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Abstract: In the panorama of sustainable chemistry, the use of green solvents is increasingly emerging
for the optimization of more eco-friendly processes which look to a future of biocompatibility and
recycling. The green solvent Cyrene, obtained from biomass via a two-step synthesis, is increasingly
being introduced as the solvent of choice for the development of green synthetic transformations
and for the production of biomaterials, thanks to its interesting biocompatibility, non-toxic and
non-mutagenic properties. Our review offers an overview of the most important organic reactions
that have been investigated to date in Cyrene as a medium, in particular focusing on those that could
potentially lead to the formation of relevant chemical bonds in bioactive molecules. On the other
hand, a description of the employment of Cyrene in the production of biomaterials has also been
taken into consideration, providing a point-by-point overview of the use of Cyrene to date in the
aforementioned fields.
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1. Introduction

The synthesis of biologically active molecules remains one of the most discussed topics
among organic chemists, and the development of green approaches for the construction of
new chemical bonds has become an interesting growing task. At the same time, the interplay
between biomaterials and renewable resources has provided a window of opportunity for
the development of novel eco-friendly nanomaterials. Industrial and laboratory processes
are characterized by the accumulation of chemical waste, which are mainly represented
by residues of reaction solvents. Today, green chemistry is deeply engaged in the search
for eco-friendly and sustainable approaches in organic synthesis and for the production
of functional materials, mainly involving the use of green solvents, with a high safety
profile and low environmental impact. However, the search for alternatives to conventional
organic solvents remains an arduous and difficult task. In 2014, the green solvent Cyrene,
obtained from biomass and produced by Circa, was used for the first time as a solvent
for organic synthesis reactions [1]. From then on, this solvent has come into use as a
replacement for DMF (N,N-dimethyl formamide), DMSO (dimethyl sulfoxide), NMP
(N-methylpyrrolidone) and DMAc (N,N-dimethyl acetamide), and a considerable number
of articles elected it as a valid green alternative, considering it an environmentally friendly
choice compared to the aforementioned toxic solvents. In particular, it appeared to be a
valid substitute for DMF in carrying out amide bond synthesis reactions, known to be one
of the most important and challenging transformations in organic chemistry because of
the widespread occurrence of amides in modern pharmaceutical and biologically active
compounds. In this context, Cyrene appeared to be the green solvent of choice for the
synthesis of amides and peptides. Furthermore, it has recently also been employed in
the synthesis of polyesters and in the development of nanoparticles, and hence its use
is expected to grow in the future. Cyrene has also been used as a vehicle solvent in
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antimicrobial susceptibility testing, resulting to be a noteworthy substitute to the common
DMSO [2], and as a solvent for the extraction of pharmaceutically important curcuminoids
from turmeric with ultrasound-assisted procedures, demonstrating excellent performance
and product recovery [3]. Acute toxicity tests demonstrated an optimal level of safety;
therefore, Cyrene has been defined as “practical non-toxic” to the environment according
to the Global Harmonized System of Classification and Labelling of Chemicals (GHS) and
readily biodegradable to carbon dioxide and water (99%, 14 days) [4]. In our review, we
discuss the properties of the green solvent Cyrene and its applications in organic reactions
for the construction of chemical bonds that lead to bioactive molecules, as well as its use
for the production of functional materials with biological applications.

2. Cyrene: Chemical-Physical Properties, Synthesis and Reactivity

Dihydrolevoglucosenone, commonly known as Cyrene, is a bicyclic acetal [5], derived
from cellulose-based biomass. As common acetals, it is stable in basic conditions, while
showing marked reactivity towards strong reducing and oxidizing agents and drastic
acidic environments [6]. The physical properties of Cyrene in comparison to other common
dipolar aprotic solvents are described in Table 1. At room temperature, Cyrene is a colorless
viscous liquid (density = 1.25 g/mL) with a high boiling point (227 ◦C). It has been con-
sidered a dipolar aprotic solvent, with polarity parameters (measured by Kamlet–Taft π*)
comparable to NMP (N-methyl pyrrolidone), and a significant miscibility with water [7].

Table 1. Physical properties of Cyrene in comparison to NMP, DMF and DMSO.

Solvent Density (g/mL) Boiling Point Miscibility with Water π*

Cyrene 1.25 227 ◦C High 0.93
NMP 1.03 202 ◦C High 0.90
DMF 0.95 153 ◦C High 0.88

DMSO 1.1 189 ◦C High 1.00

The chemical-physical features of Cyrene, combined with high biocompatibility and
sustainability issues, enforce its use as an alternative green solvent for organic synthesis
(Figure 1). Its high boiling point also makes it a suitable refluxing solvent for carrying out
microwave-assisted reactions, and the difficulty in removal from the reaction mixture is
easily supplanted by its high miscibility with water, which allows its removal via aqueous
work-up and reuse after distillation. Its polarity parameters make it similar to solvents
such as NMP and DMF, and its solvent capacity is comparable to that of DMSO; however,
unlike DMSO, it does not have the same levels of toxicity and environmental impact and
can, therefore, be considered a safer substitute [8,9].
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Chemically, Cyrene is a bicyclic ketone that bears an intramolecular acetal functionality,
synthetically accessible through two-step processes starting from biomass [10]. Cellulose
undergoes a pyrolysis process, affording levoglucosenone which, by catalytic hydrogena-
tion, is converted into dihydrolevoglucosenone (Cyrene) (Scheme 1).
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The ketone group of Cyrene easily reacts with water to afford the corresponding
gem-diol, strongly increasing the polarity of the solvent, providing two additional H-donor
groups (Figure 2) [11]. The hydration of Cyrene has also been studied in the presence of
D2O, highlighting that in 1:1 mixtures, it has been observed that hydration is favored, while
when an organic co-solvent is present, the ketone form prevails. Therefore, according to the
choice of solvent, it is possible to favor the recycling of Cyrene in an aqueous environment
(Figure 2a) [11]. Furthermore, the carbonyl group can undergo the formation of cyclic ketals
with ethylene glycol, as in the case of the Cygnets derivatives [12] (Figure 2a), forming
oximes under the Beckmann reaction [13], and reacts vigorously with organometallic
reagents, such as Grignard reagents (Figure 2a). Under drastic basic conditions, Cyrene
undergoes intermolecular aldol addition and aldol condensation, leading to derivatives
prone to further polymerization (Figure 2b). Cyrene also undergoes Claisen–Schmidt
condensation with aldehydes [14], providing spiro-derived exocyclic enones by the double
addition of aldehydes to the carbonyl functionality [15,16] (Figure 2b). Finally, it can
undergo metal-catalyzed reduction reactions [17] (Figure 2c) and Bayer–Villiger oxidation
(Figure 2d) [18].
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3. Cyrene as a Solvent for Organic Synthesis Transformations

To date, Cyrene has been investigated in numerous organic reactions, as described in
Table 2. Below, a description of each type of reaction will be given, basing on the chemical
bond formed.

Table 2. Most investigated reactions in Cyrene as the medium.

Reaction Functional Group Temperature Reference

Amide coupling
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3.1. Amide Synthesis

The formation of the amide bond is a relevant synthetic operation because of the
frequent occurrence of such a functional group in biologically active molecules. Cyrene was
proposed, instead of the classic coupling solvents, such as DMF and NMP, for carrying out
amide bond formation reactions starting from acid chlorides [11] and carboxylic acids [19],
affording interesting results. Bousfield et al. proposed a simple protocol for the synthesis
of amides from acid chlorides in the bio-available solvent Cyrene (Scheme 2), reducing
wastes and minimizing column chromatography operations [11]. During the optimization,
4-fluorobenzoyl chloride reacted with several pyrrolidines, anilines or benzylamines, using
NEt3 as the base, affording the corresponding amides in high yield and, in most cases, by
simple precipitation via the addition of water, without the need for column chromatog-
raphy purification. Then, the authors explored the scope of the reaction using different
acid chlorides and primary and secondary amines. This procedure avoided the use of
toxic solvents, such as DMF and DCM (dichloromethane), and the removal of Cyrene via
aqueous work-up resulted in up to a 55-fold increase in molar efficiency (Mol E.%) versus
conventional operating protocols.
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Scheme 2. Synthesis of amides from acid chlorides in Cyrene.

The conversion of carboxylic acids to amides using Cyrene as the solvent was in-
vestigated by Wilson and co-workers (Scheme 3) [19]. They evaluated the employment
of Cyrene in the HATU-mediated amide coupling, introducing for the first time such a
solvent as a valid alternative to DMF, furnishing 25 examples of lead-like compounds and
dipeptides. The best conditions discovered involved the use of HATU/DIPEA coupling
agents in Cyrene, under vigorous stirring of the solution due to the high viscosity of the
bio-solvent, affording the corresponding products in 1 h at room temperature.
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Scheme 3. HATU/DIPEA-mediated synthesis of amides and peptides in Cyrene.

Alternative to DMF, Cabri and collaborators performed solid-phase synthesis (SPPS)
using a combination of Cyrene and dimethyl or diethyl carbonate [20]. Although the solu-
bility of the amino acids employed in the study proved to be lower compared to the classic
DMF system, the use of the combination of DIC/Oxyma (N,N′-diisopropylcarbodiimide/
ethyl cyano(hydroxyimino)acetate) coupling reagents was found to be efficient in enhanc-
ing the solubility, performing the coupling with optimal results, introducing the use of
Cyrene in the SPPS.

3.2. Ureas Synthesis

Isocyanates are versatile substrates that can be easily converted to ureas by reacting
with amines. Given the great importance of the ureidic bond and its presence in various
drugs [21], the search for new biocompatible solvents to be also used on an industrial scale
represents an interesting topic. DMF is the most used solvent for this kind of transformation,
both for its high solubility properties and for the prolonged reaction time. Camp et al.
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described the use of Cyrene for the linkage of amines to isocyanate (Scheme 4) [22]. They
started their investigation by reacting phenylisocyanate with pyrrolidine and precipitating
the corresponding urea after treatment with water. Optimization of the reaction conditions
led to the formation of a large panel of ureas by reacting isocyanates with several primary
and secondary amines, affording the corresponding products in high yield after simple
precipitation in water.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 19 
 

 

transformation, both for its high solubility properties and for the prolonged reaction time. 

Camp et al. described the use of Cyrene for the linkage of amines to isocyanate (Scheme 4) 

[22]. They started their investigation by reacting phenylisocyanate with pyrrolidine and 

precipitating the corresponding urea after treatment with water. Optimization of the 

reaction conditions led to the formation of a large panel of ureas by reacting isocyanates 

with several primary and secondary amines, affording the corresponding products in 

high yield after simple precipitation in water. 

 

Scheme 4. Synthesis of ureas from isocyanates. 

3.3. Isothiocyanates Synthesis 

Isothiocyanates are an interesting scaffold used for the synthesis of thioureas, and 

their synthesis involves often the use of highly toxic reagents such as thiophosgene or CS2. 

Nickisch and collaborators employed, for the first time, a multicomponent reaction 

including isocyanides, elemental sulfur and several amines for the successful synthesis of 

isothiocyanates, in the presence of catalytic amounts of DBU (1,8-

diazabicyclo[5.4.0]undec-7-ene) (down to 2 mol%) (Scheme 5) [23]. An optimization of the 

reaction, in terms of sustainability, was made considering ecofriendly solvents such as 

Cyrene, and purification by column chromatography was further optimized to generate 

less waste by maintaining the high purity of the product [23]. 

 

Scheme 5. Synthesis of isothiocyanates from isocyanide and elemental sulfur. 

3.4. Carbon–Carbon Bond Couplings 

C–C catalyzed cross-couplings are reactions of considerable importance, employed 

to build complex molecular architectures. The use of palladium-based catalysts often 

accompanies such type of transformations, and the choice of the solvent/catalyst 

combination remains a fundamental task for carrying out the process. Nowadays, 

alternative green solutions to the classical solvents used for Pd-catalyzed C–C cross-

couplings represent an occurring field of study. Cyrene has demonstrated to be a valid 

alternative to DMF, THF and toluene to carry out Sonogashira and Suzuki–Miyaura 

reactions. Watson and collaborators described, for the first time, a Sonogashira reaction 

using Cyrene as an alternative solvent to DMF, also expanding the scope of the reaction 

Scheme 4. Synthesis of ureas from isocyanates.

3.3. Isothiocyanates Synthesis

Isothiocyanates are an interesting scaffold used for the synthesis of thioureas, and
their synthesis involves often the use of highly toxic reagents such as thiophosgene or
CS2. Nickisch and collaborators employed, for the first time, a multicomponent reaction
including isocyanides, elemental sulfur and several amines for the successful synthesis of
isothiocyanates, in the presence of catalytic amounts of DBU (1,8-diazabicyclo[5.4.0]undec-
7-ene) (down to 2 mol%) (Scheme 5) [23]. An optimization of the reaction, in terms of
sustainability, was made considering ecofriendly solvents such as Cyrene, and purification
by column chromatography was further optimized to generate less waste by maintaining
the high purity of the product [23].
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3.4. Carbon–Carbon Bond Couplings

C–C catalyzed cross-couplings are reactions of considerable importance, employed to
build complex molecular architectures. The use of palladium-based catalysts often accom-
panies such type of transformations, and the choice of the solvent/catalyst combination
remains a fundamental task for carrying out the process. Nowadays, alternative green
solutions to the classical solvents used for Pd-catalyzed C–C cross-couplings represent
an occurring field of study. Cyrene has demonstrated to be a valid alternative to DMF,
THF and toluene to carry out Sonogashira and Suzuki–Miyaura reactions. Watson and
collaborators described, for the first time, a Sonogashira reaction using Cyrene as an alter-
native solvent to DMF, also expanding the scope of the reaction to a Cacchi-type annulation
(Scheme 6) [24]. They investigated the reaction between iodobenzene and phenylacetylene,
using the catalyst PdCl2(PPh3)2 and CuI as an additive. Interestingly, the reaction worked
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better at room temperature, exclusively with the use of an organic base such as NEt3,
reaching completion in 1–5 h, in comparison with inorganic bases. Inorganic carbonates,
especially at higher temperatures, led to intermolecular aldol reactions of Cyrene, failing
to perform the transformation. The scope of the reaction was exploited, and the use of
Cyrene was demonstrated to be suitable for a large panel of functional groups (Scheme 6).
Additionally, 5-endo-dig cyclization of Sonogashira-coupled o-amino and o-hydroxyaryl
derivatives underwent Cacchi-type annulation to afford corresponding bicyclic compounds
in good yields.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 19 
 

 

to a Cacchi-type annulation (Scheme 6) [24]. They investigated the reaction between 

iodobenzene and phenylacetylene, using the catalyst PdCl2(PPh3)2 and CuI as an additive. 

Interestingly, the reaction worked better at room temperature, exclusively with the use of 

an organic base such as NEt3, reaching completion in 1–5 h, in comparison with inorganic 

bases. Inorganic carbonates, especially at higher temperatures, led to intermolecular aldol 

reactions of Cyrene, failing to perform the transformation. The scope of the reaction was 

exploited, and the use of Cyrene was demonstrated to be suitable for a large panel of 

functional groups (Scheme 6). Additionally, 5-endo-dig cyclization of Sonogashira-coupled 

o-amino and o-hydroxyaryl derivatives underwent Cacchi-type annulation to afford 

corresponding bicyclic compounds in good yields. 

 

Scheme 6. Sonogashira reaction using Cyrene. 

Today, the Suzuki–Miyaura cross-coupling represents the most widespread Pd-

catalyzed C–C bond-forming reaction in the panorama of organic synthesis, and has 

found countless applications in the medicinal chemical industry. Most of the Suzuki cross-

coupling reactions involve the use of dipolar aprotic solvents, with DMF as the solvent of 

choice. Additionally, Watson et al. again described for the first time a Suzuki cross-

coupling protocol including the bio-derived solvent Cyrene as the reaction medium [25]. 

Pd(dppf)Cl2 was used as a catalyst and cesium carbonate was the best choice among the 

inorganic bases to perform the transformation (Scheme 7). The addition of water was 

fundamental for reducing the rate of formation of the aldol sub-product, that could be 

otherwise be easily removed via precipitation and filtration in petroleum ether/ethyl 

acetate mixtures. 

 

Scheme 6. Sonogashira reaction using Cyrene.

Today, the Suzuki–Miyaura cross-coupling represents the most widespread Pd-
catalyzed C–C bond-forming reaction in the panorama of organic synthesis, and has
found countless applications in the medicinal chemical industry. Most of the Suzuki cross-
coupling reactions involve the use of dipolar aprotic solvents, with DMF as the solvent of
choice. Additionally, Watson et al. again described for the first time a Suzuki cross-coupling
protocol including the bio-derived solvent Cyrene as the reaction medium [25]. Pd(dppf)Cl2
was used as a catalyst and cesium carbonate was the best choice among the inorganic bases
to perform the transformation (Scheme 7). The addition of water was fundamental for
reducing the rate of formation of the aldol sub-product, that could be otherwise be easily
removed via precipitation and filtration in petroleum ether/ethyl acetate mixtures.
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Sangon et al. described a classic Heck reaction between iodobenzene and styrene
in triethylamine employing Cyrene, demonstrating improved performances during the
process, in comparison to conventional dipolar aprotic organic solvents (Scheme 8) [26].
The scope of the reaction was discovered to be substrate-specific, because switching styrene
with methyl acrylate led to less efficiency in Cyrene compared to other solvents.
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Among Pd-free coupling reactions, the Baylis–Hillman reaction represents an inter-
esting transformation leading to the introduction of a new carbon–carbon bond between
the α-position of an activated alkene and a carbon electrophile, such as an aldehyde. The
reaction takes place in the presence of a nucleophilic catalyst, such as a tertiary amine
(generally DABCO furnishes better results) or a phosphine. Solvent media that are usually
employed in this conversion are dipolar aprotic solvents, such as 1,4-dioxane and DMF.
The same research group introduced Cyrene as a solvent medium for the Baylis–Hillman
reaction as a safer and greener alternative, providing excellent results during the process
(Scheme 9) [26].
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3.5. Introduction of Fluorinated Functionalities

Fluorinated moieties are, nowadays, becoming increasingly popular thanks both
to the interesting properties that the fluorine atom can impart to the molecule (bioisos-
terism, biocompatibility, improvement of metabolic parameters, inter alia) [27], and the
reactivity furnished to the obtained structure which can undergo further functionaliza-
tion [28]. Among the structural modifications in which fluorine can play a significant role,
the difluoromethyl group (-CHF2) has increasingly established itself in the chemical and
pharmaceutical panorama [29]; therefore, novel methods of difluoromethyl functionaliza-
tion are becoming necessary. In particular, the use of the (difluoromethyl)trimethylsilane
(TMSCHF2) reagent, in the presence of a base such as KOH or alkoxyde, currently rep-
resents one of the most appealing sources of the difluoromethyl group [30–32]. Quero
and coworkers combined the use of the newly synthesized CuI/BNNSs (copper iodide
nanoparticles/boron nitride nanosheets) supports as heterogenous catalysts for the -CH
difluoromethylation reaction of heteroarenes and terminal alkynes, and the green reaction
medium Cyrene, instead of the common DMF or NMP (Scheme 10) [33]. The protocol
was carried out at room temperature affording the products in high yields and a shorter
reaction time, in comparison to the previously reported strategies.
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Scheme 10. Difluoromethylation of heteroarenes and acetylenes with TMSCHF2 using Cyrene as
the medium.

Introducing fluorine into an aromatic molecule is a feature of particular interest to the
pharmaceutical industry. Aromatic fluorination is a SNAr reaction efficiently performed in
polar reaction media. Sherwood et al. proposed the use of Cyrene as a greener alternative
to DMF and NMP, observing comparable results (Scheme 11) [1].
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3.6. N-Alkylation Reactions

N-alkylation reactions, in particular heterocyclic ones, are among the most used by
the pharmaceutical industry to carry out the synthesis of biologically active molecules.
Sherwood and collaborators proposed a two-step green synthesis of the antidepressant
Bupropion, by carrying out a nucleophilic substitution reaction on a secondary alkyl halide
with tert-butylamine using Cyrene as the medium (Scheme 12) [34]. N-alkylation reactions
are generally carried out in polar aprotic solvents, such as DMF and NMP, and this study
showed how Cyrene could also be effectively used as a green substitute in this kind of SN2
reaction. The synthetic pathway starts from 3-chloropropiophenone, which is converted
into the corresponding secondary bromide in the presence of N-bromosuccinimide in ethyl
acetate as the solvent, and the obtained product is alkylated in Cyrene on t-butylamine and
salified with 1 M HCl to afford Bupropion as a hydrochloric salt.
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Scheme 12. Green synthesis of the antidepressant drug Bupropion.

The Menschutkin reaction could be considered another intriguing example of N-
alkylation on heteroatoms. In particular, such transformation has been practiced to
obtain imidazolium-based ionic liquids via alkylation on the imidazole nitrogen with
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1-bromodecane. The salt could be easily obtained with Cyrene as the medium with
good results, instead of the common NMP, as illustrated by Sherwood and coworkers
(Scheme 13) [1].
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3.7. Formylation of Amines

A curious dual role of Cyrene as a solvent–catalyst can be found in the work of Yu and
collaborators, who proposed the synthesis of formamides starting from amines and CO2 in
the presence of phenylsilane as a reductive agent (Scheme 14) [35]. Usually, organosilanes
are used as reducing agents in combination with catalytic amounts of trifluoroacetic acid
(TFA), Pd-, Rh- or boron-based catalysts, i.e., tris(pentafluorophenyl)borane). In this
interesting example, the reduction in Cyrene was reported for the first time, without the use
of an auxiliary catalyst, affording various substituted formamides. The scope of the reaction
was also expanded to the synthesis of benzothiazoles from the reductive conversion of CO2
with aminothiophenols with the same reducing agent. The Cyrene-based catalytic system
possessed a higher reaction rate constant and a lower apparent activation energy than
both γ-valerolactone and acetonitrile-based catalytic systems. Furthermore, the authors
demonstrated that Cyrene possessed a strong ability to activate the N–H bond in amines
and the Si–H bond in phenylsilane by the solvent effect (i.e., solvation and polarization),
thereby enhancing the catalytic efficiency.
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3.8. Microwave-Assisted Multicomponent Reactions

The use of Cyrene has also been found in microwave-assisted synthesis, in particular
as a substitute for DMF, ensuring better performance by being able to heat to higher temper-
atures. Interesting work published by Tamargo and collaborators [36] clearly demonstrated
the relevance of using a multicomponent microwave process in Cyrene as a solvent for
the synthesis of bipyridine analogues (Scheme 15). Starting from chromone derivatives,
aliphatic or aromatic amines and phenyl or pyridyl acetonitrile, it was possible to assemble
several bipyridine analogues in a multicomponent reaction; in particular, the use of Cyrene
and higher temperatures (150 ◦C) in a microwave-assisted protocol resulted in impressive
yields. For simplicity, we report an example of the transformation using aniline, 3-formyl-
chromone and pyridinyl acetonitrile (Scheme 15). Bipyridine analogues represent one of the
most relevant chemical classes that can be found in many natural products and functional
materials. The authors also highlighted the function of their products to bind Hg2+, Fe3+
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and Cu2+, which enables bipyridine analogues employed for several applications, such as
heavy metal chelating agents and pollution monitoring.
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3.9. Biocatalyzed Reduction of α-Ketoesters to α-Hydroxyesters

Biocatalytic transformations involve the use of enzymes to perform chemical transfor-
mations on organic compounds. Water remains the most relevant medium for biocatalyzed
transformations, but due to its properties, the presence of organic (co)solvents is some-
times necessary. Therefore, the reduction of α-ketoesters to α-hydroxyesters was hardly
performed in water, because of the concomitant hydrolysis of the reactant. De Gonzalo
optimized the reduction of α-hydroxyesters in Cyrene, employing the biobased solvent
for the first time in a biocatalyzed processes, using alcohol dehydrogenase as a catalyst
(Scheme 16) [37]. A set of α-hydroxyesters was obtained from the corresponding chiral
α-keto derivatives, with high yields and optical purities. In addition, nicotinamide co-
factor or glucose dehydrogenase were used as recycling systems. It was worth noting that
Cyrene’s ketone group remained unaltered during the process at the concentration used
(up to 30% v/v).
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Scheme 16. Biocatalyzed reduction of α-ketoesters to α-hydroxyesters in Cyrene.

The use of Cyrene was also investigated in esterification and hydrolysis reactions, as
documented by the work of the Guajardo group in 2020 (Scheme 17) [38]. A monoester-
ification of glycerol with benzoic acid was carried out using the Novozym 435 lipase or
crosslinked aggregates of lipase B from Candida antarctica (CAL-B), in the presence of a small
amount of water. Cyrene has been shown to be an optimal solvent for the transformation,
both for its high solvent capacity (comparable to 1,4-dioxane) and for the recycling ability
of the CAL-B catalyst. The instability of Cyrene in acid can be circumvented by increasing
the concentration of glycerol. The opposite reaction was carried out using the same enzyme,
employing concentrations of Cyrene below 40%: by increasing the concentration of Cyrene
with respect to water, the performance of the hydrolysis decreased due to the equilibrium
shifting towards the starting material.
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Unfortunately, the esterification of stearic acid with beta-sitosterol was unsuccess-
ful [39], and Cyrene also failed to carry out the esterification of 2-phenylpropionic and
cinnamic acids with ethanol under the same lipase-catalyzed reaction [40].

4. Cyrene as an Innovative Solvent for the Preparation of Nanomaterials with
Advanced Applications
4.1. Nanoparticles as Drug Delivery Systems

The use of nanotechnology and, more specifically, nanoparticles (NPs) as drug delivery
systems has gained much attention in the past few decades and constitutes a powerful
strategy to overcome the poor solubility, stability and biocompatibility of many bioactive
molecules [41].

In recent years, biodegradable polymeric nanoparticles have been widely used as
potential drug delivery devices because of their high biocompatibility, long circulation time
and controlled drug release. Many techniques have been developed for the preparation of
those polymeric nanoparticles, but they suffer from the use of toxic and environmentally
harmful organic solvents, such as ethyl acetate, chloroform, and dichloromethane.

The use of alternative no-toxic solvents has been reported, but they present many
disadvantages, such as poor water solubility, high viscosity and plasticizing effects [42].
To overcome these limits, Grune et al. proposed the use of Cyrene as a new sustainable
and innovative solvent for the preparation of poly(lactic-co-glycolic acid) nanoparticles
(PLGA-NPs) [43].

PLGA-NPs with a small hydrodynamic diameter (220 nm), a low polydispersity index
(<0.2) and a highly negative zeta potential (<−23 mv) were, therefore, obtained by dissolv-
ing Resomer RG502, chosen as a standard polymer, in Cyrene. The organic solution was
then covered with 2% aqueous poly(vinyl alcohol) (PVA), followed by ultrasonication (30 s
at a cycle of 100%) and magnetic stirring of the NP suspension for 2 h at room temperature.

As mentioned before, the aprotic Cyrene is highly soluble in water because of the
presence of an equilibrium between keto and hydrate forms. This leads to the rapid
diffusion of Cyrene to the water phase, the precipitation of the polymer and the formation
of PLGA-NPs (Figure 3).
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After centrifugation, highly purified NPs were obtained with a residual Cyrene content
of <2.5%.

Furthermore, in order to test the use of such NPs as drug delivery systems, the
lipophilic drug atorvastatin was encapsulated by simple dissolution in Cyrene. The encap-
sulation was achieved in high yields and without modifying the physicochemical properties
of the NPs. Moreover, an in vivo study carried out with the hen’s egg model demonstrated
the high biocompatibility of Cyrene and its NPs.
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Later on, the same group applied the same strategy to encapsulate 6-bromoindirubin-
3′-glycerol-oxime ether (6BIGOE) into PLGA-based NPs, which is a potent anti-inflamma-
tory derivative of the natural product indirubin suffering from poor water solubility,
instability and cytotoxicity [44].

Once again, they demonstrated that Cyrene was able to assist a fast and convenient
method for the preparation of drug-loaded NPs with no toxic and plasticizing effects in
comparison with standard methods.

4.2. Graphene-Based Nanomaterials

Nanoscale two-dimensional graphene materials have attracted remarkable attention
in many fields because of their unique proprieties, such as biocompatibility, infrared light
absorbance, thermal conductivity, high surface area and easy modification.

The use of these novel nanomaterials for biomedical applications has grown expo-
nentially in recent years, and they have been employed as bacterial inhibitors, imaging
contrast agents and drug/gene stimuli-sensitive delivery systems able to respond to specific
external or internal stimuli (i.e., temperature, light, pH, redox and enzymes) [45]. More-
over, many anticancer drugs, proteins and genes have demonstrated a higher efficiency
when combined with graphene-based materials. Liquid exfoliation (and dispersion) from
graphite is the preferred scalable method to prepare good quality graphene; however, low
yields are obtained with this procedure and the use of toxic and non-environmentally
friendly solvents such as NMP and DMF is required. Therefore, in order to solve perfor-
mance and safety issues, a new approach was developed by Salavagione et al. by using
the new renewable solvent Cyrene [46]. They focused on a fast processing time where
solvent (3 mL) was added to a vial containing graphite (4.5 mg); the mixture was treated
with an ultrasonic probe for 15 min and the dispersion was then centrifuged for 10 min
(7000× g rpm). High concentrations of graphene dispersions were obtained in comparison
with traditional solvents (Figure 4). These results may be referred to the near-optimal
Hansen solubility of Cyrene, as well as its high viscosity. In addition, graphene produced
in Cyrene was of significantly higher quality, with 93% of flakes comprising 10 layers or
less, as well as having a greater aspect ratio and much lower edge defects.
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Later on, Pan et al. also studied the use of Cyrene for the dispersion of graphene using
the same sonication method [47]. In particular, they compared the conductivity properties
of the graphite flakes obtained using Cyrene as opposed to NMP. Cyrene was found to
be more effective since it required less time to achieve the same results of conductivity.
Moreover, the graphite flakes were characterized and evaluated by atomic force microscopy
(AFM) and the stable existence of few-layer graphene nanoflakes was confirmed.

4.3. Nano–Sized Metal Organic Frameworks (MOFs)

Metal organic frameworks (MOFs) are a family of hybrid porous materials made of
well-organized inorganic metal cations, clusters or neutral metals (nodes) linked to one
another by organic ligands (linkers) via coordination bonds (Figure 5). A large number of
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MOFs has been synthesized in the past decades, and the driving force of the enormous
interest in this area lies in the versatility of the metal-organic coordination chemistry,
as well as the wide range of available organic linkers which can lead to thousands of
possible structures (typically within the 3–60 Å range). With this in mind, researchers
have tuned MOFs toward a wide range of applications, including gas adsorption and
separation, catalysis, energy storage and biomedical applications. Within this framework,
MOFs have recently been reported as efficient materials for drug delivery systems using
Ibuprofen as a model drug [48]. In fact, these solids exhibit many interesting features
suitable for their successful use as drug carriers, such as a low toxicity (the use of low
toxicity metals and ligands), biodegradability, the presence of a hydrophilic–hydrophobic
internal microenvironment adapted to a large variety of active molecules, modulation of
drug encapsulation and delivery by controlling the porous structure (interconnectivity,
pore size, flexibility), and optimization of host–guest interactions.
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MOFs are often synthesized at elevated temperature using toxic organic solvents,
such as DMF or diethylformamide (DEF), due to their high boiling point, as well as their
beneficial acid–base properties. However, the industrial-scale synthesis of MOFs may
generate significant amounts of DMF waste, which exhibit reprotoxicity and end-of-life
issues associated with the formation of NOx upon incineration. Therefore, it is crucial to
develop green and sustainable methods of synthesizing MOFs. Thus, in 2016, Katz and
co-workers investigated the use of Cyrene in the synthesis of archetypal MOFs [49]. Firstly,
they explored the use of a mixture of Cyrene and EtOH for the synthesis of MOF HKUST-1
which was successfully obtained as a crystalline solid. They then proceeded to evaluate its
N2 gas absorption., observing a decrease in the BET surface area (SA) when Cyrene was
used instead of DMF under identical conditions (Table 3). Hence, they investigated the role
of EtOH as an additive and found that the MOF’s SA decreased when absolute ethanol was
not used. This may be attributed to the fact that in the presence of water, Cyrene might
react to produce the geminal diol, as mentioned before. Thus, the use of dry ethanol was
obligatory, as well as the necessity of keeping the water content of Cyrene low [49].

Table 3. BET surface area of HKUST-1 with different solvents.

MOFs Solvents BET SAs

HKUST-1

Entry 1 DMF/EtOH/H2O (1:1:1) 1400
Entry 2 Cyrene/EtOH/H2O (1:1:1) 1100
Entry 3 Cyrene/EtOH (1:1) 1500
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With these results in mind, the use of Cyrene was extended to other MOFs: UiO-66,
ZIF-8, MOF-74 and Zn(BCD)2 (DABCO), as representatives. Both DMF and Cyrene gave
the same products in all four cases; however, Cyrene-MOFs show lower surface areas
in comparison to their DMF counterparts (Table 4). In order to explain this, the authors
looked more closely at ZIF-8: powder X-ray diffraction showed different peak intensities
which were not usually observed for pore-filled ZIF-8. Fortunately, examination under a
microscope revealed the presence of an aldol condensation product between two Cyrene
molecules which could be avoided by decreasing the heating time (Scheme 18). All these
considerations can be extended to the synthesis of other MOFs which, at present, do not
have green synthetic pathways.

Table 4. BET surface area of different MOFs.

MOFs BET SA in DMF BET SA in Cyrene

HKUST-1 1400 1500
UiO-66 1300 500
ZIF-8 1700 600

Zn2(BCD)2(DABCO) 1950 1300
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4.4. Lignin-Based Nanomaterials

Lignin is the second most abundant component of biomass which features unique
properties, such as antioxidant, antibacterial, anti-UV properties, and good biocompatibility.
Therefore, it represents an optimal candidate for various biomedical applications, such as
gene and drug delivery [50]. Several types of lignin exist which are classified according
to their production methods; among them are kraft (KL), organosolv (OSL) and soda
lignin (SL). Very few organic solvents are indeed able to dissolve a large range of technical
lignins; polar aprotic solvents such as DMF and DMAc are among them. However, as
before mentioned, they present serious health and environmental issues; therefore, there
is a growing need to look for safer and greener strategies. Thus, in 2020, Ragauskas and
co-workers examined, for the first time, the use of Cyrene as an alternative polar aprotic
solvent to extract lignin [51]. The results showed that Cyrene has a high potential as a
solvent in terms of lignin fractionation/recovery. Moreover, their study also showed a
good solubility of organosolv lignins in a Cyrene–water mixture (from 60 to 100 vol%
Cyrene). Based on these results, Averous et al. expanded the potential of Cyrene to other
type of lignins [52]. In agreement with the previous results, OSL was found to be almost
fully soluble in Cyrene, while KL and SL were partially soluble (61–63%). The solubility
increased when water was added to Cyrene due to the formation of the geminal diol (vide
supra). Then, they successfully used Cyrene as a solvent for the chemical modification of
lignins though the reaction with cyclic anhydride, acyl chloride and isocyanate (Scheme 19).
To the best of our knowledge, this is the first example of urethane formation in Cyrene;
however, further optimization would be needed. This study proves that Cyrene is a valid
alternative for greener lignin chemistry.
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5. Conclusions

To conclude, Cyrene is acquiring more popularity among green, non-mutagenic and
non-toxic reaction solvents, thanks to its biocompatibility and applicability in the panorama
of organic synthesis and the development of functional biomaterials. Various reactions
have been exploited in Cyrene, most of them with high importance for the construction of
biologically relevant chemical bonds. On the other hand, Cyrene has also proven its worth
for the synthesis of nanomaterials having many advanced applications. Therefore, new
interesting frontiers for the use of Cyrene in other fields are opening currently and its use
will hopefully become more widespread.
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