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Abstract: Cysteine—cysteine chemokine receptor 5 (CCR5) has been discovered as a co-receptor for
cellular entry of human immunodeficiency virus (HIV). Moreover, the role of CCR5 in a variety of
cancers and various inflammatory responses was also discovered. Despite the fact that several CCR5
antagonists have been investigated in clinical trials, only Maraviroc has been licensed for use in the
treatment of HIV patients. This indicates that there is a need for novel CCR5 antagonists. Keeping this
in mind, the present study was designed. The active CCR5 inhibitors with known ICsy value were
selected from the literature and utilized to develop a ligand-based common feature pharmacophore
model. The validated pharmacophore model was further used for virtual screening of drug-like
databases obtained from the Asinex, Specs, InterBioScreen, and Eximed chemical libraries. Utilizing
computational methods such as molecular docking studies, molecular dynamics simulations, and
binding free energy calculation, the binding mechanism of selected inhibitors was established. The
identified Hits not only showed better binding energy when compared to Maraviroc, but also formed
stable interactions with the key residues and showed stable behavior throughout the 100 ns MD
simulation. Our findings suggest that Hitl and Hit2 may be potential candidates for CCR5 inhibition,
and, therefore, can be considered for further CCR5 inhibition programs.

Keywords: CCR5; HIV; pharmacophore modeling; molecular docking studies; molecular dynamics
simulations analysis; inhibitors; pharmacokinetic properties

1. Introduction

HIV is one of the world’s most challenging serious health issues; despite the fact that
40 years have passed since the first case was reported, there is still no effective cure for HIV
which can permanently inhibit the virus [1]. The most crucial characteristic of HIV is its
variability, due to which it can easily overcome the host immunity and directly inhibit the
therapeutic effects of the drugs [2,3]. The variability of HIV is the main reason for using
combination therapy with anti-HIV drugs [4]. In 2020, 1.5 million people were infected
with HIV, and about 37.7 million peoples are still suffering from HIV. The AIDS-related
mortality rate has decreased over the last two decades, with a 47% decline since 2010 [5].
Based on earlier HIV research, the CCR5 receptor is proposed as the primary co-receptor for
HIV infection, and is currently widely used as promising therapeutic target for developing
anti-HIV agents [6].
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CCRb5 is a chemokine receptor with 352 amino acids that plays a key role in HIV-1 virus
entry and acts as a co-receptor of the HIV viral envelope gp120 glycoprotein [7]. The CCR5
gene, which is situated on chromosome 3, is responsible for encoding the human CCR5
receptor. In certain populations, a portion of the CCR5 gene (a 32-base pair of CCR5 gene)
is genetically mutated; this population is called the inherited A32 mutated population, and
the mutated gene is known as CCR5A32 [8]. Deletion of a 32 base pair CCR5 gene happens
in two ways: homozygous or heterozygous. In homozygous CCR5A32, the person was not
infected upon exposure to HIV, while on other hand, the heterozygous CCR5A32 population
has a slower rate of disease progression [9,10]. In the case of CCR5A32, the alteration in
genes changes the structure of the receptor, and the virus is not able to enter into the cell
due to structural alteration; thus, populations with CCR5A32 are less susceptible to HIV
infection [11]. The CCRS5 receptor not only plays a key function in HIV infection, but also in
numerous autoimmune diseases, and its involvement in several forms of cancer is currently
being described [4]. The extended role of the CCR5 receptor in both HIV and different types
of cancer has motivated researchers to identify potential CCR5 inhibitors [4,12]. The CCR5
receptor belongs to the class A GPCR family (G-protein coupled receptor), consisting of
seven transmembrane domain « helices (1 to 7), further linked by three extracellular loops
and three intracellular loops [13]. Extracellular loops (ECLs), along with the N-terminal,
are responsible for chemokine binding, whereas intracellular loops (ICLs) and the C-
terminal are vital for signal transduction [14]. The CCRS5 receptor is primarily expressed on
macrophages, T-cells, and dendritic cells. The viral particle of HIV has a diameter of roughly
100 nm and is covered by a lipoprotein membrane [15]. This lipoprotein-rich membrane is
composed of external surface glycoprotein and transmembrane glycoprotein, and forms a
heterodimer complex [16]. The viral envelope glycoprotein plays an indispensable role in
forming passages for virus entry to the host cell, by promoting direct fusion of the viral
membrane and the plasma membrane of the target cell [17]. The viral glycoprotein gp160
consists of two non-covalently attached protein subunits: gp120 (an external subunit) and
gp41 (transmembrane subunit) [18]. The gp120 is crucial for binding to target cell, whereas
gp41 is important for catalyzing the fusion reaction between the viral membrane and the
host cell [18,19].

The CCRS5 signaling commences with the ligand binding to the receptor’s extracellular
region, including kinase-dependent phosphorylation, 3-arrestin-mediated desensitization,
and internalization [20]. CCR5 produces calcium signals upon interaction with its lig-
ands (macrophage inhibitory proteins MIP1«, MIP1(3, macrophage tropic HIV envelope
glycoprotein) [21,22]. CCRS5 receptor activation depends mainly on two steps: first, the
interaction of the receptor’s amino terminal domain (ATD) with chemokines, and second,
the transmembrane helix’s interaction with the free amino terminal domain (ATD) of the
chemokine, which ultimately activates the receptor [23,24]. Like other GPCRs, CCRS5 also
undergoes post-translational modifications at the amino terminus, which modify tyrosine
residues into sulfate, providing an extra negative charge to this region and helping the virus
to enter into the host cell by contributing to potential receptor ligand binding [16,23]. CCR5
is crucial for virus entry to the cell. Small molecules targeting CCR5 as a potential receptor
are categorized into a new class of antiretroviral drugs targeting HIV. Until now, Maravi-
roc has been the only Food and Drug Administration (FDA)-approved CCR5 allosteric
antagonist [10]. Other CCR5 inhibitors, such as Aplaviroc and Vicriviroc, showed CCR5
inhibitory action, but were withdrawn from human studies due to adverse effects and
toxicity [10,25]. Cenicriviroc is another potential candidate for CCR5 inhibition, currently
under investigation in phase 3 clinical trials [26]. Owing to the significant role of CCR5
in HIV infection, there is still need for selective inhibitors; therefore, the present study
was aimed at identifying CCR5 inhibitors. To accomplish the aim of present study, we
have used a series of computational methods, such as pharmacophore modeling, virtual
screening, molecular docking, and molecular dynamics simulation.
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2. Results and Discussion

In this study, for the identification of a potential CCR5 inhibitor, the ligand-based
drug designing approach was used, and an illustrative representation of the work is shown
in (Figure 1).

Pharmacophore generation Discovery studio v2018
Pharmacophore selection
Validation of pharmacophore

Drug-like database generation
Lipinski’s rule of five (ROF)

ADMET descriptors
18,360
Compounds

Ligand pharmacophore mapping
Fit value
Best mapping

VirtuaTscreening Discovery studio v2018 I

(4606) compounds

Docking Analysis olecutar docking GOLD v5.2.2
Scoring analysis (780)
Interaction analysis VD

MD Simulation Analysis Simulation GROMACS v5.1.5

RMSD analysis
3D Interaction analysis
H-bond analysis \V

Figure 1. Illustrative workflow used for the identification of potential CCR5 inhibitors.

2.1. Pharmacophore Model Generation

A small dataset of the nine most active CCR5 inhibitors was collected from the litera-
ture and used for the generation of the pharmacophore model [10,27,28]. The ICsy value of
the training set compounds ranged between 0.5 nm to 3.5 nm. The 2D structures of CCR5
inhibitors were obtained from the PubChem database, and subsequently drawn using the
BIOVIA Draw tool (Figure 2) [29,30].

The training set compounds were converted to 3D and subsequently minimized using
the Steepest Decent algorithm in DS. The Feature Mapping protocol in DS was used for
generating different chemical features of the provided training set compounds. The feature
mapping results indicate that the most commonly present chemical features in the training
set compounds were hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), hy-
drophobic (HYP), and hydrophilic features. Rationally, the most common features were
selected as key inputs for generating the common feature pharmacophore model in DS. The
Common Feature Generation protocol in DS produced 10 pharmacophore models with differ-
ent statistical values and different combinations of chemical features (Table 1 and Figure 3).
Out of 10 generated pharmacophore models, Hypol, Hypo2, Hypo4, and Hypo6 displayed
similar chemical features, which consisted of three HYP, one HBD, and two HBA, suggest-
ing that these chemical features must be important for a molecule to be a potent CCR5
inhibitor. Moreover, the Hypo1 rank was significantly better than the remaining hypothesis
(Table 1). On the basis of rank, chemical features, and ligand alignment with the pharma-
cophore, Hypo 1 was elected as the best pharmacophore model for virtual screening [31,32].
The chosen Hypo 1 contains total six features: three (HYP), two (HBA), and one (HBD)
(Figure 3A,B).
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Figure 2. The 2D chemical structures of compounds used for the generation of the common feature
pharmacophore model.

Table 1. Chemical features of generated hypothesis by using the Hip-Hop algorithm.

Sr. No. Features ? Rank P Direct Hit € Partial Hit 4 Max Fit
01 Z77HHD 136.074 111111111 000000000 6
02 Z77HHD 132.219 111111111 000000000 6
03 ZZHHD 132.123 111111111 000000000 5
04 Z77HHD 131.485 111111111 000000000 6
05 Z77HD 130.851 111111111 000000000 5
06 Z77ZHHD 130.473 111111111 000000000 6
07 RZHHD 130.470 111111111 000000000 5
08 Z7ZHHD 130.421 111111111 000000000 5
09 ZZHAD 130.323 111111111 000000000 5
10 Z7ZHHD 130.309 111111111 000000000 5

2 Features: Z—hydrophobic, D—hydrogen bond donor, H—hydrogen bond acceptor. ® Rank: Probability of
chance correlation is less with higher ranking score. The best hypothesis was given the highest rank. ¢ Direct hit:
direct hits indicate whether a molecule in the training set mapped every feature in the hypothesis (for a value of
1) or not (for a value of 0). ¢ Partial hits: partial hits indicate whether a particular molecule in the training set
mapped all but one feature in the hypothesis (for a value of 1) or not (for a value of 0).
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Figure 3. Chemical characterization of the selected Hypo 1. (A) Green, magenta, and cyan colors
represent hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), and hydrophobic (HYP)
features, respectively. (B) The inter-feature distance of Hypo 1 displayed in A.

2.2. Validation of Pharmacophores

The validation of the selected pharmacophore model was performed by using Giiner—
Henry (GH) and Enrichment factor (EF) values to evaluate its efficiency in differentiating
active and inactive compounds [30]. The GH method, also known as the Goodness of Hit
list, is the linear combination of two dependent variables” percent yield of actives and the
percent ratio of the actives in the hit list (Table 2). The EF indicates the enrichment of hit
list with respect to the database [33]. A decoy dataset was compiled using 245 inactive
(IC50 > 1000 nm) and 20 active (IC5p < 100 nm) compounds [31-33]. Subsequently, the
prepared decoy dataset was screened on Hypol using the Ligand Pharmacophore Mapping
module of DS for validation of the pharmacophore [34]. The mapping results demonstrated
that Hypol effectively mapped 95% of active compounds, with an acceptable GH score
of 0.77 and an EF value of 10.07. To be an ideally acceptable model, the pharmacophore
model must have a GH score above 0.60 [34]. Other parameters employed for pharma-
cophore validation, such as percentage yield of actives, percentage ratio of actives, false
positives, and false negatives, are included in the decoy dataset (Table 2). The valida-
tion results strongly suggested that the Hypol can efficiently differentiate between active
and inactive compounds against CCR5, and, therefore, can be utilized for further virtual
screening processes.

Table 2. Pharmacophore validation results from the GH method using a decoy test set.

Sr. No. Parameters Calculated Values
1 Total number of molecules in the database (D) 265
2 Total number of active molecules in the database (A) 20
3 Total number of active molecules in the retrieved hits (Ht) 25
4 Number of retrieved hits by pharmacophore (Ha) 19
5 % Yield of actives [(Ha/Ht) x 100] 76%
6 % Ratio of actives [(Ha/A x 100)] 95%
7 False negative [A-Ha] 1
8 False positive [Ht-Ha] 6
9 Goodness of fit 0.77
10 Enrichment factor (EF) 10.07

2.3. Drug-like Database Generation and Virtual Screening

For pharmacophore-based virtual screening, four chemical databases, namely Asinex
(261,120), Eximed (86,640), Specs (208,957), and InterBioScreen (505,304), were used. The
compounds obtained from the databases were filtered out on the basis of physiochemical
and pharmacokinetic properties by implementing Lipinski’s rule of five (Ro5) and the ADMET
descriptors module available in DS [35-37]. The specified values in ADMET descriptors,
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such as level 0 for absorption, indicate that the molecule has good intestinal absorption.
Solubility level 3 refers to good solubility, and the threshold parameter value for the
blood-brain barrier (BBB) level was specified as 3 in order to strictly ensure that the
compounds have low levels of penetration into brain cells (Table S1) [32]. After using
the Ro5 and ADMET descriptors filter, we finally obtained 18,360 compounds for further
pharmacophore-based screening (Figure 4). The Ligand Pharmacophore Mapping protocol
of DS was used for the screening of the obtained compounds. The fit value, obtained
from ligand pharmacophore mapping, indicated how effectively the compounds were
able to map the pharmacophore features of selected hypothesis [32,34,38]. The fit value
of Maraviroc (MVC = 3.32) was applied as a criterion to further reduce the resulting
compounds. A total number of 4606 compounds were successively mapped to Hypol.
Consequently, 231 compounds with fit values greater than those of Maraviroc (MVC) were
chosen.

Drug-like database

Asinex (261,120), Specs (208,957),
Eximed(86,640), InterBioScreen (505,304)

ADMET Descriptors
BBB level >3
Solubility level <0

Hepatotoxic prediction false
CYPD260 prediction false

-

Absorption 3

Lipinski’s Rule of five (ROF)
HBA <5

HBD <10

Molecular weight < 500

Ligand pharmacophore mapping
(18,360)

Final Drug-like compounds for further study
(4606)

Figure 4. Pharmacophore-based virtual screening: four databases, namely Asinex, Eximed, Specs,
and InterBioScreen, were sorted out using the ROF and ADMET descriptors tool, available in DS.

2.4. Molecular Docking of Potential Compounds with CCR5

Molecular docking is an established method for identifying the binding pattern of
proteins and ligands [39]. We utilized Genetic Optimization of Ligand Docking (GOLDv5.2.2)
to perform molecular docking of compounds obtained through virtual screening [39,40].
The docking method was validated by using a co-crystalized structure of a human CCR5
receptor, bound with the well-known inhibitor MVC (PDB ID: 4MBS) [41]. For molecular
docking validation, the bound MVC was removed from the 4MBS structure, and the active
site for binding was given a radius within 10 A from the bound MVC. The root mean
square deviation (RMSD) value was calculated for both structures, and the validation
results showed an acceptable RMSD value of 1.53 A between the bound drug and the
predicted pose (Figure S1). Similarly, the same parameters were used for the prediction of
the binding mode of the selected 231 compounds using the CCR5 receptor. The molecular
docking results revealed that the reference drug MVC displayed a Goldscore of 55.26 and
a Chemscore of —40.47. A total of 55 compounds displaying higher Goldscore and lower
Chemscore than MVC were initially selected as potential CCR5 binders. Further visual
inspection of these compounds revealed that ten candidate compounds displayed binding
modes similar to MVC, as well as comparable intermolecular interactions with important
receptor residues. The details of the two-dimensional structure and docking score are
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shown in (Table S2). The binding pattern of identified hits as well as MVC is shown in
(Figure S2).

2.5. Molecular Dynamics Simulations

Molecular dynamics (MD) simulation is a measure to study the stability of the docking
predicted binding mode of the protein-ligand complex computationally under physiologi-
cal conditions [42]. The protein-ligand complexes obtained from molecular docking were
considered as initial coordinates, and further subjected, for the purpose of MD simulation,
to the Groningen Machine for Chemical Simulations (GROMACS program) in order to check
the stability of the complex during a particular period of time under assigned conditions.
In total, 10 systems were prepared and subjected to a production run for 100 ns [43]. For
comparative analysis, the CCR5-MVC complex was also studied under similar conditions.
The analysis of the MD simulation results was conducted by analyzing the difference in
RMSD value, potential energy contribution, hydrogen bond analysis, and binding mode
analysis of both hits and MVC [44]. The compounds with no important molecular interac-
tion, and those that showed unstable behavior throughout the simulation, were excluded
from further analysis. MD simulation trajectories were further ranked according to the
binding free energy value, calculated by using MM-PBSA method. The binding free energy
analysis revealed that two potential hits displayed better binding affinity when compared
to Maraviroc (MVC). The selected drug-like compounds were named Hitl and Hit2. It is
noteworthy to mention that the identified hit candidates were obtained from the Eximed
database, with IDs of EiIM08-40645 and EiM17-02456, respectively (Figure 5). The IUPAC
name and SMILE codes of identified hits are mentioned in (Table S4).

5 ¢
2 g@a
Q0 T

Hitl Hit2
Figure 5. The 2D chemical structure of identified potential hits.

2.5.1. Stability of MD Simulation Systems

The stability of the system during the MD simulation was analyzed according to
backbone RMSD, potential energy plots, and hydrogen bond potential [44]. Compounds
with unstable behavior and undesirable interactions were excluded from further analysis.
The detailed MD simulation results are demonstrated in Table S3. Figure 6, showing the
MD simulation results for the selected hit candidates and MVC-CCR5 complexes. The
protein backbone RMSD plot of the Hitl and Hit2 bound complexes showed stable RMSD
values of 2.8 A and 2.6 A, respectively, which fall under the verge of threshold value of
<3 A, whereas MVC showed an RMSD value of 3.1 A, which is slightly higher than the
threshold RMSD value (Figure 6A). The overall Hit2 was found to be at its most stable
during the MD simulation time. The potential energy values were calculated and analyzed
for stability comparison of all three systems. The potential energy plots suggested that
MVC, Hitl, and Hit2 showed stable behavior throughout the 100 ns simulation run, with
synonymous behavior (Figure 6B). The hydrogen bond interactions between the protein—
ligand complexes are the key interactions responsible for stable complexes. Therefore, the
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MD simulation trajectories were used for calculating the average number of hydrogen
bonds present in each system during the 100 ns simulation run. The hydrogen bond
analysis results revealed that MVC, Hit1, and Hit2 displayed average numbers of hydrogen
bonds of 1.02, 0.76, and 1.80, respectively (Figure 6C, Table S3).

A ——MVC Hitl —Hit2 B —MVC Hitl —Hit2
3 -1244000
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g -1250000
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Figure 6. MD simulation analyses. (A) RMSD plot. (B) Potential energy graph. (C) Analysis of
hydrogen bonds. (D) Calculation of binding free energy for MVC, Hit1, and Hit2, calculated using
the MM-PBSA method.

2.5.2. Calculation of Binding Free Energy by MM-PBSA Method

To infer the affinity of the candidate compounds towards CCR5 receptors, the binding
free energy (AG) was calculated by using the MM-PBSA method [45]. The last 50 to 100 ns
trajectory data were used for the calculation of the AG values. The observed average
binding free energy value was, —148.96 kJ/mol for Hitl, —128.28 kJ/mol for Hit2, and
—122.14 kJ /mol for MVC (Figure 6D). It can be observed from the AG values that Hitl
showed a high binding affinity towards CCR5, followed by Hit2 and MVC; moreover, both
of the potential hits displayed better binding affinity for CCR5 compared to the reference
drug, MVC, but Hitl displayed significantly better affinity in MM-PBSA calculations [46,47].

The per residue energy contribution to the binding of both the hits and MVC was
further investigated by the energy decomposition function (Figure 7). By analyzing the in-
dividual residue contribution to the binding free energy, we observed that with Hitl, Trp86
was the highest contributor in binding free energy, with a AG value of —6.91 k] /mol. This
was followed by Phel09, 11e198, and Met287 with AG values of —6.42 k] /mol, —4.55 k] /mol,
and —2.01 kJ/mol, respectively. Interestingly, in the case of Hit2, Trp86, once again, had the
highest entropic contribution to binding free energy, with a AG value of —11.68 kJ/mol, fol-
lowed by other residues: Tyr89, with a AG of —6.64 kJ /mol; [le198, with a AG —2.62 k] /mol;
and Met287 with a AG value —2.61 k] /mol. In addition, MVC Phel09 was a potential energy
contributor to the binding free energy, with a AG value of —8.23 k] /mol, followed by Trp86,
11e198, and Met287, with AG values of —7.38 k] /mol, —4.14 kJ/mol, and —3.78 kJ/mol],
respectively [48,49]. We observed that Trp86, lle198, and Met287 were common contributors
to the Hitl, Hit2, and MVC energy decomposition patterns.
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Figure 7. Per residue energy contribution of each simulated system of Hitl, Hit2, and reference to
binding free energy. (A) Hitl is represented in green color; (B) Hit2 in violet color; and (C) MVC
(reference) is shown in blue color.

2.6. Binding Mode and Intermolecular Interaction Analysis

The crystal structure of CCR5 bound with Maraviroc (MVC) revealed that the drug
binds at the allosteric site. The CCR5 binding site for MVC is deep, and has a large area [41].
The binding cavity of CCR5 is mainly located in the extracellular regions [18,50]. It contains
highly conserved residues Trp86, Tyr108, Tyr251, Phel09, Tyr37, Phel12, and Glu283, which
are present mainly in transmembrane regions (TM 1-7) [51]. As reported in the literature,
in order to be a potential CCRS5 inhibitor, a compound must interact with its key residues:
Trp86, Tyr108, Tyr251, Phel09, Phel12, and Glu283 [15]. Ligand interaction with Glu283
plays a critical role in CCR5 inhibition, and prior work has shown that Glu283 forms salt
bridge interactions with the inhibitor atom [52].

Moreover, other groups reported that Glu283 forms 7-cation/anion interaction,
whereas Tyr108, Phel09, Phell2, and Trp86 mainly form 7-t interaction [11,53]. By an-
alyzing the molecular interaction pattern after a production run of 100 ns, we observed
that Hit1 residues Leu33, Tyr37, Ala90, Met287, Thr259, Phel82, Leu255, Ile198, and Tyr251
formed van der Waals interactions, and Phe109, Phe112, and Trp86 stabilized the protein
ligand complex by forming 7t-7t interactions. On the other hand, Hit2 formed van der Waals
interactions with the residues Lys26, Ala29, Leu33, Ala90, Tyr89, Thr105, Asn163, Ser180,
Phel82, Lys191, GIn194, Thr195, and Tyr251, while the residues Trp86, Tyr108, Phel09,
I1e198, Leu255, and Met287 created -7t bonding. In the case of MVC residues Met287,
Trp86, Tyr108, and Phel09, these were responsible for forming 7-7 interactions, and Trp89,
Ser179, Cys178, Thr105, Leu255, Asn163, GIn194, lle198, Trp190, Phel82, Thr195, and Ile164
created van der Waals interactions.

We observed that all of the key residues responsible for 7-7t interaction formed stable
interactions throughout the 100 ns simulations. With Hit1 residue, Tyr108 created stable
hydrogen bonds, and with Hit2 key residue, Tyr37 and Glu283 formed hydrogen bonds,
whereas Ser180 was responsible for creating hydrogen bond interactions with the MVC
(Figure 8, Table 3).
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Figure 8. The binding mode of (A) MVC, (B) Hitl, and (C) Hit2. MVC, Hitl, and Hit2 are shown
in cyan, brown, and green, respectively. The lower panel of the image represents the 2D molecular
interactions of (D) MVC, (E) Hitl, and (F) Hit2, with active site residues. The hydrogen bonds are
shown with a green dashed line while 7t-7t, 7-alkyl, 7-cation, 7t-sulfur, and 7-o interactions are shown
as pink, orange, yellow, and purple dashed lines, respectively.
Table 3. The detailed inter-molecular interactions of MVC, Hitl, and Hit2 with CCR5, obtained after
100 ns MD simulation.
Hydrogen Bond Interactions
Name Amino Amino Ligand Distance van der Waals Interactions T /T[-Alkyl
. . o Interactions
Acid Acid Atom Atom (<3.5A)
Leu33, Tyr37, Ala90, Met287,
Hitl Tyr108 OH H45 2.23 Thr259, Phel82, Leu255, Lle198, Phe109, Phel12,
Trp86
Tyr251
Glu283 OE1 Ho64 2.22 Lys26, Ala29, Leu33, Ala90, Tyr89, Trp86, Tyr108,
Hit2 Thr105, Asn163, Ser180, Phel82, Phel09, 11e198,
Tyr37 OH H65 2.05 Lys191, GIn194, Thr195, Tyr251 Leu255, Met287
Tyr89, Cys178, Ser179, Thr105,
Met287, Trp86,
MVC Ser180 HG1 F2 2.95 Leu255, Asn163, GIn194, 11e198, Tyr108, Phel09

Trp190, Phel82, Thr195, Ile164

2.7. Pharmacokinetic Properties Prediction of via pkCSM

In silico assessment of pharmacokinetic properties can play a key role in selecting
potential compounds for experimental studies [54]. All of the pharmacokinetic parame-
ters were calculated and analyzed using the pkCSM tool (Table S5). The obtained results
suggested that Hitl and Hit2 had intermediate levels of water solubility. The caco-2 per-
meability prediction, which is useful for oral absorption of drugs, indicates acceptable
values of 1.45, 0.77, and 1.20 for Hitl, Hit2, and MVC, respectively. Compounds with
absorbance levels below 30% were considered as poorly soluble and less absorbed. In this
study, MVC, as well as both Hitl and Hit2, showed good absorption values of 90.16%,
91.37%, and 85.60%, respectively. The skin permeability potential score was also in ac-



Int. . Mol. Sci. 2022, 23, 16122

11 of 17

ceptable range for both MVC and hits. P-glycoprotein (P-gp) is known as one of the drug
transporters that determines the uptake and efflux of drugs, and also ultimately affects
their plasma and tissue concentration [55,56]. P-glycoprotein I, also known as multi-drug
resistance protein 1 (MDR1), functions as a drug transporter. P-gp II or MDR2 functions
as a phospholipid translocator [56,57]. A compound or drug that is considered a sub-
strate of p-glycoprotein can potentially act as inhibitor or inducer of its own function [55].
Inhibition of p-gp isoforms improves the bioavailability of a drug, and p-gp inhibitors
can alter the pharmacokinetic properties of a drug [55,57,58]. We observed that Hitl and
Hit2 were predicted as p-gp substrates, whereas MVC was predicted as a non p-gp sub-
strate. On the other hand, we found that both hits were p-gp I inhibitors, whereas MVC
was predicted not to be an inhibitor of p-gp 1. For the inhibition profile of p-gp II, it was
observed that neither of the hit, nor MVC, inhibited the p-gp II. The estimation of the
volume of distribution of a drug in a steady state is an essential pharmacokinetic parameter
that needs to be estimated during drug discovery, and which explains the relationship
between the dose of a drug administered and the amount of the drug present in plasma
and tissue [59,60]. Both Hitl and Hit2 were predicted as having a lower amount unbound
in plasma compared to MVC. The blood-brain permeability (BBBP) and central nervous
system permeability (CNSP) for MVC and hit compounds were observed to be lower, which
indicates that the identified hits have a very rare chance of causing CNS-related toxicity.
The Cytochrome P450 enzymes play a crucial role in drug metabolism by oxidizing a large
variety of xenobiotic substances [61]. All isoforms of Cytochrome P450 were considered
when predicting the pharmacokinetic properties of Hitl, Hit2, and MVC. Different parame-
ters for excretion properties were also predicted, including total clearance and renal OCT2
substrate prediction. Drug clearance is measured as a combination of hepatic clearance
and renal clearance. Transport of cationic substrates is mainly mediated by Organic Cation
Transporter 2 (OCT2), which is a weak affinity, high capacity transporter unambiguously
expressed on the tubular epithelia of the kidney [62]. The total clearance was observed as a
value of —23.6 mL/min/kg, 1.1 mL/min/kg, and 0.4 mL/min/kg for MVC, Hitl, and Hit2,
respectively. We observed that Hitl was predicted as an inhibitor for hERG II (the human
Ether-a-go-go-Related Gene), but not for hERG I. In the case of MVC and Hit2, it was found
that both were predicted not to be inhibitors of any subtype of hERG. The Oral Rat Acute
Toxicity (LDsp) and Oral Rat Chronic Toxicity (LOAEL) values were also predicted for hits
and MVC. Other important toxicity parameters, such as hepatotoxicity, skin sensitization, T.
pyriformis toxicity, and Minnow toxicity, were also predicted for identified hits and MVC
(Table S5) [32]. The overall analysis of pharmacokinetic properties suggested that both the
hits displayed acceptable predicted values compared to MVC. Interestingly, Hit2 showed
better pharmacokinetic properties than MVC in few parameters.

3. Materials and Methods
3.1. Generation of Common Feature Pharmacophore

A dataset of nine known CCR5 inhibitors with different ICsy values, which were
either in clinical trial or FDA-approved, were taken as a training set. The 2D structures
of the compounds were downloaded from the PubChem database [29]. The training set
compounds were subjected to energy minimization by using a CHARMm force field and
the Steepest Descent algorithm, embedded in Discovery Studio (DS) v18 (Accelrys, San
Diego, CA, USA) [1]. To find common features present in the training set compounds,
the Feature Mapping protocol in DS was utilized [63]. The obtained information was
subsequently utilized to build common feature pharmacophore models using the Hip-Hop
algorithm of DS. While generating the pharmacophore model, the FDA-approved drug
Maraviroc (MVC) was considered highly active, given a value of 1 by providing a principal
value and maximum omitted features to 2 and 0, respectively. The remaining compounds
were considered as fairly active [64]. The values assigned in the principal value column
and for the maximum omitted features assure that all of the chemical features present in the
given compounds will be considered during the generation of the pharmacophore model.
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A maximum of 255 conformers per molecule was generated using the BEST algorithm in
DS. The energy threshold which we used was 20 kcal/mol, the minimum inter-feature
distance, and the rest of the parameters were kept as default.

3.2. Validation of Pharmacophore Model

Validation of the pharmacophore model is a crucial and necessary step for assessing
its ability to differentiate between active and inactive compounds [49]. In the present work,
a well-known Giiner-Henry (GH) approach was used for validation of the pharmacophore
model [65]. A dataset of 265 compounds, with both active and inactive compounds, was
compiled and called the decoys test set. The selected hypothesis was then subjected to a
3D query to screen the prepared dataset using the Ligand Pharmacophore Mapping module,
available in DS. The acquired results from mapping were further used to evaluate the
quality of the prepared pharmacophore model by solving the following equations for GH
score and EF value [32,65].

_ [ Ha[3A+ Ht] Ht— Ha

EF=(HaxD)/(Htx A)

The decoy set method generates a goodness of fit (GF) score ranging between zero
and one. A GF score of 1 defines the ideal model, whereas a GF score of 0 signifies a null
model [44,49].

3.3. Generation of Drug-like Database and Virtual Screening

Four different databases (Specs, Eximed, Asinex, and InterBioScreen) were selected
for the identification of potential CCR5 inhibitors. The selected databases were first filtered
out on the basis of Lipinski’s rule of five (Ro5) to obtain drug-like compounds [66]. In the
first step, the subjected compounds were sorted out on the basis of drug-likeness by using
Ro5 [67], and then subjected to pharmacokinetic analysis using the ADMET descriptors filter,
which is available in DS [68]. To be classified as a potential drug-like compound, the Ro5
and Veber’s rule conjointly stated that a molecule must have lipophilicity (logP) < 5, total
number of rotatable bonds < 10, and number of hydrogen bond donors < 5, as well as
that the molecular weight should be <500 kDa [49,66,67]. By using ADMET descriptors,
pharmacokinetic properties such as absorption, distribution, metabolism, excretion, and
toxicity were calculated for all of the compounds present in the database. The screening
of the drug-like databases, using the validated pharmacophore model, was conducted
by using the Ligand Pharmacophore Mapping protocol available in DS. The fit value of
the reference drug (Maraviroc = 3.32) was used as a criterion for filtering the drug-like
database. The fit value of any compound defines, how well the chemical features present
in a compound map with the pharmacophore feature present in the hypothesis [34]. The
conformers were generated using the Flexible Fitting method and FAST algorithm. The
obtained drug-like compounds were further subjected to a molecular docking study.

3.4. Molecular Docking Studies

Molecular docking is an established protocol in the field of computational biology
for the identification of binding poses and molecular interaction patterns of receptor—
ligand complexes [69]. Genetic Optimization of Ligand Docking (GOLD vb5.2.2) was used to
perform the molecular docking study [39]. Default scoring functions, such as Goldscore and
Chemscore, were used for the selection of potential CCR5 binders [44]. The crystal structure
of the human CCR5 receptor, bound with FDA-approved drug MVC, was downloaded
from Protein Data Bank (PDB: 4MBS) [41]. Prior to molecular docking studies, all of the
heteroatoms, as well as water molecules which were not participating in protein-ligand
interaction, were removed, and hydrogen atoms were added. The Clean Protein module,
available in DS, was used for protein preparation. All missing atoms were added and



Int. . Mol. Sci. 2022, 23, 16122

13 of 17

bond orders were corrected. The protein was then minimized using a CHARMm?27 force
field [70]. The active site of the CCR5 receptor was specified within the radius of 10 A of
the bound drug MVC [11,41]. A maximum of ten poses were generated for each drug-like
molecule subjected to molecular docking using the GOLD Genetic Algorithm (GA). MVC,
bound with the crystal structure of the CCR5 receptor, was considered the reference for the
docking analysis. The compounds displaying better docking scores and optimal binding
modes when compared with the reference inhibitor were selected for further study.

3.5. Molecular Dynamics Simulations

The pattern of protein-ligand molecular interactions and their stability at the atomistic
level under the virtual physiological condition were studied using molecular dynamics
(MD) simulations [71]. The final compounds obtained from the molecular docking anal-
ysis were further subjected to MD Simulation using the Groningen Machine for Chemical
Simulations (GROMACS v5.15) [72-74]. The parameter and co-ordinate files for all the
candidate molecules were generated by using a CHARMm?27 force field in GROMACS and
SwissParam [70,75]. For each selected drug-like compound with a CCR5 receptor, separate
simulation systems were prepared in a dodecahedron box, and for hydration, the TIP3P
water model was used. All of the systems were neutralized by adding sodium ions. Before
running actual dynamics simulations, each system was energy-minimized using the Steep-
est Descent algorithm to minimize steric hindrance. Each system was equilibrated prior
to simulation by using NVT and NPT ensembles [70]. An NVT ensemble was carried out
for 1 ns at 300 K by keeping the number of particles (N), volume (V), and temperature (T)
constant using a V-rescale thermostat [76]. An NPT ensemble was performed at 1 bar at a
constant number of particles (N), pressure (P), and temperature (T) by Parrinnello-Rehman
barostat under periodic boundary conditions in order to avoid edge effect [77]. The Leap-
Frog algorithm was used for non-bonding interactions, the LINC algorithm was employed
during simulation to restrain the bond length, and Particle mesh Ewald (PME) was applied
to estimate long-range electrostatic interactions [78,79]. The results were analyzed by using
the DS and GROMACS trajectory analysis tools [80].

Root Mean Square Deviation (RMSD) and H-Bond Analysis

The dynamics of protein upon ligand binding were determined by RMSD calculation.
Additionally, the hydrogen bond analysis was performed for each system [81]. The “gmx
rmsd” and “gmx hbond” commands were implemented for the calculation of RMSD and
H-bond, respectively.

The RMSD calculation was performed using the following equation [82].

RMSD; = |/ £740) = (1 (1nr))

where the number of atoms is represented as N, t,, is the reference time, 1’ represents the
location of selected atoms within the frame x after superimposition on reference frame, and
the recoding intervals of x are designated with t, [81,82].

3.6. Binding Free Energy Calculation

Calculating the binding free energy of a system is a potential measure for estimating
the binding affinity of hit compounds for a target protein, and has crucial importance for
computational drug discovery [45]. The GROMACS plugin tool “g_mmpbsa” was used for
the calculation of binding free energy in this study. The MD simulation trajectories were
used as inputs for binding free energy calculation [83,84]. The protein-ligand complex
binding free energy is calculated as:

Gbinding = Gcomplex - [Gprotein + Glz’gand
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3.7. Prediction of Pharmacokinetic Properties via pkCSM

Drug development is a challenging and time-consuming process. For a potential
compound, it is important to investigate their pharmacokinetic properties before being
subjected to clinical trials in order to avoid failure [66,85]. The selected hit compounds were
submitted to pkCSM (http:/ /structure.bioc.cam.ac.uk/pkcsm) for the study of detailed
pharmacokinetic or ADMET property prediction [32,85]. Computational approaches such
as pkCSM not only lower the probability of clinical trial failure, but also reduce the costs
and time necessary for additional compound selection [86].

4. Conclusions

CCRS5 serves not only as a co-receptor for HIV. Recent studies have suggested that it is
also predominantly expressed in different types of cancer, which also made CCR5 a probable
target for drug discovery. In this study, we applied a series of computational methods to
identify novel CCRS5 inhibitors. In the first step, a common feature pharmacophore was
generated by using chemical features of clinically tested CCR5 inhibitors. The model was
subsequently validated and utilized for the pharmacophore-based virtual screening of a
drug-like database. The drug-like database was prepared using four different chemical
libraries. Pharmacophore-based virtual screening of 18,360 drug-like compounds resulted
in 780 compounds. The obtained compounds were further escalated for molecular docking
for the prediction of binding mode. The docking results suggested that 10 potential
compounds had better docking scores and interactions with key residues compared to the
reference drug, and these were subjected to 100 ns production. After analyzing the MD
simulation results, two promising hits were theoretically identified on the basis of steady
RMSD, binding free energy value, and interaction pattern with key residues as novel CCR5
inhibitors.
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