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Abstract: Pharmacological conditioning is a protective strategy against ischemia/reperfusion injury,
which occurs during liver resection and transplantation. Polyethylene glycols have shown multi-
ple benefits in cell and organ preservation, including antioxidant capacity, edema prevention and
membrane stabilization. Recently, polyethylene glycol 35 kDa (PEG35) preconditioning resulted in de-
creased hepatic injury and protected the mitochondria in a rat model of cold ischemia. Thus, the study
aimed to decipher the mechanisms underlying PEG35 preconditioning-induced protection against
ischemia/reperfusion injury. A hypoxia/reoxygenation model using HepG2 cells was established
to evaluate the effects of PEG35 preconditioning. Several parameters were assessed, including cell
viability, mitochondrial membrane potential, ROS production, ATP levels, protein content and gene
expression to investigate autophagy, mitochondrial biogenesis and dynamics. PEG35 preconditioning
preserved the mitochondrial function by decreasing the excessive production of ROS and subsequent
ATP depletion, as well as by recovering the membrane potential. Furthermore, PEG35 increased levels
of autophagy-related proteins and the expression of genes involved in mitochondrial biogenesis and
fusion. In conclusion, PEG35 preconditioning effectively ameliorates hepatic hypoxia/reoxygenation
injury through the enhancement of autophagy and mitochondrial quality control. Therefore, PEG35
could be useful as a potential pharmacological tool for attenuating hepatic ischemia/reperfusion
injury in clinical practice.

Keywords: polyethylene glycol 35; hypoxia/reoxygenation injury; mitochondria; autophagy

1. Introduction

Ischemia/reperfusion injury is a major hurdle in many clinical scenarios, including liver
transplantation, hepatic resection and trauma settings [1,2]. Hepatic ischemia/reperfusion
injury contributes to an increased rate of acute liver failure, graft rejection and chronic hepatic
dysfunction, affecting liver surgery outcomes and patient rehabilitation [3,4]. The mechanisms
of organ damage following ischemia/reperfusion have been widely studied, and involve the
complex interactions of multiple pathways. Unfortunately, despite intensive research, effective
therapeutic approaches for the prevention/treatment of ischemia/reperfusion injury are still
clinically limited.

Mitochondria are crucial players in every single living eukaryote. In addition to their
well-established role in energetic metabolism and ATP generation, mitochondria partic-
ipate in many other physiological functions, including catabolic and anabolic processes,
diverse signaling pathways, calcium homeostasis and cell death mechanisms [5]. Therefore,
disruptions to these processes affect normal mitochondrial function, and disruptions have
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been implicated in mitochondrial dysfunction. It is well established that mitochondria play
a central role in ischemia/reperfusion injury [6]. The lack of oxygen observed during the
ischemic period leads to a decrease in ATP levels, while the reestablishment of blood supply
gives rise to ROS production, the activation of immune cells to promote inflammation and
consequent cell death [5,7].

In physiological conditions, the maintenance of a healthy mitochondrial network is
a determinant factor for cellular homeostasis and cell survival. After an ischemic event,
if mitochondria remain functional enough to generate ATP, the tissue can recover and
overcome the injury. Conversely, when the ischemic period is more aggressive, the sub-
sequent restoration of blood flow and, significantly, oxygen compromises mitochondrial
function, leading to an exacerbation of ROS generation. Thus, the clearance of dysfunctional
mitochondria through selective degradation and their replacement by new ones via mito-
chondrial biogenesis, alongside changes in mitochondrial dynamics, have been suggested
to be an effective quality control system to counteract hepatic ischemia/reperfusion injury
and maintain mitochondrial function [8].

In the past few years, a sizeable body of literature has suggested that different drugs
could play a beneficial role in avoiding ischemia/reperfusion-associated adverse effects
and organ failure. Polyethylene glycols are non-toxic, neutral, water-soluble compounds
approved by the Food and Drug Administration for their use in cosmetics, foods and
drugs [9]. Their beneficial effects have been reported in different organs, including the
liver, heart, kidney, intestine and pancreas [10–14]. In the liver, several studies have
demonstrated the protective role that different molecular weight polyethylene glycols
play during cold preservation. Polyethylene glycol 35 kDa (PEG35) has been associated
with higher levels of mitochondrial aldehyde dehydrogenase 2 (ALDH2) and improved
mitochondrial machinery and the subsequent diminishing of cold ischemic injury [15,16].
Furthermore, intravenous PEG35 pretreatment improved liver graft preservation and
protected the mitochondria when cold ischemia was followed by warm reperfusion [17].
Besides their effects in cold storage, PEG35 has also shown hepatoprotection against warm
ischemia/reperfusion injury [18]. PEG35 preconditioning efficiently reduced transami-
nases levels and maintained hepatocyte morphology, and also preserved mitochondrial
membrane potential.

Based on these protective features, the aim of the present study was to assess the ability of
PEG35 preconditioning to protect human hepatocytes submitted to hypoxia/reoxygenation.
We also explore the possible protective molecular mechanisms involved in PEG35-mediated
hepatoprotection.

2. Results
2.1. PEG35 Preconditioning Increases Cell Viability

To examine the effect of PEG35 preconditioning against hypoxia/reoxygenation injury,
cell viability was assessed through the reduction of a yellow tetrazolium salt to purple
formazan crystals (using an MTT assay, as described in the Materials and Methods section)
(Figure 1). Firstly, it was confirmed that the two different concentrations of PEG35 used
throughout the study were not noxious to the cells (Figure 1a).

The HepG2 pretreated with 5% PEG35 for 1 h and then subjected to 2 h of hypoxia fol-
lowed by 2 h of reoxygenation demonstrated significantly higher cell viability compared to
cells that did not receive PEG preconditioning (Figure 1b). Significantly, the protective effect
of PEG35 was shown to be dose dependent, since 1% PEG35 demonstrated almost no pro-
tection against hypoxia/reoxygenation, similar to the results of the hypoxia/reoxygenation
group. Strikingly, the 5% PEG35 + H/R group was able to protect HepG2 at similar levels
to the control group.
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Figure 1. Effects of PEG35 on cell viability, in the absence (a) or presence (b) of 
hypoxia/reoxygenation (H/R). Cell viability rate determined via MTT assay. The values shown 
represent the mean ± SEM of 3 independent experiments. * p < 0.05; ** p < 0.01. 
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against ischemia reperfusion injury in several studies [15,16]. Thus, we examined whether 
PEG35 treatment could increase ALDH2 levels. While in the control, 
hypoxia/reoxygenation and 1% PEG35 groups, the protein levels were similar, in the 5% 
PEG35 group there was a significant increase in ALDH2 content (Figure 2a). As ALDH2 
is a key enzyme that functions against oxidative stress, we then investigate if its increased 
levels could reduce oxidative stress. As expected, compared to the control, 
hypoxia/reoxygenation significantly increased ROS production (Figure 2b). Moreover, in 
accordance with the increased ALDH2 content, the 5% PEG35 preconditioning 
significantly prevented the increase in ROS levels found in the hypoxia/reoxygenation 
group. In addition, we also evaluated the protein levels of one of the master regulators of 
antioxidant defense and a regulator of the expression of the mitochondrial antioxidant 
protein, nuclear factor-E2-related factor 2 (Nrf2) and manganese-dependent superoxide 
dismutase (MnSOD), respectively. The results revealed that hypoxia/reoxygenation 
treatment inhibited the expression of Nrf2, while the 5% PEG35 preconditioning seemed 
to reverse this tendency, but not in a significant way (Figure 2c). The expression of the 
MnSOD gene was decreased in the hypoxia/reoxygenation group, but it was recovered to 
control levels in the PEG35-treated groups (Figure 2d). 

Figure 1. Effects of PEG35 on cell viability, in the absence (a) or presence (b) of hypoxia/reoxygenation
(H/R). Cell viability rate determined via MTT assay. The values shown represent the mean ± SEM of
3 independent experiments. * p < 0.05; ** p < 0.01.

2.2. PEG35 Administration Increases Mitochondrial ALDH2 Content and Attenuates
Oxidative Injury

PEG35 has been tightly linked to the mitochondrial enzyme ALDH2 when working
against ischemia reperfusion injury in several studies [15,16]. Thus, we examined whether
PEG35 treatment could increase ALDH2 levels. While in the control, hypoxia/reoxygenation
and 1% PEG35 groups, the protein levels were similar, in the 5% PEG35 group there was
a significant increase in ALDH2 content (Figure 2a). As ALDH2 is a key enzyme that
functions against oxidative stress, we then investigate if its increased levels could reduce
oxidative stress. As expected, compared to the control, hypoxia/reoxygenation signifi-
cantly increased ROS production (Figure 2b). Moreover, in accordance with the increased
ALDH2 content, the 5% PEG35 preconditioning significantly prevented the increase in
ROS levels found in the hypoxia/reoxygenation group. In addition, we also evaluated
the protein levels of one of the master regulators of antioxidant defense and a regula-
tor of the expression of the mitochondrial antioxidant protein, nuclear factor-E2-related
factor 2 (Nrf2) and manganese-dependent superoxide dismutase (MnSOD), respectively.
The results revealed that hypoxia/reoxygenation treatment inhibited the expression of
Nrf2, while the 5% PEG35 preconditioning seemed to reverse this tendency, but not in
a significant way (Figure 2c). The expression of the MnSOD gene was decreased in the
hypoxia/reoxygenation group, but it was recovered to control levels in the PEG35-treated
groups (Figure 2d).
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Figure 2. Effects of PEG 35 in mitochondrial ALDH2 levels and oxidative stress in HepG2 submitted 
to H/R. (a) Representative Western blot for ALDH2 and respective quantification for: 1-Ctl; 2-H/R; 
3–1% PEG35 + H/R; 4–5% PEG35 + H/R; 5-Ctl + 5% PEG35. (b) ROS production rate measured 
fluorometrically as described in the Materials and Methods section. (c) Representative Western blot 
for Nrf2 and respective quantification for: 1-Ctl; 2-H/R; 3–1% PEG35 + H/R; 4–5% PEG35 + H/R; 5-
Ctl + 5% PEG35. (d) Gene expression for MnSOD. The values shown represent the mean ± SEM of 3 
independent experiments. * p < 0.05; ** p < 0.01;  

2.3. PEG35 Alleviates Mitochondrial Damage Induced by Hypoxia/Reoxygenation Injury 
The deleterious effects associated with hepatic ischemia/reperfusion injury are well 

known to cause mitochondrial dysfunction. To evaluate if PEG35 preconditioning-
mediated hepatoprotection during hypoxia/reoxygenation injury is due to enhanced 
mitochondrial dysfunction, we assessed the mitochondrial membrane potential (ΔΨ). 
Figure 3a clearly shows a decrease in mitochondrial ΔΨ in the cells submitted to 
hypoxia/reoxygenation, which was efficiently recovered in the presence of both PEG35 
concentrations. 

Mitochondria are the main source of ATP production, which is known to be 
compromised by ischemia/reperfusion injury. Thus, we next evaluated the ATP 
generation in all groups. As shown in Figure 3b, ATP content was decreased upon 
hypoxia/reoxygenation, but the administration of 5% PEG35 before hypoxia was able to 
significantly preserve mitochondrial ATP content. 

Figure 2. Effects of PEG 35 in mitochondrial ALDH2 levels and oxidative stress in HepG2 submitted
to H/R. (a) Representative Western blot for ALDH2 and respective quantification for: 1-Ctl; 2-H/R;
3–1% PEG35 + H/R; 4–5% PEG35 + H/R; 5-Ctl + 5% PEG35. (b) ROS production rate measured
fluorometrically as described in the Materials and Methods section. (c) Representative Western blot
for Nrf2 and respective quantification for: 1-Ctl; 2-H/R; 3–1% PEG35 + H/R; 4–5% PEG35 + H/R;
5-Ctl + 5% PEG35. (d) Gene expression for MnSOD. The values shown represent the mean ± SEM of
3 independent experiments. * p < 0.05; ** p < 0.01.

2.3. PEG35 Alleviates Mitochondrial Damage Induced by Hypoxia/Reoxygenation Injury

The deleterious effects associated with hepatic ischemia/reperfusion injury are well
known to cause mitochondrial dysfunction. To evaluate if PEG35 preconditioning-mediated
hepatoprotection during hypoxia/reoxygenation injury is due to enhanced mitochondrial
dysfunction, we assessed the mitochondrial membrane potential (∆Ψ). Figure 3a clearly
shows a decrease in mitochondrial ∆Ψ in the cells submitted to hypoxia/reoxygenation,
which was efficiently recovered in the presence of both PEG35 concentrations.

Mitochondria are the main source of ATP production, which is known to be compro-
mised by ischemia/reperfusion injury. Thus, we next evaluated the ATP generation in all
groups. As shown in Figure 3b, ATP content was decreased upon hypoxia/reoxygenation,
but the administration of 5% PEG35 before hypoxia was able to significantly preserve
mitochondrial ATP content.
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Figure 3. PEG35 effects on mitochondrial function. (a) Mitochondrial membrane potential (ΔΨ) was 
assessed using TMRM, as described in the Materials and Methods section. (b) ATP content in HepG2 
cells. The values shown represent the mean ± SEM of 3 independent experiments. * p < 0.05; ** p < 
0.01; **** p < 0.0001. 
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In addition, the analysis of another autophagy marker, p62, showed that cells submitted 
to hypoxia/reoxygenation have a significant increase in p62 protein content, which was 
significantly prevented by PEG35 preconditioning (Figure 4b). The augmented LC3II/I 
ratio and decreased p62 content strongly suggest that, at least in part, PEG35 
preconditioning may significantly alleviate hypoxia/reoxygenation injury via autophagy 
activation. 

Figure 3. PEG35 effects on mitochondrial function. (a) Mitochondrial membrane potential (∆Ψ)
was assessed using TMRM, as described in the Materials and Methods section. (b) ATP content in
HepG2 cells. The values shown represent the mean ± SEM of 3 independent experiments. * p < 0.05;
** p < 0.01; **** p < 0.0001.

2.4. PEG35 Attenuates Hypoxia/Reperfusion Injury through Enhanced Autophagy

Growing evidence has shown the cytoprotective role autophagy plays in maintain-
ing mitochondrial function and cell survival following hepatic ischemia/reperfusion [19].
Therefore, we next investigated whether PEG35 preconditioning induces autophagy fol-
lowing hypoxia/reoxygenation injury. The levels of LC3-II, the active form of LC3, a
protein involved in autophagosome formation, exhibited an increase in its content in the
presence of 5% PEG35 when compared to the hypoxia/reoxygenation group (Figure 4a). In
addition, the analysis of another autophagy marker, p62, showed that cells submitted to
hypoxia/reoxygenation have a significant increase in p62 protein content, which was sig-
nificantly prevented by PEG35 preconditioning (Figure 4b). The augmented LC3II/I ratio
and decreased p62 content strongly suggest that, at least in part, PEG35 preconditioning
may significantly alleviate hypoxia/reoxygenation injury via autophagy activation.
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Figure 4. Autophagy-related protein markers in HepG2 cells. (a) Representative Western blot for 
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p62 and respective quantification for: 1-Ctl; 2-H/R; 3–1% PEG35 + H/R; 4–5% PEG35 + H/R; 5-Ctl + 
5% PEG35. The values shown represent the mean ± SEM of 3 independent experiments. * p < 0.05; 
*** p < 0.001; **** p < 0.0001. 
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turnover, content and number to maintain the metabolic demands. Our study 
demonstrates a significantly increased expression of both genes coding for PGC-1α and 
NRF1 (ppargc1a and nrf1, respectively), upon 5% PEG35 preconditioning (Figure 5a). 
However, no differences were observed in the tfam expression. 

Mitochondria are highly dynamic organelles regulated by fission and fusion events. 
As can be seen in Figure 5b, hypoxia/reoxygenation leads to the upregulation of genes 
coding for the mitochondrial fission 1 protein (Fis1) and dynamin-related protein 1 (Drp1) 
(fis1 and dnm1l, respectively), both mitochondrial fission-related genes. Both PEG35 
concentrations were able to attenuate this increased gene expression to control levels. In 
addition, 5% PEG35 preconditioning significantly upregulated the expression of the gene 
coding for optic atrophy 1 protein (opa1), a key mediator in mitochondrial fusion.  

Figure 4. Autophagy-related protein markers in HepG2 cells. (a) Representative Western blot for
LC3 I and LC3 II and respective LC3II/LC3I ratio quantification. (b) Representative Western blot for
p62 and respective quantification for: 1-Ctl; 2-H/R; 3–1% PEG35 + H/R; 4–5% PEG35 + H/R; 5-Ctl +
5% PEG35. The values shown represent the mean ± SEM of 3 independent experiments. * p < 0.05;
*** p < 0.001; **** p < 0.0001.

2.5. PEG35 Restored Mitochondrial Biogenesis and Fusion–Fission Dynamics

Mitochondrial biogenesis is regulated by PGC-1α and the downstream nuclear respira-
tory factor 1 (NRF1) and transcription factor A (TFAM), controlling mitochondrial turnover,
content and number to maintain the metabolic demands. Our study demonstrates a signifi-
cantly increased expression of both genes coding for PGC-1α and NRF1 (ppargc1a and nrf1,
respectively), upon 5% PEG35 preconditioning (Figure 5a). However, no differences were
observed in the tfam expression.

Mitochondria are highly dynamic organelles regulated by fission and fusion events. As
can be seen in Figure 5b, hypoxia/reoxygenation leads to the upregulation of genes coding
for the mitochondrial fission 1 protein (Fis1) and dynamin-related protein 1 (Drp1) (fis1 and
dnm1l, respectively), both mitochondrial fission-related genes. Both PEG35 concentrations
were able to attenuate this increased gene expression to control levels. In addition, 5%
PEG35 preconditioning significantly upregulated the expression of the gene coding for
optic atrophy 1 protein (opa1), a key mediator in mitochondrial fusion.

These results suggest that PEG35 preconditioning may protect against hypoxia/reoxygenation-
induced mitochondrial dysfunction through the regulation of PGC-1α-mediated mitochondrial
biogenesis and the balance of fusion–fission dynamics, resulting in the alleviation of hepatic hy-
poxia/reoxygenation injury.
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(dnm1l), fission protein 1 (fis1) and optic atrophy 1 (opa1). The values shown represent the mean ± 
SEM of 3 independent experiments. * p < 0.05; ** p < 0.01. 
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impaired autophagy and mitochondrial function, which leads to hepatocellular damage, 
contributing to organ failure. During the ischemic period, the deprivation of oxygen leads 
to the cessation of oxidative phosphorylation, causing ATP depletion, while in the 
reperfusion period, a burst of mitochondrial ROS production is considered to play a 
critical role in the organ damage associated with ischemia/reperfusion injury [5]. 

Several therapeutic strategies have been implemented to counteract the deleterious 
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protective effects of PEG35 on ischemia/reperfusion-induced cellular injury is unclear. 

Figure 5. Effect of PEG35 preconditioning on mitochondrial biogenesis and fusion–fission dynamics
during HRI. (a) Gene expression of proteins involved in mitochondrial biogenesis (ppargc1a, tfam and
nrf1). (b) Gene expression of mitodynamics-involved proteins, dynamin-related protein 1 (dnm1l),
fission protein 1 (fis1) and optic atrophy 1 (opa1). The values shown represent the mean ± SEM of
3 independent experiments. * p < 0.05; ** p < 0.01.

3. Discussion

Hepatic ischemia/reperfusion injury is the primary cause of liver damage after liver
transplantation or hepatectomy. It is characterized by oxidative stress, inflammation and
impaired autophagy and mitochondrial function, which leads to hepatocellular damage,
contributing to organ failure. During the ischemic period, the deprivation of oxygen
leads to the cessation of oxidative phosphorylation, causing ATP depletion, while in the
reperfusion period, a burst of mitochondrial ROS production is considered to play a critical
role in the organ damage associated with ischemia/reperfusion injury [5].

Several therapeutic strategies have been implemented to counteract the deleterious
effects of ischemia/reperfusion injury, including those involving pharmacological condi-
tioning. Polyethylene glycols are linear polymers of ethylene oxide with hydroxyl terminal
groups that have been shown to provide beneficial effects by regulating cell survival path-
ways in different organs [20]. Nevertheless, the exact mechanism of the protective effects of
PEG35 on ischemia/reperfusion-induced cellular injury is unclear.

Both in vitro [21] and in vivo [14] studies have demonstrated that PEG precondition-
ing can protect myocytes from ischemia/reperfusion injury-induced cell death. PEG35
administration has also been described as a protective strategy in other organs, such as the
pancreas in an inflammation model [10]. To the best of our knowledge, this is the first study
evaluating the effects of PEG35 preconditioning against hypoxia/reoxygenation-induced
injury in HepG2 cells. In accordance with the above studies reporting that PEG induces
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protection from ischemia/reperfusion injury-related cell death, we found that human hepa-
tocytes pretreated with 5% PEG35 and then submitted to hypoxia/reoxygenation presented
a higher cell viability compared to cells without PEG35 preconditioning (Figure 1b).

PEG35 has been associated with higher levels of the mitochondrial enzyme ALDH2
and enhanced mitochondrial machinery, culminating in decreased ischemic injury [15,16].
ALDH2 is located in the mitochondrial matrix and is abundantly expressed in numerous
organs, including the liver, heart, brain, intestine and kidneys [22,23]. ALDH2 is mainly
known for its detoxifying properties, conferring a protective shield against toxic agents,
including acetaldehyde (alcohol metabolism), lipid peroxidation-originated products and
ROS [15]. In our experimental model, we detected an increased ALDH2 content in the 5%
PEG35 group, while in the other groups, the protein levels were similar (Figure 2a).

A pathological increase in ROS production is a hallmark of hepatic ischemia/reperfusion
injury, driving hepatocyte death. As expected, the hypoxia/reoxygenation group showed an
increase in ROS production, which was significantly reverted in the presence of 5% PEG35
(Figure 2b). This result is in accordance with the increased levels of ALDH2, and its ability to
decrease oxidative stress, observed under 5% PEG preconditioning. We also assessed the pro-
tein content of Nrf2, which plays an important role in the cellular antioxidant response against
multiple stress injury factors. The effective activation of Nrf2 is well known to lead to better
outcomes following hypoxia/reoxygenation injury [24]. In the present study, we observed
that hypoxia/reoxygenation diminishes the levels of Nrf2 but, despite a tendency to increase
Nrf2 content, 5% PEG35 was not able to significantly reverse the hypoxia/reoxygenation
effects (Figure 2c). In addition, the gene expression of MnSOD, an essential mitochondrial
antioxidant enzyme, was shown to be downregulated upon hypoxia/reoxygenation and up-
regulated in both PEG35 groups (Figure 2d). PEG35 decreased the generation of ROS during
hypoxia/reoxygenation and upregulated the expression of ALDH2 and MnSOD, indicating
that PEG35 protected hepatocytes from hypoxia/reoxygenation injury via the upregulation of
antioxidant enzymes.

Ischemia/reperfusion is well known to alter the energy metabolism due to the impair-
ment of mitochondrial function [25,26]. The observed excessive ROS production during hy-
poxia/reoxygenation may lead to the attack of cellular membranes and subcellular organelles,
leading to the decrease in mitochondrial membrane potential and consequent mitochondrial
dysfunction. In this study we demonstrated that PEG35 preconditioning protected against
the loss of mitochondrial function in human hepatocytes during hypoxia/reoxygenation
(Figure 3a). Furthermore, the ATP content in HepG2 cells submitted to hypoxia/reoxygenation
was found to be decreased (Figure 3b), which is in agreement with the lower mitochondrial
membrane potential observed in the same group, suggesting the impairment of mitochondrial
function. As expected by the observed recovering of mitochondrial ∆Ψ, PEG35 preconditioning
efficiently preserved the ATP content following hypoxia/reoxygenation. The results reported
here show that PEG35 preconditioning may improve ischemia/reperfusion injury by preserv-
ing mitochondrial function and decreasing excessive ROS production and ATP depletion, as
well as recovering the membrane potential.

Recently, Bardallo et al. [27] reported better liver protection against ischemic insult
through the reduction of oxidative stress via ALDH2 upregulation and the enhancement
of cytoprotective autophagy in a PEG35-dependent manner. Autophagy is a crucial pro-
cess in the clearance of dysfunctional organelles, and it has been generally recognized
as a protective process in response to various intra- and extracellular stimuli, including
ischemia/reperfusion injury [28]. Enhancing autophagy ameliorates hepatic function
by eliminating the dysfunctional mitochondria [4], while autophagy inhibition increases
mitochondrial oxidative stress and triggers cell death during liver ischemia/reperfusion in-
jury [29]. In accordance with this, Wang and colleagues reported that increasing autophagy
alleviates hepatic injury and improves mitochondrial function against ischemia/reperfusion
injury [30]. LC3 is a key player in the autophagic processes, which also includes mitophagy.
During autophagic events, the soluble form (LC3-I) is converted into LC3-II, which is
recruited to the autophagosome formation [31]. Furthermore, p62, also known as sequesto-
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some 1, is another key protein involved in the autophagic process that targets specific
cargoes for autophagy. Under normal conditions, basal autophagy clears p62 and its associ-
ated cargo. On the other hand, under conditions of decreased/deficient autophagy, p62
and its associated cargo accumulate in the cytoplasm [32]. In Figure 4a, we observed that
PEG35 preconditioning increased the conversion of LC3-I into LC3-II. In agreement with
this, HepG2 cells submitted to hypoxia/reoxygenation showed an increased accumulation
of p62, while HepG2 cells exposed to PEG35 prior to hypoxia/reoxygenation presented a
strong decrease in p62 content (Figure 4b). The increased levels of LC3 II and p62 degra-
dation suggest an autophagy enhancement followed PEG35 preconditioning, which may
contribute to the elimination of dysfunctional mitochondria during ischemia/reperfusion
injury, leading to improved mitochondrial performance.

PGC-1α is a master regulator of mitochondrial biogenesis that enhances different tran-
scription factors, such as NRF1 and TFAM, which control mitochondrial turnover, content and
number to maintain the metabolic demands [4]. Previous studies reported enhanced mitochon-
drial functioning following hepatic ischemia/reperfusion injury through the stimulation of
mitochondrial biogenesis via the induction of the PGC-1α/NRF1/TFAM pathway [4,33,34]. In
accordance, in our study, 5% PEG preconditioning upregulated the expression of ppargc1a and
nrf1 (Figure 5a), indicating an enhancement of mitochondrial biogenesis.

Mitochondria are dynamic organelles, continuously dividing and elongating through
frequent fusion and fission in response to cellular stress and consequent alterations in the
intracellular environment [35]. Mitochondrial fusion and fission are two essential quality
control mechanisms which favor the segregation and clearance of dysfunctional mitochon-
dria to achieve homeostasis. Compelling evidence of the interplay between mitochondrial
quality control and cell fate in different organs subject to ischemia/reperfusion has been
gathered over the last few years [8]. Modifications to the regulators involved in fission
or fusion processes, the loss of cristae integrity, alongside the inefficient removal of dam-
aged mitochondria, have all been implicated to play a vital role in ischemia/reperfusion
injury [36]. OPA1 is a crucial protein involved in mitochondrial fusion which may interact
with various numbers of mitophagy receptor proteins in order to collaborate in mitochon-
drial dynamics and mitophagy [37,38]. OPA1 knockdown has been reported to exacerbate
the deleterious effects provoked by ischemia/reperfusion [39,40]. Moreover, increased
mitochondrial fusion and mitophagy through the AMPK-OPA1 signaling pathway was
observed to protect against cardiac ischemia/reperfusion injury, whereas OPA1 knockout
abolished the protective effects [41]. In here, we report an increased expression of opa1
after 5% PEG35 preconditioning (Figure 5b). It has been demonstrated that the loss of
mitochondrial membrane potential triggers OPA1 proteolysis and inhibits mitochondrial fu-
sion [42,43]. As mentioned above, our results demonstrate that 5% PEG35 preconditioning
increased mitochondrial membrane potential when compared to hypoxia/reoxygenation,
which is in accordance with the effects of increased opa1 upregulation.

Contrary to fusion, mitochondrial fission has been reported to be triggered by is-
chemia/reperfusion injury [44,45]. Mounting evidence confirms that the inhibition of
mitochondrial fission might protect several tissues from ischemia/reperfusion injury [46].
Excessive mitochondrial fission has been related to mitochondrial fragmentation and the
triggering of cell apoptosis [47]. Drp1 and Fis1 are essential proteins involved in the fission
processes [36,48]. Bi et al. [49] have reported increased levels of Drp1 and Fis1 after hepatic
ischemia/reperfusion.

Nevertheless, pharmacological postconditioning efficiently decreased the levels of
these two mitochondrial fission-related proteins. Furthermore, the inhibition of Drp1 led
to increased mitophagy and the consequent clearance of damaged mitochondria and the
prevention of ROS production in cardiac ischemia/reperfusion injury [50]. In our study,
cells submitted to hypoxia/reoxygenation significantly increased the expression levels of
dnm1l and fis1, and this upregulation was attenuated by PEG35 preconditioning (Figure 5b).
We understand that it is reasonable to assume that changes in mRNA expression will have
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corresponding changes in protein levels. However, the correlation between proteins and
their mRNA levels are sometimes poor [51,52].

Taken together, our findings suggest that PEG35 preconditioning regulates hypoxia/
reoxygenation injury-induced imbalances in mitochondria dynamics by elevating mito-
chondrial fusion and diminishing mitochondrial fission.

In summary, in the present study we used an in vitro model to explore the pos-
sible protective molecular mechanisms of PEG35 preconditioning on diminishing hy-
poxia/reoxygenation injury. We observed that 5% PEG35 preconditioning presented a
better outcome in most of the parameters analyzed when compared to 1% PEG35 precon-
ditioning, showing that PEG35 protective effects are dose dependent. We demonstrated
that 5% PEG35 preconditioning efficiently attenuates hepatic hypoxia/reoxygenation in-
jury by alleviating mitochondrial dysfunction via the enhancement of autophagy and
mitochondrial biogenesis and dynamics (Figure 6).
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Figure 6. Schematic representation of PEG35-mediated protection following hypoxia/reoxygenation
injury. PEG35 preconditioning alleviates mitochondrial dysfunction, including the recovery of
mitochondrial membrane potential and ATP levels and the reduction of ROS production. In ad-
dition, PEG35 treatment suggests enhanced autophagy and a modulation of mitochondrial bio-
genesis via increased mitochondrial fusion and decreased mitochondrial fission following hy-
poxia/reoxygenation injury.

In conclusion, PEG35 preconditioning seems to be a viable strategy to confer hepa-
tocellular protection against ischemia/reperfusion injury and, therefore, we suggest that
PEG35 might be considered to be a suitable pharmacological preconditioning agent in
liver surgery.

4. Materials and Methods
4.1. Cell Culture

HepG2 cells were cultured in 75 cm2 flasks (Sarstedt, Nümbrecht, Germany) with
15 mL Dulbecco’s modified Eagle medium (DMEM, Sigma-Aldrich, St. Louis, MO, USA),
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supplemented with 1% antibiotic–antimycotic (penicillin/streptomycin/amphotericin B;
Gibco, Waltham, MA, USA) and 10% fetal bovine serum (FBS; Invitrogen, Waltham, MA,
USA) in a humidified 5% CO2 atmosphere at 37 ◦C. When cells reached 70–90% confluence,
they were detached with TrypLE Express (Gibco, Waltham, MA, USA) and subsequently
counted using the trypan blue dye exclusion technique and plated in 12-well plates.

4.2. Cell Culture

HepG2 cells were placed in a hypoxia-mimetic solution (137 mM NaCl, 12 mM KCl, 0.9
mM CaCl2, 0.49 mM MgCl2, 4 mM HEPES, 20 mM lactate, 10 mM deoxyglucose, 0.75 mM
sodium dithionite, pH 6.5) to induce hypoxia [53,54]. To attempt to simulate ischemic
conditions, we used a hypoxia medium because it is a solution free of metabolic substrates.
It was supplemented with lactate to simulate its accumulation due to anaerobic glycolysis,
and deoxyglucose to inhibit glycolysis and further shut down cellular metabolism [55].
In addition, sodium dithionite is a powerful oxygen scavenger, and consequently leads
to rapid oxygen depletion from the solution, as well as a rapid reversibility of its effects
during the washout [56]. Following the hypoxia time, reoxygenation was induced via
hypoxia medium exchange to complete the growth medium (DMEM).

For PEG35 preconditioning, cells were pretreated with PEG35 diluted in PBS for 1 h
prior to the induction of hypoxia, at 2 different concentrations, 1% or 5% PEG35 (Figure 7).
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Figure 7. A schematic representation of the experimental protocol. HepG2 cells were randomly di-
vided into the following groups: control, control treated with either 1% PEG35 (Ctl + 1% PEG35) or 5%
PEG35 (Ctl + 5% PEG35), 2 h of hypoxia followed by 2 h of reoxygenation (H/R) and preconditioning
with 1% PEG35 or 5% PEG35 prior to H/R, 1% PEG35 + H/R and 5% PEG35 + H/R, respectively.

4.3. MTT Assay

Cellular viability was determined through the evaluation of cellular reductive capacity
with the reduction of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
to its insoluble formazan crystals, as previously described [57]. HepG2 cells were seeded
in 12-well plates and allowed to attach for 1 day prior the assay. After the corresponding
treatments, MTT solution (5 mg/mL in PBS) was added to the cells for 3 h. Afterwards, the
incubation media were discarded, and formazan crystals were dissolved in isopropanol. A
crystal-dissolved solution of each sample was quantified via spectrometry (540 nm) using a
Victor plate reader (Perkin-Elmer, Waltham, MA, USA).

4.4. Measurement of Mitochondrial Membrane Potential (∆Ψm)

HepG2 cells was measured with a fluorescent probe, tetramethylrhodamine methyl
ester (TMRM), as described before [57]. Briefly, after the hypoxia reoxygenation protocol,
cells were incubated with 6.6 µM TMRM for 15 min at 37 ◦C. Afterwards, cells were washed,
and culture medium without FBS and phenol red was added. Fluorescence was assessed
using the excitation and emission wavelengths of 485 and 590 nm, respectively.
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4.5. Measurement of ROS Production

H2DCFDA oxidation to 2,7-dichlorofluorescein (DCF) by ROS was measured as an
indicator of ROS accumulation, as before [58]. Briefly, cells were incubated under the
same conditions described in the previous section. Then, cells were loaded with 50 µM
H2DCFDA for 30 min at 37 ◦C, and washed and placed in a culture medium without FBS
and phenol red. The fluorescence resulting from the formation of oxidized derivatives was
monitored at an excitation wavelength 485 nm and an emission wavelength 538 nm for
10 min to calculate the rate of ROS formation.

4.6. ATP Content

HepG2 cells were cultured in 6-well plate under the same conditions described in
the experimental protocol in Section 4.2. At the end of the treatment, the extraction of
ATP from cells was performed as previously described [59]. Briefly, cells were washed
and then scraped in PBS 1X at 37 ◦C. Cells were centrifuged at 1000× g for 3 min and the
pellets were resuspended in 25 µL of KOH buffer (KOH 2.5 M, K2HPO4 1.5 M) and 75 µL
of H2O. After sonication and centrifugation at 18,000× g at 4 ◦C for 2 min, the pH of the
supernatant was adjusted to 7 with KH2PO4 1 M, and the pellet was stored at −20 ◦C for
protein quantification.

An ATP Bioluminescent Assay Kit (Sigma-Aldrich, St. Louis, MO, USA) was used to
measure the ATP content in each sample, according to the supplier’s instructions. Biolumi-
nescence was measured using a Victor3 plate reader (PerkinElmer, Waltham, MA, USA).

4.7. Quantitative Real-Time PCR

Total RNA was extracted from HepG2 cells using the PureLink RNA Mini Kit (Invitro-
gen, Waltham, MA, USA) according to the manufacturer’s recommendations. RNA was
quantified with a Nanodrop One (Thermo-Fisher, Waltham, MA, USA) and 10 ng of RNA
was reverse transcribed using the iScript cDNA Synthesis kit (Bio-Rad, Hercules, CA, USA),
according to manufacturer’s instructions. Then, cDNA was diluted 1:10 and SsoAdvanced
Universal SYBR Green Supermix (Bio-Rad) was used for qPCR reactions.

The expression level of target genes was calculated using the 2−∆∆Ct transformation
method [60] and normalized to the housekeeping gene 18S rRNA. The primers used are
shown in the Table 1.

Table 1. Nucleotide sequences of primers used in qPCR.

Gene Sequence NCBI’s Nucleotide
Accession Number

Dnm1l AAG AAC CAA CCA CAG GCA AC
GTT CAC GGC ATG ACC TTT TT NM_012062.4

Fis1 TTA TTT ACA CTC ATC CCA AAG C
CTG TCC TTT CCC TGT TCT C NM_016068.2

Mnsod GGA AGC CAT CAA ACG TGA CT
CTG ATT TGG ACA AGC AGC AA NM_000636.2

Nrf1 GAA TTG CCA ACC ACG GTC AC
GCG CCA TAG TGA CTG TAG CT NM_005011.4

Opa1 CAG AAA GAT GAC AAA GGC ATT C
GCA ATC ATT TCC AAC ACA CTA G NM_015560.2

Ppargc1a CCT TGC AGC ACA AGA AAA CA
CTG CTT CGT CGT CAA AAA CA NM_013261.3

Tfam CCG AGG TGG TTT TCA TCT GT
ACG CTG GGC AAT TCT TCT AA NM_003201.2

18S rRNA AAC GGC TAC CAC ATC CAA
TTT TCG TCA CTA CCT CCC NR_003286.2
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4.8. Western Blot Analysis

After treatments, cells were washed twice and scraped in 1 mL of ice-cold PBS 1X. Cells
were centrifuged for 3 min at 10,000× g at 4 ◦C and the pellets were resuspended in an ice-
cold RIPA lysis buffer supplemented with protease inhibitors (Thermo Scientific). Lysates
were sonicated and centrifuged for 10 min at 12,000× g at 4 ◦C. The protein concentration
was quantified via the bicinchoninic acid assay and subsequently mixed with Laemmli
buffer containing 8% β-mercaptoethanol and denatured at 80 ◦C for 5 min. Then, 50 µg of
protein was separated using TGX Stain-Free polyacrylamide gels (Biorad), according to the
manufacturer’s recommendations. Gels were activated using a GelDoc EZ (Bio-Rad) and
the proteins were subsequently transferred to a nitrocellulose membrane using a Trans-Blot
Turbo Transfer System (Bio-Rad). Membranes were blocked for 2 h in 5% non-fat dry milk
and incubated with the specific primary antibody at 4 ◦C overnight. Membranes were
washed with TBS-T and incubated for 1 h with secondary antibodies. After washing the
membranes with TBS-T, they were revealed using a ChemiDoc MP (BioRad). Total protein
quantification of the respective lanes was used to perform blots normalization, following
standard procedures [61,62]. Images were analyzed using Image Lab 6.1 Software (Bio-Rad).
The antibodies used are listed in Table 2.

Table 2. Primary and secondary antibodies used in Western blot analysis.

Antibody MW (kDa) Dilution Supplier Reference
Number

Primary
antibodies

ALDH2 56 1:1000 Abcam ab194587

LC3 18, 16 1:1000 Sigma-Aldrich L7543

Nrf2 75 1:1000 Millipore ABE413

p62 62 1:100 Santa Cruz sc-84618

Secondary
antibodies

StarBright Blue
520, Goat

Anti-Rabbit IgG
- 1:5000 Bio-Rad 12005870

StarBright Blue
700 Goat

Anti-Rabbit IgG
- 1:5000 Bio-Rad 12004162

4.9. Statistical Analysis

Data are presented as mean ± S.E.M. A one-way ANOVA with Tukey’s test was
performed for the evaluation of statistical significance (p < 0.05). Statistical analysis was
performed using GraphPad Prism 9.0.0 (GraphPad Software, San Diego, CA, USA).
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