454609
2.70E-
MF beta-tubulin binding 11.72292
02




2.90E-
KEGG_PATHWAY|Cysteine and methionine metabolism 0 11.08324
2
3.20E-
KEGG_PATHWAY|Melanogenesis - 5.61551
3.30E-
BP protein tetramerization - 10.40826
3.50E-
BP dsRNA transport 0 55.51074
2
3.90E-
BP signal transduction by protein phosphorylation - 9.462059
4.70E-
BP covalent chromatin modification 4.912455
02
4.80E-
KEGG_PATHWAYMicroRNAs in cancer 0 2.945198
2
4.90E-
BP extracellular matrix assembly - 39.65053
5.00E-
MF protein serine/threonine kinase activity - 2.618949

Supplementary Table S5. Functional enrichment analysis of the 245 genes targets of the 8 metastasis miRNAs

Fold
Category Term PValue Enrichment
BP regulation of transcription, DNA-templated 9.82E-10 [2.56
BP transcription, DNA-templated 2.48E-07 [2.09
sp negative regulation of transcription from RNA polymerase II 695E.06 .78

promoter

KEGG_PATHWAY|AMPK signaling pathway 1.00E-05 |6.99
MF transcription factor binding 3.48E-04 (3.51
KEGG_PATHWAY |Prostate cancer 4.86E-04 16.84
BP anterior/posterior pattern specification 5.89E-04 16.74
MF chromatin binding 6.07E-04 [2.94
MF protein binding 1.02E-03 |1.21
MF metal ion binding 1.13E-03 |1.63
MF sequence-specific DNA binding 1.22E-03 {2.52
MF zinc ion binding 1.23E-03 |1.90
BP gastrulation with mouth forming second 1.27E-03 |18.12
BP dendrite morphogenesis 1.28E-03 |10.41
MF mitogen-activated protein kinase binding 1.52E-03 |17.05
MF 1-phosphatidylinositol-3-phosphate 4-kinase activity 1.63E-03  |46.04

10



KEGG_PATHWAY|cGMP-PKG signaling pathway 2.14E-03 |4.35
MF core promoter sequence-specific DNA binding 2.29E-03 [8.92
KEGG_PATHWAY|Fc gamma R-mediated phagocytosis 2.67E-03 |6.14
MF DNA binding 3.13E-03 [1.65
BP cellular response to insulin stimulus 3.20E-03 [6.00
KEGG_PATHWAY|Axon guidance 3.25E-03 4.74
MF 1-phosphatidylinositol-4-phosphate 5-kinase activity 3.37E-03  (32.89
MF 14-3-3 protein binding 3.56E-03 |12.79
MF mRNA 3'-UTR binding 3.70E-03 |7.83
KEGG_PATHWAY|FoxO signaling pathway 4.24E-03  |4.49
KEGG_PATHWAY/|HIF-1 signaling pathway 4.76E-03 [5.37
BP cellular response to hydrogen peroxide 6.28E-03  |6.76
KEGG_PATHWAY|cAMP signaling pathway 7.41E-03 |3.47
KEGG_PATHWAY/|Insulin resistance 7.80E-03 4.78
MF nucleic acid binding 9.18E-03 [1.79
KEGG_PATHWAY|Chronic myeloid leukemia 9.19E-03 [5.97
KEGG_PATHWAY|Thyroid hormone signaling pathway 1.01E-02 |4.49
MF ATP binding 1.09E-02 [1.59
KEGG_PATHWAY|Sphingolipid signaling pathway 1.20E-02 |4.30
BP hair follicle development 1.29E-02 |8.11
BP retrograde transport, endosome to plasma membrane 1.37E-02 |16.51
MF histone deacetylase activity 1.40E-02 |7.87
BP regulation of mitotic cell cycle 1.48E-02 |7.70
BP signal transduction 1.53E-02 |1.66
BP positive regulation of insulin secretion 1.58E-02 |7.51
5p positive regulation of transcription from RNA polymerase II L61E.02 73
promoter
BP axon guidance 1.73E-02  {3.39
KEGG_PATHWAY|Type II diabetes mellitus 1.74E-02 |7.17
KEGG_PATHWAY|Progesterone-mediated oocyte maturation 1.75E-02 |4.94
ME RNA polymerase II core promoter proximal region sequence- 177E0 b3s
specific DNA binding
BP multicellular organism development 1.82E-02 {2.07
KEGG_PATHWAY/|Cocaine addiction 1.84E-02 |7.02
BP regulation of phosphatidylinositol 3-kinase signaling 1.84E-02 |4.94
BP insulin receptor signaling pathway 1.84E-02 |4.94
BP histone deacetylation 2.15E-02  16.70
BP neuron projection morphogenesis 2.40E-02 16.42
MF phosphatidylinositol 3-kinase binding 2.48E-02 (12.12

11




KEGG_PATHWAY/|Hepatitis B 2.52E-02 [3.56
MF protein serine/threonine kinase activity 2.53E-02 [2.24
KEGG_PATHWAY|Phosphatidylinositol signaling system 2.58E-02 [4.39
KEGG_PATHWAY|Regulation of lipolysis in adipocytes 2.61E-02 16.14
KEGG_PATHWAY|Estrogen signaling pathway 2.67E-02 |4.34
BP regulation of autophagy 2.67E-02 16.16
KEGG_PATHWAY/|Choline metabolism in cancer 2.84E-02 [4.26
BP spermatogenesis 2.85E-02 [2.20
KEGG_PATHWAY|mTOR signaling pathway 2.86E-02 [5.93
MF GTPase activator activity 2.95E-02 [2.48
BP rhythmic process 3.26E-02 [5.71
BP phosphatidylinositol phosphorylation 3.36E-02 14.10
KEGG_PATHWAY|Apoptosis 3.40E-02 |5.55
KEGG_PATHWAY|TNF signaling pathway 3.42E-02 |4.02
BP neuron differentiation 3.47E-02 |4.05
BP positive regulation of collagen biosynthetic process 3.52E-02  (10.05
KEGG_PATHWAY|Pathways in cancer 3.53E-02 [2.19
BP axon extension 3.81E-02 [9.63
BP extracellular matrix constituent secretion 3.83E-02 |51.35
KEGG_PATHWAY|Glioma 3.83E-02 |5.29
KEGG_PATHWAY|Cholinergic synapse 3.83E-02 [3.87
MF phosphatidylinositol-3,4-bisphosphate 5-kinase activity 3.84E-02 |51.15
BP phosphatidylinositol biosynthetic process 3.91E-02 [5.31
KEGG_PATHWAY|Transcriptional misregulation in cancer 4.25E-02  (3.09
MF transcription factor activity, sequence-specific DNA binding 4.46E-02  [1.60
KEGG_PATHWAY|Ras signaling pathway 4.48E-02 [2.66
KEGG_PATHWAY/|Adipocytokine signaling pathway 4.61E-02  |4.91
BP hippo signaling 4.72E-02  (8.56
BP transcription initiation from RNA polymerase II promoter 4.75E-02  |3.04
KEGG_PATHWAY|Prolactin signaling pathway 4.77E-02 4.84
KEGG_PATHWAY/|Inositol phosphate metabolism 4.77E-02  |4.84
KEGG_PATHWAY|Melanoma 4.77E-02 |4.84
MF transcription corepressor activity 4.93E-02 [2.65
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