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Abstract: Coronary atherosclerosis is a chronic pathological process that involves inflammation
together with endothelial dysfunction and lipoprotein dysregulation. Experimental studies during
the past decades have established the role of inflammatory cytokines in coronary artery disease,
namely interleukins (ILs), tumor necrosis factor (TNF)-α, interferon-γ, and chemokines. Moreover,
their value as biomarkers in disease development and progression further enhance the validity of this
interaction. Recently, cytokine-targeted treatment approaches have emerged as potential tools in the
management of atherosclerotic disease. IL-1β, based on the results of the CANTOS trial, remains the
most validated option in reducing the residual cardiovascular risk. Along the same line, colchicine
was also proven efficacious in preventing major adverse cardiovascular events in large clinical
trials of patients with acute and chronic coronary syndrome. Other commercially available agents
targeting IL-6 (tocilizumab), TNF-α (etanercept, adalimumab, infliximab), or IL-1 receptor antagonist
(anakinra) have mostly been assessed in the setting of other inflammatory diseases and further
testing in atherosclerosis is required. In the future, potential targeting of the NLRP3 inflammasome,
anti-inflammatory IL-10, or atherogenic chemokines could represent appealing options, provided
that patient safety is proven to be of no concern.
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1. Introduction

Coronary artery disease remains the leading cause of death in developed countries [1],
despite the recent advances in its pharmacological and interventional management. The
sudden rupture of the unstable atherosclerotic plaque and the subsequent platelet aggrega-
tion and thrombosis or thromboembolism is the pathologic hallmark of coronary artery
disease and subsequent detrimental cardiovascular events [2]. Throughout the process
of atherosclerosis, and especially in the formation and rupture of the vulnerable plaque,
inflammatory cells and factors, such as cytokines, are involved [3]. As early as the mid-19th

century, Carl von Rokitansky and Rudolf Virchow detected cellular inflammatory changes
in the atherosclerotic vessel walls, indicative of the role of inflammation in the disease
development and progression. During recent years, research on atherosclerosis has been
intense, highlighting the critical impact of inflammatory mediators in the establishment of
a low-grade, sterile inflammatory state. Cytokines have been central in this regard, point-
ing to their potential as atherosclerotic disease biomarkers and even therapeutic targets,
through cytokine-based treatment in atherosclerotic disease [4]. Therefore, in this review,
we aimed to study the pathophysiology behind unstable atherosclerotic plaque, focusing
on the role of inflammatory cytokines, and provide the latest data regarding the use of
cytokines as therapeutic targets for the treatment of unstable atherosclerotic plaque.
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2. Pathophysiology of the Atherosclerotic Plaque

Atherosclerotic plaque formation mainly depends on endothelial dysfunction, ab-
normal lipid metabolism, and inflammation. In the presence of genetic susceptibility,
cardiovascular risk factors (hypertension, diabetes mellitus, smoking, inflammation), or
low shear stress, there is augmented oxidative stress which promotes endothelial dysfunc-
tion, the initial step of atherogenesis [5]. The vascular endothelium represents an abundant
organ lining blood vessels that is critical to atherosclerosis development and progression.
In a healthy state, endothelial cells are responsible for regulating essential processes, such
as the regulation of vascular tone, thrombosis and fibrinolysis, vascular inflammation and
remodeling [6]. The main regulator of endothelial function is nitric oxide (NO), which
possesses vasorelaxant, anti-thrombotic, anti-proliferative, and anti-inflammatory prop-
erties. However, when endothelial cells become activated, there is a change towards an
atheroprone phenotype with the promotion of vasoconstriction, thrombosis, leukocyte
mobilization-migration, and vascular smooth muscle cell (VSMC) proliferation [6]. This
stems from an impaired bioavailability of NO due to an increased degradation paired with
diminished production [6]. Uncoupling of endothelial NO synthase (eNOS), as a result
of asymmetric dimethylarginine upregulation (endogenous eNOS inhibitor), oxidation
of tetrahydrobiopterin (BH4), or failure of BH4 salvage pathway, represents the critical
process contributing to impaired NO bioavailability and reactive oxygen species (ROS)
production [6].

In the presence of a dysfunctional endothelial layer, the increased permeability aids the
penetration of apolipoprotein B-containing lipoproteins up to approximately 70 nm in diam-
eter, namely low-density lipoprotein (LDL), in the vessel wall [7]. LDL is a heterogeneous
molecule that is responsible for the transport of insoluble cholesterol. Four LDL categories
have been described, with small-dense LDL (sdLDL) being the most atherogenic. The influx
of LDL particles is no longer considered a passive process. Their transcytosis depends on
caveolae, scavenger receptor B1 (SR-B1)-dedicator of cytokinesis 4 (DOCK4) coupling, and
activin receptor-like kinase 1 (ALK1) [7]. Subsequently, they are retained in the vessel wall
owing to the interaction of the positively charged arginine and lysine of apoB100 with the
negatively charged sulfate and carboxylic acid of the arterial wall proteoglycans. LDL can
then undergo multiple modifications, including oxidation, electronegativity, desylation,
glycation, and self-association [8]. Oxidized LDL (oxLDL) molecules bind to the lectin-like
oxLDL receptor-1 (LOX-1) that is located on the surface of vascular smooth muscle cells
and macrophages, leading to the formation of foam cells [9]. Moreover, LDL particles can
form complexes with proteoglycans and glycosaminoglycans of the arterial wall, which
may also be uptaken by macrophages. Furthermore, oxLDL could secrete bioactive lipids
with local and systemic effects. Additionally, cholesterol crystal formation by LDL can
promote NLR-family pyrin domain-containing protein 3 (NLRP3) inflammasome activa-
tion. Finally, LDL can induce innate and adaptive immune responses. On the other hand,
the atheroprotective high-density lipoprotein (HDL) can remove cholesterol from foam
cells by the stimulation of reverse cholesterol transport [10]. Additionally, HDL can en-
hance endothelial cell function, prevent LDL oxidation, and adhesion molecule expression.
Last but certainly not least, inflammation orchestrates a detrimental cascade involving
endothelial activation, monocyte adhesion and subendothelial transmigration, platelet
activation, and coagulation that participates in atherogenesis [6,11–14]. Current concepts
in the inflammatory concept of atherosclerosis include the atheroprone potential of NLRP3
inflammasome and neutrophil extracellular traps (NETs) [15,16].

The progression of atherosclerotic plaques into unstable mainly depends on the for-
mation of so-called thin cap fibroatheromas (TCFAs) [17]. Firstly, as foam cells continue to
accumulate due to the uptake of modified LDL by VSMCs and macrophages, a lipid-rich
core begins to form. Secondly, the presence of defective efferocytosis of cellular debris
from apoptotic VSMCs and macrophages leads to a lipid-rich necrotic core. Perhaps most
importantly, the decreased collagen synthesis and the increased collagen degradation
based on the action of interferon-γ (IFN-γ) and matrix metalloproteinases (MMPs), re-
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spectively, promotes the thinning of the fibrous cap that surrounds the lipid-rich necrotic
core. Microscopic or spotty calcification is another factor that is associated with plaque
vulnerability [18]. Ultimately, plaque rupture and exposure of thrombogenic plaque sub-
stances, such as tissue factor, to coagulation proteins of the blood induce thrombus for-
mation, clinically translating to acute ischemic events. It should be noted that superficial
plaque erosion is an increasingly common phenotype of plaque progression and disruption
nowadays. Plaque erosion is based on disturbed endothelial shear stress, endothelial-to-
mesenchymal transition, and ultimately endothelial cell apoptosis [19]. Moreover, the
recruited leukocytes also undergo apoptosis and NETosis, promoting platelet activation
and the formation of platelet-rich thrombi [19].

3. Cytokines in Coronary Atherosclerosis

Cytokines are small (15–20-kD), hormone-like, soluble proteins that act as mediators
aiding the communication between immune cells and neighboring or distant organs [20].
Cytokines perform a critical mission in the immune system by modulating the humoral
and cell-based immune responses to infection and inflammation. They are produced by
immune cells, namely macrophages, B lymphocytes, T lymphocytes, mast cells and by
endothelial cells, platelets, fibroblasts, and some stromal cells [21]. Different cells may
produce the same cytokine. The cytokines family includes interleukins (ILs), chemokines,
interferons (IFNs), and tumor necrosis factors (TNFs). Below we discuss the role and
the importance of the most extensively investigated cytokines in coronary atherosclerosis
(Figure 1 and Table 1).
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Figure 1. Role of major cytokines and chemokines in atherosclerosis initiation and progression.
Cytokines are involved in critical steps of the atherosclerotic cascade, such as endothelial cell (EC)
activation and dysfunction, low-density lipoprotein (LDL) transcytosis, monocyte adhesion and
transmigration. Moreover, they are important mediators of macrophage (MP) phenotype and T
helper 0 (Th0) differentiation. Additionally, they are involved in extracellular matrix remodel-
ing, vascular smooth muscle cell (VSMC) proliferation. Ultimately, they contribute to the forma-
tion of a lipid-rich necrotic core surrounded by a thin fibrous cap. TNF: tumor necrosis factor;
IL: interleukin; NF-κB: nuclear factor-kappaB; NO: nitric oxide; MC: monocyte; IFN: interferon;
FC: foam cell; ST2L: suppression of tumorigenicity 2 ligand; MMP: matrix metalloproteinase;
ICAM-1: intracellular adhesion molecule-1; VCAM-1: vascular cell adhesion molecule-1;
CCL: chemokine (C-C motif) ligand; CCR: C-C chemokine receptor; CXCL: chemokine (C-X-C
motif) ligand; CXCR: CXC chemokine receptors.
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Table 1. Role and mechanism of action of various cytokines in atherosclerosis.

Cytokine Role in Atherosclerosis Mechanism

IL-1β
IL-18 Promote

Endothelial dysfunction
Monocyte migration and maturation
VSMC proliferation
IL-6 signaling-potentiation of inflammation
↑MMP production

IL-1-Ra Suppress Prevent pro-atherosclerotic IL-1β effects

IL-33 Suppress

Change in T cell polarization from Th1 to Th2
↑ Treg cells
↑ natural IgM anti-oxLDL antibodies
↓macrophage foam cell production
Activation of type-2 innate lymphoid cells
Macrophage polarization toward a ‘M2’ phenotype

IL-6 Promote
Induction of platelet and coagulation cascade
Upregulation of adhesion molecules expression
Loss of endothelial layer integrity

IL-10 Suppress

↓ inflammation, oxidative stress
↓ endothelial monocyte adhesion
↓ lesional foam cell apoptosis
↑macrophage lipid uptake and reverse
cholesterol transport

TNF-α Promote

Endothelial dysfunction
Oxidative stress
Potentiation of inflammation
↑ oxLDL uptake and ↓ expression of the scavenger
receptor class A
↑ LDL transcytosis and retention in the
subendothelial space
↑macrophage-induced cell death and inflammation
Promotion of a secretory VSMC phenotype

IFN-γ Promote

Endothelial cell activation
Leukocyte mobilization
Shift of macrophages towards the atheroprone
M1 phenotype
Polarization of T cells towards a Th1 phenotype
↓ collagen synthesis

RANTES Promote Monocyte recruitment

CCL2/CCR2 Promote Monocyte recruitment

CX3CL1 Promote
Monocyte recruitment
Macrophage-VSMC cross-talk
Platelet activation and aggregation

IL: interleukin; VSMC: vascular smooth muscle cell; MMP: matrix metalloproteinase; Ra: receptor antagonist;
oxLDL: oxidized low-density lipoprotein; TNF: tumor necrosis factor; IFN: interferon; ↑: increase, ↓: decrease.

3.1. Interleukins

Interleukins appear to play the most important role in the atherosclerotic process and
are synthesized and secreted by white blood cells, mainly CD4+ T helper cells, as well as
monocytes, macrophages, and endothelial cells.

3.1.1. IL-1 Family

The IL-1 family consists of 11 members encoded by 11 distinct genes, of which IL-1,
IL-1 receptor antagonist (IL-1Ra), IL-18, and IL-33 are the most well-characterized. IL-1, in
particular, has two subtypes (IL-1α, IL-1β) which bind to type 1 IL-1 receptor and take part
in the regulation of immune responses, inflammatory reactions, and hematopoiesis [22].
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Since IL-1α is mostly membrane-bound, it functions primarily locally rather than systemi-
cally. On the other hand, the main circulating version of IL-1 is IL-1β.

Critical to the production of IL-1β is the NLRP3 inflammasome. It consists of the
innate immune sensor NLRP3, the adaptor molecule ASC, and the effector protease
pro-caspase-1 [23]. The first step of NLRP3 inflammasome activation consists of prim-
ing by endogenous cytokines, thus upregulating NLRP3 and pro-IL1β through nuclear
factor-kappaB (NF-κB) activation. In the setting of increased ion fluxes (K+, Cl−, Ca2+,
Na+), lysosomal leakage, mitochondrial dysfunction, or oxidative stress, the second step
of NLRP3 inflammasome activation ensues [24]. Noncanonical and alternative activa-
tion, through cytosolic lipopolysaccharide or Toll-like receptor-4 (TLR4)–TIR-domain-
containing adaptor-inducing interferon-β (TRIF)–receptor-interacting serine/threonine-
protein kinase 1 (RIPK1)–Fas-associated protein with death domain (FADD)–CASP8 signal-
ing, has also been described. However, the effect of NLRP3 inflammasome on endothelial
function depends mostly on the augmented reactive oxygen species (ROS) production.
ROS further aggravate endoplasmic reticulum stress, which, in turn, promotes NLRP3
inflammasome activation through p38 mitogen-activated protein kinase (MAPK) pathway,
Jun-N-terminal kinase (JNK) signaling, X-box-binding protein-1 (XBP1), CCAAT/enhancer-
binding protein–homologous protein (CHOP), NF-κB, and TXNIP signaling pathways.
At the same time, mitochondrial ROS overproduction additionally contributes to NLRP3
inflammasome activation.

Upon activation, NLRP3 inflammasome enhances cellular secretion of IL-1β, IL-18,
and high mobility group box 1 (HMGB1). These molecules bind to specific receptors on
the endothelial cell surface, namely IL-1 receptor, IL-18 receptor, and TLR2/4, activating
myeloid differentiation factor 88 (MyD88), IL-1 receptor-associated kinase 1/4 (IRAK1/4)
and TNF receptor-associated factor (TRAF) [24]. Ultimately, the subsequent NF-κB activa-
tion promotes the formation of secondary inflammatory molecules, such as TNF-α and IL-6,
which triggers the hepatic production of C reactive protein, fibrinogen, and plasminogen
activator inhibitor 1 (PAI-1). At the same time, NF-κB activation assists leukocyte mobiliza-
tion via upregulation of adhesion molecules (intercellular adhesion molecule 1 (ICAM-1),
vascular cell adhesion molecule 1 (VCAM-1), P-selection, and E-selectin) and chemokines
(monocyte chemoattractant protein 1 (MCP-1)). Moreover, HMGB1 can also bind to the
receptor for advanced glycation end products (RAGE), triggering p38 MAPK activation,
phosphorylation of the actin-binding protein Hsp27 and caldesmon, leading to actin stress
fibers formation, cytoskeletal remodeling, and endothelial contraction. Therefore, apart
from the increased leukocyte transmigration to the vessel wall, there is an enhanced en-
dothelial cell permeability. Lastly, this pro-inflammatory state could induce endothelial cell
senescence and secretion of senescence-associated secretory phenotype (SASP), limiting
endothelial cell proliferation and promoting vascular sclerosis.

The ultimate result of those deleterious processes associated with NLRP3 inflamma-
some activation is atherosclerosis progression. Atherosclerotic plaques from carotid artery
specimens were found with increased expression of NLRP3 signaling pathway molecules
(NLRP3, ASC, caspase-1, IL-1β, and IL-18) compared to non-atherosclerotic arteries [25,26].
In the coronary tree, upregulation of ASC, caspase-1, and IL-18 was noted in segments with
advanced atherosclerosis, together with prevalent NLRP3 inflammasome-positive foam
cells around the necrotic core [27]. Clinically, NLRP3 inflammasome expression has been
found to increase in patients with an acute coronary syndrome, followed by patients with
stable angina, compared to those without coronary artery disease [28–30], indicating an
association with plaque vulnerability and clinical events.

Moving downstream in the NLRP3 inflammasome pathway, IL-1 is a major mediator
of inflammation in various pathologic states, such as autoinflammatory diseases (familial
Mediterranean fever), acute infections, and chronic inflammatory environments, such as
cancer and atherosclerosis [31]. In the latter, it promotes its initiation by activating the
vascular endothelium, with subsequent upregulation of adhesion molecules, mobiliza-
tion and transmigration of leukocytes [32]. IL-1 is also produced by cells found in the
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atheroma following inflammatory stimuli, and, thus, its role in atherogenesis progression
was assumed and later demonstrated in animal studies [33,34]. This was accomplished via
pharmaceutically or genetically augmenting or limiting IL-1 function. In pig models, IL-1β
caused the thickening of the intima of coronary arteries and vasospasm in vivo [35]. Fur-
thermore, IL-1 causes the autocrine production of platelet-derived growth factor (PDGF),
which, in turn, stimulates human VSMC proliferation. Besides VSMCs, IL-1 modulates
cardiac myocyte functionality and may hinder cardiac contractility and remodeling post-
myocardial infarction. IL-1 can also act on endothelial cells, leukocytes, and VSMC to
potentiate the production of inflammatory mediators (IL-6, TNF-α, CCL2), potentiating its
anti-inflammatory effect. Ultimately, molecules that are responsible for plaque remodeling
(MMP-3), erosion (MMP-2, -9), and rupture (MMP-1, -8, -13) are upregulated [36].

Early reports from Frostegård et al. indicated the presence of IL-1α and IL-1β in ad-
vanced human atherosclerotic plaques [37]. However, in the initial stages of atherosclerosis,
IL-1α may be absent [38]. Interestingly, an experimental study using (99m)Tc-TNFR2-
Fc-IL-1RA single photon emission tomography in ApoE−/− and ApoE+/+ mice fed with
either atherogenic or normal diet demonstrated greater uptake of the radiotracer in the
ApoE−/− mice and those on an atherogenic diet [39]. These findings correlated with
the real-time polymerase chain reaction that found an increased expression of IL-1β in
atherosclerotic mice aortas [39]. Type 2 diabetes mellitus may also play an important
role in the pro-inflammatory milieu of atherosclerosis, as shown by the increased IL-1β
mRNA in atherosclerotic plaques of patients with type 2 diabetes compared to non-diabetic
plaques [40]. In another study, IL-1α was independently associated with a high vulnerable
plaque burden after a multivariable analysis in 301 patients undergoing coronary computed
tomography angiography (CCTA) [41]. Another study reported that NLRP3 inflammasome
drives the production of equal amounts of IL-1α and IL-1β in the atherosclerotic plaque,
and IL-1β concentration is higher in individuals with complex plaques [42]. Ragino et al.
found markedly increased IL-1β expression in coronary arteries with TCFA or erosive
changes compared to type 3 plaques (necrosis, degeneration, spotty calcification) [43].
Previously, it has also been suggested that overexpression of IL-1β in the atherosclerotic
plaque was associated with extensive atherosclerosis [44]. A recent study shed more light
on the differential effects of IL-1 isoforms in atherosclerosis [45]. IL-1α inhibition resulted
in diminished outward arterial remodeling during early atherogenesis. At the same time,
IL-1β inhibition had no effect on outward remodeling at all stages of atherogenesis, while
also inducing an anti-inflammatory monocyte response and reduced atheroma size. IL-1β
could also mediate its atherogenic action through NETosis and subsequent tissue fac-
tor overexpression [46]. To summarize, IL-1 may propagate atherosclerosis by inducing
endothelial dysfunction, and assist its progression and the formation of unstable atheroscle-
rotic plaques by IL-1β’s actions (potentiation of inflammation, enhancement of VSMC
proliferation, and extracellular matrix degradation).

The other cytokines of the IL-1 family have also been investigated, albeit to a lesser
degree. Data are limited regarding IL-18, another downstream product of NLRP3 in-
flammasome activation. IL-18 may promote endothelial cell dysfunction and initiate the
deleterious atherosclerotic cascade, as well as promote plaque progression and desta-
bilization by increasing MMPs and inducing IFN-γ expression from macrophages and
VSMCs [47]. Moreover, IL-18 can potentiate the synthesis of IL-1α, IL-1β, IL-6, TNF-α,
INF-γ, and CCL2 [48–50]. As shown by Mallat et al., unstable carotid plaques had a higher
expression of macrophage IL-18 mRNA, further suggesting its possible implication in
plaque instability [51]. The same was noted in coronary atherectomy specimens, with
greater IL-18 immunopositivity in culprit plaques and plaques from patients with unsta-
ble angina, also correlating with IFN-γ expression [52]. A recent experimental study has
suggested a link between blood levels of IL-18 and carotid artery plaque vulnerability.
The highest circulating IL-18 levels were documented in models with unstable plaque,
followed by stable plaque and non-plaque groups [53]. Ragino et al. reported a higher IL-18
tissue expression in coronary arteries with TCFAs or plaque erosions compared to type 3
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plaques [43]. A prior clinical study found that circulating IL-18 has been associated with
plaque rupture and TCFAs detected by optical coherence tomography (OCT) in 46 patients
with acute coronary syndromes or stable angina pectoris [54]. Furthermore, IL-18 levels
have been associated with incident coronary artery disease [55]. Despite the encouraging
evidence concerning the importance of IL-18 in atherosclerotic plaque initiation (through
endothelial dysfunction) and vulnerability (through extracellular matrix remodeling), we
need additional information from preclinical and clinical studies to better understand
these relationships.

As far as the role of IL-1Ra in unstable plaques is concerned, an experimental study
using IL-1Ra+/− mice showed increased atherosclerotic lesion formation compared to
IL-1Ra+/+ mice [56]. In mice models, IL-1Ra deficiency augmented arterial inflammation
and also led to aneurysm formation [57,58]. Moreover, human IL-1Ra infusion in an exper-
imental porcine model of arterial injury displayed a significant and sustained reduction
in neointima formation [59]. In human studies, the mRNA expression and the levels of
IL-1Ra in the coronary ostium of culprit vessels have been found elevated [60,61], while
a polymorphism in IL-1Ra that is associated with increased expression could diminish
mean coronary plaque area [60].

IL-33, another member of the IL-1 cytokine family, acts as a ‘alarmin’ or stress-response
cytokine that initiates and modulates an immune reaction, especially in areas that it is
highly expressed, such as endothelial or epithelial cells. Its expression can be influenced
by other cytokines, such as TNF-α, IFN-γ, and IL-1β [62]. When IL-33 is generated, it
functions in an autocrine/paracrine way to activate the ST2L (ST2 gene-like) membrane re-
ceptor on adjacent cells, also known as the IL33R, and the IL-1 receptor-like 1 (IL1RL1) [63].
sST2, a soluble shortened version of ST2L lacking the transmembrane and intracellular
domains, is produced by endothelial and immune cells either constitutively or in response
to stimulation (in some cases by IL-33). sST2 is hypothesized to operate as a decoy receptor,
dampening the effects of IL-33. IL-33 assumingly possesses atheroprotective properties.
Several processes might account for these activities, including a change in T cell polariza-
tion from Th1 to Th2 and an increase in Treg cells, higher levels of natural IgM anti-ox-
LDL antibodies [64], prevention of macrophage foam cell production [65,66], activation
of type-2 innate lymphoid cells and macrophage polarization towards a ‘M2’-like, anti-
atherosclerotic phenotype [67,68]. Thus, IL-33 is implicated in atherosclerosis evolution.
However, proatherogenic actions have also been described in experimental studies, such
as IL-33-induced tissue factor, adhesion molecules, and NF-κB expression by endothelial
cells, with subsequent IL-6 and TNF-α synthesis [69,70]. At the same time, IL-33 can induce
the secretion of chemokines (CCL2, CCL5) from mast cells [71]. A previous study has
suggested that IL-33 may contribute to increased endothelial barrier permeability and
angiogenesis [72]. Clinically, serum IL-33 concentration was increased in individuals with
unstable angina pectoris and acute myocardial infarction compared to stable angina and
control groups [73]. Moreover, IL-33 emerged as an independent predictor of acute coro-
nary syndrome incidence. IL-33 was also found in abundance in the presence of vulnerable
atherosclerotic plaques, and correlated with the degree of inflammatory cell infiltration [74].
However, conflicting results have also been reported, indicating IL-33′s ambiguous role
in atherosclerosis [75]. A subsequent study stressed the prognostic significance of IL-33
in patients after revascularized acute coronary syndrome, with higher levels indicating
a higher disease complexity and poorer 1-year prognosis [76]. It should also be stated that
although the IL-33/ST2 axis may be related to coronary atherosclerosis, the various gene
single nucleotide polymorphisms may modify this association, as suggested by a recently
reported systematic review and meta-analysis [77]. Other than its role in atherosclerosis,
IL-33 exerts a protective effect in most infectious settings, by assisting the clearance of the
causal microorganism [78]. Moreover, it may exacerbate inflammatory conditions, such as
asthma, chronic obstructive pulmonary disease, periodontitis, rheumatoid arthritis, and
inflammatory bowel disease [78]. IL-33 is also a tumorigenic cytokine most likely through
mast cell accumulation [78].
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3.1.2. IL-6

IL-6 is a pleiotropic cytokine that resides downstream in the IL-1 signaling cascade,
is involved in the innate and adaptive immunity system, and modulates the acute-phase
response and chronic inflammation. It is mostly produced after IL-1 or TNF-α triggers
activated monocytes and macrophages, as well as other cell types, such as SMCs, endothe-
lial cells, adipocytes, fibroblasts, and T helper 2 cells [79]. IL-6 increases the formation of
acute phase reactants such fibrinogen, plasminogen activator inhibitor, which prevents
fibrinolysis, and CRP by binding to membrane-bound IL-6 receptors (IL-6R) on hepatocytes
in the classical signaling pathway [80]. The IL-6/IL-6R complex then binds to the two
subunits of the membrane-bound gp130, forming a hexamer and promoting intracellular
signaling [80]. Even though most cells do not express IL-6R on their membrane and cannot
respond to IL-6 stimulation, endothelial cells represent an exception to this rule, together
with lymphocytes, macrophages, and hepatocytes. IL-6 can also bind to soluble IL-6R
in tissues and serum, allowing signaling in most cell types (trans-signaling) [80]. The
production of soluble IL-6R is based on the cleavage of membrane-bound IL-6 by ADAM10
(a disintegrin and metalloproteinase domain-containing protein 10) and ADAM17 [81].
Recently, a third signaling method has been described, based on the interaction between
dendritic cells and T cells (trans-presentation) [82]. After binding to gp130, the intracellular
Janus kinase/Signal transducer and activator of transcription 3 (JAK/STAT3) signaling
pathway is activated, ultimately leading to specific gene expression. As a contributor to
inflammation, IL-6 is implicated in the pathogenesis of related diseases, such as rheumatoid
arthritis, solid organ and hematologic malignancies [83].

IL-6 may potentiate the initiation and development of atherosclerosis by inducing
platelet and coagulation cascade activation, upregulation of adhesion molecules expression,
and loss of endothelial layer integrity [84–87]. It can further augment the inflammatory re-
sponse by stimulating the production of TNF-α, CXCL8, and CCL2 [88]. In confirmation of
its atherogenic action, a seminal experimental study detected an increase in atherosclerotic
lesion size in mice treated with recombinant IL-6 compared to saline [89]. In the presence of
plaque instability, the in situ IL-6 expression is also elevated, as seen in immunohistochem-
istry assessment of unstable carotid plaque specimens compared to stable plaques [90,91].
A reduction in IL-6 level at the plaque may lead to stabilization [92]. Ragino et al. found
a higher coronary IL-6 expression in the presence of TCFAs or plaque erosions compared to
type 3 plaques [43].

In clinical studies, IL-6 consistently associates with an increased risk of future non-fatal
myocardial infarction and coronary artery disease, even larger than cemented cardiovas-
cular risk factors, such as blood pressure and LDL [55]. Peripheral blood IL-6 has been
considered an independent predictor of OCT-defined TCFAs, with superior diagnostic ac-
curacy compared to high sensitivity CRP (area under the receiver operating characteristics
curve (AUROCIL-6): 0.783 vs. AUROChs-CRP: 0.715) [93]. Recently, a study suggested that
IL-6 levels were elevated in 69 coronary artery disease patients with TCFAs and high-risk
plaques, as defined by OCT and intravascular ultrasound [94]. Another large-scale study
conducted by Ferencik et al. demonstrated that IL-6 was related to Coronary Artery Disease
Reporting and Data System (CAD-RADS) categories and the degree of coronary stenosis
in CCTA, being also predictive of major adverse cardiovascular events [95]. Another in-
teresting observation was made by Bambrough et al., who identified a local biomarker
signature, the IL-6 trans-myocardial gradient, prior to percutaneous coronary intervention
as an important indicator of plaque burden and minimal lumen area [96]. In this direction,
it has been previously reported that aspirated serum in culprit coronary arteries of patients
with acute myocardial infarction had significantly higher concentrations of IL-6 compared
to peripheral blood early in the course of the event [97].

Apart from the clinical data supporting the association of IL-6 with atherosclerotic
diseases, there is a genetic background in this interaction. To begin with, the IL6R locus has
been detected in genome-wide association studies of coronary artery disease [98]. Moreover,
genetic alterations in IL-6 signaling increase the cleavage of membrane-bound IL-6R, thus
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being positively correlated with plasma IL-6R, CRP, and cardiovascular risk, according
to mendelian randomization studies [99,100]. Lastly, the genetic variation in IL6R was
associated with atherosclerotic manifestations, such as coronary artery disease, peripheral
artery disease, and aortic aneurysms [101].

3.1.3. IL-10

IL-10 is a model anti-inflammatory cytokine produced largely by Th2 macrophages
and Treg cells. IL-10 has been implicated in numerous pathologies, including a beneficial
effect in allergic states, autoimmunity, and infections [102]. At the same time, its role
in neurodegenerative diseases and malignancies is controversial [103,104]. In atheroscle-
rosis, it exerts its protective effects via inhibition of inflammation (suppression of IL-1,
IL-6, and TNF-α), oxidative stress, endothelial monocyte adhesion, and lesional foam cell
apoptosis [105–108]. Moreover, IL-10 can modulate lipid metabolism by promoting
macrophage lipid uptake and reverse cholesterol transport [109]. Other than preclini-
cal studies indicating a role in atherosclerosis, Treg cells and IL-10 were found in lesser
concentrations in patients with a prior myocardial infarction [110]. However, tissue ex-
pression of IL-10 might differ from circulating one, as shown by Nishihira et al. in an
immunohistochemical study of coronary lesions [111]. As a biomarker, IL-10 was assessed
in 930 participants without cardiovascular disease in the Multi-Ethnic Study of Atheroscle-
rosis. The investigators noted no associations with cardiovascular outcomes or coronary
artery calcium during an average 10.2-year follow-up [112]. Interestingly, a study in pa-
tients with non-ST-elevation myocardial infarction found that the highest quartile of IL-10
concentration was associated with poor cardiovascular outcomes [113]. However, these re-
sults are contradictory to a previous study in a similar patient population [114]. In another
recent study, higher IL-10 was associated with a lower prevalence of severe coronary artery
disease in patients with metabolic syndrome [115]. In patients with human immunodefi-
ciency virus, IL-10 was inversely correlated with total and noncalcified coronary plaque
volume [116]. The variation in the results of human studies suggests that circulating IL-10
levels probably fluctuate according to the clinical context.

3.2. TNF-α

TNF-α acts as a ligand for two TNF-α receptors (TNFRs), TNFR1 and TNFR2. TNFRs
are single transmembrane glycoproteins with extracellular TNF-binding domains that are
distinguished by four tandemly repeated cysteine-rich motifs [117]. TNFRs are normally
found on the cell membrane, but they can be liberated in soluble forms, capable of binding
and neutralizing the action of circulating soluble TNF-α. Most cells in the body express
TNFR1 on a constant basis. TNFR2 expression, on the other hand, is often stimulated
by pro-inflammatory stimuli and is primarily limited to immune cells, but it can also be
induced by endothelial cells or cardiomyocytes [118]. The bioavailability of the soluble
and membrane-bound versions of TNF-α is crucial for TNFR1 or TNFR2 activation. Sol-
uble TNF-α has a much higher affinity for TNFR1, whereas membrane-bound TNF-α
primarily activates TNFR2 [119]. The activation of TNFR1 and TNFR2 causes a differential
molecular response in the afflicted cell, leading to various effector outputs. Furthermore,
because membrane-bound TNF-α is capable of conveying reverse signals, it could also
be regarded as a receptor [120], in which case TNFRs, membrane-bound and soluble, can
act as ligands. TNFR2 is primarily responsible for triggering membrane-bound TNF-α
reverse signaling [120]. The role of TNF-α in autoimmune diseases (rheumatoid arthritis,
psoriasis, inflammatory bowel disease) is well-described [121], while it has dual function
in cancer development [122]. TNF-α can also induce the expression of other major inflam-
matory mediators, such as IL-1α, IL-1β, IL-6, and CCL5, thus enhancing the inflammatory
effect [123,124].

The role of TNF-α in atherosclerosis has been documented experimentally. Initially,
there was histological evidence of the presence of TNF-α in macrophages, VSMCs, and
other cells in the intimal layer, as well as in pultaceous-rich plaques [125]. Moreover,
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carotid plaques from symptomatic patients have a higher TNF-α concentration compared
to the plaques of asymptomatic individuals [126]. The atherogenic potential of TNF-α was
highlighted in an experimental study including TNF-α and ApoE double-knockout mice.
Compared to ApoE−/− mice, the double-knockout group exhibited a smaller atheroscle-
rotic plaque area and lesion size in the aorta, together with downregulated adhesion
molecule expression. Interestingly, macrophages in the double-knockout group displayed
a lower uptake of oxLDL and increased expression of the scavenger receptor class A [127].
In another study, mice lacking TNF-α on an APOE*3-Leiden background had a higher
burden of early lesions, while the advanced lesions had enhanced necrosis and diminished
apoptosis, compared to APOE*3-Leiden only mice [128]. The main mechanisms implicated
in TNF-α-induced atherogenesis are endothelial dysfunction, oxidative stress, and VSMC
secretory phenotype promotion [129]. In human umbilical vein endothelial cells, TNF-α
enhanced LDL transcytosis and retention in the subendothelial space, thus aiding the
atherosclerotic cascade [130]. A recent study has shown that TNF-α production by B2
cells is responsible for macrophage-induced cell death and inflammation, thus leading to
atherosclerotic plaque vulnerability [131]. Additionally, it should be noted that circulating
TNF-α levels reflect plaque TNF-α concentration, as documented by Edsfeldt et al. in an
experimental study [132].

According to the evidence mentioned above, it could be suggested that TNF-α is
an active mediator of plaque vulnerability, as shown by the study of Ragino et al. who
detected similar coronary TNF-α expression in coronary arteries with different types of
instability features (TCFA, erosion, neurodegeneration-necrosis-calcification) [43]. In the
clinical setting, it has long been shown that increased circulating TNF-α concentrations
may signify an excess risk of recurrent cardiovascular events in patients after myocardial
infarction [133]. The association of circulating TNF-α with incident coronary artery disease
in a population-based cohort was confirmed in the study of Kaptoge et al. [55]. The
study group also proceeded to a meta-analysis of the available evidence (29 studies),
demonstrating an increased risk for non-fatal myocardial infarction or cardiovascular
mortality per 1 standard deviation increased TNF-α levels (adjusted hazard ratio: 1.17, 95%
confidence intervals 1.09–1.25) [55]. TNF-α has been associated with IVUS-defined plaque
burden and TCFAs in patients with stable angina [134]. Recently, high levels of soluble
TNFR1 and TNFR2 have also been associated with major adverse cardiovascular events in
stable coronary artery disease patients, despite not adding incremental risk prediction [135].

3.3. Interferon-γ

IFN-γ communicates via a heterodimeric cell-surface receptor composed of two dis-
tinct subunits: IFN-γ receptor (IFNGR)-1 and IFNGR2 [136]. Following IFN-γ interaction,
the receptor subunits heterodimerize, activating JAK1 and JAK2, which phosphorylate
their downstream substrate, STAT-1. STAT1 homodimerizes and binds to activated re-
gions, causing transcription to occur. IFN-γ is involved in anti-tumorigenic and pro-
tumorigenic effects [137], while also influencing autoimmunity [138]. IFN-γ is crucial in
the initiation of atherogenesis, since it promotes endothelial cell activation and leukocyte
mobilization [136]. Among the other atherogenic actions of IFN-γ are the potentiation of
inflammation (upregulation of IL-1β, IL-6, and CCL5, downregulation of IL-1Ra) shift of
macrophages towards the atheroprone M1 phenotype, the polarization of T cells towards
a Th1 phenotype, and the inhibition of collagen synthesis, ultimately resulting in plaque
destabilization [124,136,139,140]. INF-γ may also synergize with TNF-α to produce a more
potent pro-inflammatory effect [141]. Experimental studies in mice deficient for IFN-γ
receptor or IFN-γ have consistently detected a reduction in atherosclerotic lesion size,
lesion lipid area and cellularity, paired with an increased collagen content, indicative of
plaque stability [142,143]. Moreover, daily injections of IFN-γ in ApoE−/− resulted in
increased lesion size and T-cell accumulation [144]. Clinical data is scarce, with one study
showing an increased concentration of IFN-γ in patients with unstable angina pectoris



Int. J. Mol. Sci. 2022, 23, 15937 11 of 28

compared to stable angina pectoris and the control group [145], indicative of INF-γ’s plaque
destabilizing properties.

3.4. Chemokines

Several chemokines have been described in the development of coronary atheroscle-
rosis due to their potential to regulate blood cell migration, arrest on endothelium, and
endothelial transmigration. To begin with, CCL5, also known as RANTES, promotes mono-
cyte recruitment through binding to its membrane-bound receptors CCR5 and CCR1, or
other soluble chemokines (CXCL4, CCL17, CXCL12) and defensins (human neutrophil
peptide 1). Protein and mRNA levels of RANTES have been positively associated with
vulnerable plaque morphology in an experimental rabbit model [146]. Indeed, higher
RANTES levels were related to the carotid wall thickness and lipid core volume in partici-
pants of the Atherosclerosis Risk in Communities study [147]. Moreover, coronary artery
disease severity was correlated with RANTES, since higher levels were noted in patients
with acute myocardial infarction and unstable angina pectoris compared to stable angina
pectoris [148]. RANTES also participates in the entire spectrum of liver diseases [149], as
well as in malignancies [150,151]. Moving to the CCL2/CCR2, it acts to attract circulating
monocytes and contributes to the egress of monocytes from the bone marrow, as well
as stimulating IL-6 production [152]. Genetically predicted levels of CCL2, also known
as MCP-1, relate to a higher coronary artery disease and stroke risk, as shown in a re-
cent mendelian randomization study [153]. In addition to this finding, a meta-analysis of
7 cohort studies with 21,401 participants free of cardiovascular disease documented an as-
sociation of higher circulating MCP-1 levels with long-term cardiovascular mortality [154].
The tissue concentration MCP-1 has also been found elevated in the presence of a TCFA
or erosive changes compared to neurodegenerative necrosis of the coronary plaque [43].
Other than its cardiovascular implication, MCP-1 orchestrates cancer progression [155],
and is involved in infections, neurogenerative diseases, liver diseases, rheumatoid arthritis,
inflammatory bowel disease, and central nervous system pathologies, among others [156].

Other molecules with less well-established effects in atherosclerosis have also been
reported. The membrane-bound CX3CL1 and CXCL16 bind to CX3CR1 and CXCR6, re-
spectively, but can also be proteolytically cleaved by ADAMs, aiding leukocyte migra-
tion to sites of injury. CXCL16 can scavenge oxLDL, thus antagonizing atherosclerosis
progression [157]. Beyond atherosclerosis, CXCL16 is involved in non-alcoholic fatty liver
disease, inflammatory bowel disease, human immunodeficiency virus disease course, as
well as tumorigenesis [158]. On the other hand, CX3CL1 orchestrates macrophage-VSMC
cross-talk [159], platelet activation, and aggregation [160], indicating a possible role in
atherosclerosis progression other than initiation. CX3CL1 levels may be associated with
coronary artery disease severity, since elevations were observed in patients with acute
myocardial infarction and unstable angina pectoris compared to stable angina pectoris [148].
Circulating CX3CL1 also correlated with plaque burden on intravascular ultrasound [161],
as well as with plaque rupture in patients with unstable angina pectoris [162], providing
confirmation of its potential role in the progression of coronary artery disease. Besides, the
CX3CL1/CX3CR1 axis is involved in the pathophysiology of multiple other inflammatory,
infectious, and neurological disorders, as well as several types of cancer [163]. The role of
CXCR2, CXCR3, and their ligands, as well as the CXCL12/CXCR4 axis, is ambiguous and
has not been clearly defined.

4. Cytokine-Targeted Strategies in Coronary Artery Disease

It is now known that lowering the inflammatory burden is of similar importance
to lipid-lowering in terms of reducing atherosclerotic complications, and managing both
the inflammatory and dyslipidemic components could lead to the greatest benefit [164].
Many of the readily available pharmacologic options possess potent anti-inflammatory
and cytokine-lowering properties, including statins and sodium-glucose cotransporter
2 inhibitors [165–169]. Both drug categories were also proven to prevent atherosclerosis
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progression and promote plaque stabilization [170–172]. Most notably, in the landmark
JUPITER trial, rosuvastatin led to a reduction in major adverse cardiovascular events in
patients with low LDL-C but high CRP (>2 mg/L) [164], with the greatest benefit being
observed in subjects achieving LDL-C <70 mg/dL and CRP <1 mg/L [173]. Methotrexate
(MTX), a broad-based immunomodulatory agent, has also received attention since it could
mediate vascular inflammation, endothelial protection, and lipoprotein transportation
preclinically, thus inducing plaque regression [174–177]. However, in the seminal CIRT
trial, there was no effect of low-dose weekly MTX on major adverse cardiovascular events
compared to the placebo [178]. It should be stated that the lack of a pro-inflammatory
patient profile based on the levels of inflammatory biomarkers could have accounted for
those neutral results.

Since the inception of the notion that inflammatory components contribute to the
atherosclerotic process, several cytokines and their pathways have been specifically targeted
to evaluate their effect in preventing atherosclerosis. Herein we discuss the available
therapeutic options based on the results of clinical trials, while also providing an overview
of the current experimental landscape in immunomodulatory therapy of coronary artery
disease (Figure 2).
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Figure 2. Cytokine-based therapeutics in coronary atherosclerotic disease. IL: interleukin;
NP: nanoparticle; IL-1R: interleukin-1 receptor; TNF-α: tumor necrosis factor-α; CRP: C reactive
protein; PAI-1: plasminogen activator inhibitor-1; TNFR: tumor necrosis factor receptor.

4.1. Colchicine

Colchicine, a low-cost anti-inflammatory agent that is widely used in pericarditis,
gout, and familial Mediterranean fever, and has been shown to suppress the produc-
tion of IL-1β, IL-6, and IL-18 [179]. Colchicine has a modulatory effect on the NLRP3
inflammasome. Colchicine treatment may result in lower extracellular vesicle NLRP3
protein levels in vivo [180]. In patients with an acute coronary syndrome, colchicine limited
IL-1β secretion and intracellular content, while also diminishing pro-caspase-1 mRNA
and secreted caspase-1 protein levels [181]. NLRP3 inflammasome formation, caspase-1
activation, and IL-1β production were also previously found to be suppressed by colchicine
experimentally [182].
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In patients with an ST-elevation myocardial infarction, treatment with colchicine for
5 days resulted in lower absolute and relative infarct size [183]. These observations were
followed by large-scale clinical trials. In the COLCOT randomized, double-blind trial,
colchicine’s effectiveness was examined for the secondary prevention of cardiovascular
events in 4745 patients with a history of acute myocardial infarction within 30 days and
a left ventricular ejection fraction greater than 35% [184]. Almost all patients were under
both aspirin with another antiplatelet agent and a statin. The results showed that colchicine
at a dose of 0.5 mg daily led to a significantly lower risk of ischemic cardiovascular events
when compared to the placebo (hazard ratio 0.77, 95% confidence interval: 0.46–1.52), but no
change in overall survival (hazard ratio 0.98, 95% confidence interval 0.64–1.49). Moreover,
earlier initiation (within 3 days) was associated with incremental clinical benefits [185].
In the other seminal trial, LoDoCo-2, 5522 patients with chronic coronary artery disease
were randomized to placebo or colchicine 0.5 mg once daily [186]. The primary endpoint
of cardiovascular death, spontaneous myocardial infarction, ischemic stroke, or ischemia-
driven coronary revascularization occurred less frequently in the colchicine arm (hazard
ratio 0.69, 95% confidence interval 0.57–0.83) during a median follow-up of 28.6 months.
This benefit was irrespective of prior acute coronary syndrome and continued to accumulate
even after 5 years of follow-up [187,188]. Finally, a meta-analysis has demonstrated the
cardiovascular benefits of colchicine in acute and chronic coronary artery disease [189].
Regarding its potential side effects, colchicine may increase the risk of diarrhea, without
significantly enhancing the risk of infections, liver, and hematological diseases [190].

4.2. IL-1 Inhibition

The potential of IL-1β manipulation in atherosclerosis has been known for years,
since ApoE−/−/IL-1β−/− mice exhibited significant decreases in aortic sinus atheroscle-
rotic lesions and adhesion molecules expression compared to ApoE−/− only mice [191].
However, validation in the form of a clinical trial was only provided recently. IL-1β may
be selectively inhibited by canakinumab, a fully human monoclonal antibody which is
actively used in rheumatologic disorders, such as systemic juvenile idiopathic arthritis
and Still’s disease. Canakinumab binds to IL-1β with high affinity. The antigenic epitope
includes Glu 64, which is essential for the recognition of human IL-1β by the antibody.
Canakinumab’s main advantage is that it reduces plasma levels of IL-6 and hsCRP, leaving
LDL unaffected. Thus, it was hypothesized that its potential effect on cardiovascular events
would be independent of lipid-level lowering, which is the gold-standard strategy for
cardiovascular event prevention. Another member of this class, gevokizumab, reduced
carotid intima-media thickness and neointima formation in an experimental model of rat
carotid denudation, paired with improved endothelial regeneration [192].

The CANTOS study was a randomized, double-blind clinical trial exploring the effect
of canakinumab as a proof-of-concept anti-inflammatory therapy in the recurrence of
cardiovascular events, compared to the placebo [193]. The trial population consisted of
10,061 stable patients with a history of myocardial infarction and elevated high-sensitivity
CRP (≥2 mg/L). The patients had a baseline LDL-cholesterol of 82 mg/dL and a median
high sensitivity CRP of 4.1 mg/L. The patients in the canakinumab group received the
drug at a dosage of 50, 150, or 300 mg once every 3 months. The results were encouraging,
since non-fatal MI, non-fatal stroke or cardiovascular death were reduced by 15% over
a median follow-up of 3.7 years. Furthermore, inflammatory markers, such as hsCRP and
IL-6, demonstrated a dose-dependent reduction. Participants who achieved IL-6 levels
below the study median (1.65 ng/L) after the first dose experienced the greatest benefit
in several pre-specified endpoints, while those with consistently higher values accrued
no benefit [194]. However, canakinumab’s use may be accompanied by significant side
effects (increased risk of fatal infections, leukopenia, thrombocytopenia), while its high cost
does not allow for widespread clinical application in the setting of secondary prevention.
It should also be stressed that the levels of IL-18 remained unchanged after canakinumab
treatment. Since baseline and on-treatment levels of IL-18 were associated with future
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cardiovascular events, the subset of patients with persistently elevated IL-18 remains at
risk despite canakinumab treatment [195].

The role of IL-1α in atherosclerosis is, as stated previously, has been less straight-
forward, thus its inhibition is not broadly attempted. In the only phase II study in
an atherosclerotic setting to date, Xilonix, a true human monoclonal antibody that specifi-
cally targets IL-1α, was administered parenterally in subjects after percutaneous lower limb
revascularization [196]. This trial, although proving Xilonix’s safety, was neutral in terms of
efficacy. Specifically, the rates of major clinical events and restenosis were similar between
the two study arms, with a significant difference being noted only in the intravenous dosing
period. Thus, the role of IL-1α inhibition in atherosclerosis is uncertain.

4.3. IL-6 Inhibition

Since the IL-6 receptor has been considered a causal factor in coronary artery dis-
ease development and progression [99], its inhibition has been attempted. Preclinically,
tocilizumab, a humanized monoclonal antibody against the IL-6 receptor, abrogated
hyperglycemia-induced VSMC migration, adhesion molecule, and MMPs expression [197].
Moreover, it may ameliorate endothelial glycocalyx dysfunction and oxidative stress, which
are important drivers of atherogenesis [198]. It should be noted that tocilizumab may aug-
ment total and LDL cholesterol [199]. However, it can limit LDL’s pro-atherogenic potential
by increasing HDL’s cholesterol efflux capacity [200]. Another study has shown that
tocilizumab could decrease lipoprotein (a) and oxLDL concentrations, without, however,
affecting cholesterol efflux capacity [201]. Additionally, tocilizumab may attenuate platelet
aggregation, as recently shown [202]. In patients with non-ST-elevation myocardial in-
farction, tocilizumab was associated with suppressed C5aR1 and the C5aR2 mRNA levels,
receptors that are associated with pro-inflammatory signaling [203].

In the landmark ASSAIL-MI trial of tocilizumab in 199 patients with ST-elevation
myocardial infarction, patients in the study group had a greater myocardial salvage index
compared to the control group [204], indicating lesser myocardial/reperfusion injury. This
outcome could stem from the reduction of neutrophil count and impaired neutrophil
function with tocilizumab [205]. The action of tocilizumab’s is not straightforward, as
a placebo-controlled trial in patients with non-ST-elevation myocardial infarction suggested
that it may potentiate NETosis [206]. According to the ASSAIL-MI trial, no significant
infectious side effects were attributed to tocilizumab use when compared to the placebo,
even though the available evidence concerns only short-term follow-up [204]. However, in
individuals with rheumatological conditions, the use of tocilizumab was associated with
a significantly higher risk of serious infections [207]. Future trials and prospective cohort
studies should also assess IL-6 receptor antagonism in primary and secondary prevention
of major adverse cardiovascular events of high-risk patients.

4.4. TNF-α Inhibition

TNF-α inhibition could represent an appealing anti-inflammatory approach in the
setting of atherosclerosis. However, the effect of TNF-α inhibitors, such as etanercept,
adalimumab, and infliximab, in atherosclerosis has been evaluated mostly preclinically or
in studies of patients with rheumatological diseases. TNF-α inhibitors have shown anti-
inflammatory and endothelial-protective properties. Incubation of human coronary artery
endothelial cells with inflammatory stimulants (IL-1β, TNF-α, serum amyloid A) promoted
an increase in inflammatory cytokines which was abrogated by infliximab treatment [208].
Etanercept prevented TNF-induced endothelial cell apoptosis by enhancing the process of
autophagy [209]. Moreover, infliximab reversed TNF-α induced endothelial dysfunction as
well as the increase in oxLDL, LOX-1, and Arg2 [210]. We have also shown that adalimumab
could improve endothelial function and inflammation in patients with psoriasis [211].
Moreover, the vasculoprotective effects of TNF-α inhibitors include the amelioration of
arterial stiffness [212].
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The effect of TNF-α inhibition in the prevention of major adverse cardiovascular
events has been controversial. Earlier studies in patients with psoriasis or rheumatoid
arthritis pointed to a lower incidence of hard cardiovascular endpoints with TNF-α
inhibitors [213,214]. However, in a prospective cohort study of patients with psoriasis,
the rate of major adverse cardiovascular events did not differ between TNF-α inhibitors,
methotrexate, or ustekinumab [215]. The increased risk of serious infections with TNF-α
inhibitors should not be neglected [216]. Based on the available information, it is cer-
tain that more evidence is needed in the assessment of TNF-α inhibitors in coronary
artery disease.

4.5. IL-1Ra

The recombinant, non-glycosylated form of the human IL-1Ra, anakinra, prevents IL-1
binding to the IL-1R1. Due to its lack of the necessary binding domain for downstream
signaling, it is efficacious in reducing inflammation. In cardiovascular disease, this agent
is mainly employed as an additional tool in the management of pericardial diseases [217].
Limited data are available regarding its potential role as an anti-atherosclerotic treatment.
In diabetic rats, anakinra partially ameliorated endothelial dysfunction and oxidative
stress parameters, which are important steps in the atherosclerotic cascade [218]. Anti-
atherosclerotic actions were recently reported in ApoE−/− mice treated with anakinra, such
as reduced aortic arch atherosclerotic lesions and lower inflammatory gene expression [219].
In the clinical setting, anakinra could exert anti-inflammatory actions in patients with ST-
elevation myocardial infarction [220]. However, it is unclear whether recombinant IL-1Ra
could provide incremental benefits in the prevention of major adverse cardiovascular
events [221]. It should also be noted that, as with other IL-based therapeutics, the risk of
serious infections may be higher with anakinra [207].

4.6. Future Cytokine-Based Therapeutics

Several agents are currently under investigation in preclinical studies of atherosclero-
sis, as summarized in Table 2. As stated above, the upstream target in IL-1β pathway is the
NLRP3 inflammasome. Therefore, its pharmacological targeting could represent a valid
option in the management of atherosclerotic diseases. Experimental molecules have been
developed with inhibiting properties, including MCC950, arglabin, and VX765. Beginning
with MCC950, it was able to alleviate myocardial ischemia/reperfusion injury in a porcine
model of myocardial infarction by limiting neutrophil influx into the myocardium and
IL-1β levels [222]. Subsequently, in an ApoE−/− mouse model of carotid atherosclerosis,
MCC950 induced a reduction in maximal stenosis, average plaque size, and plaque vol-
ume, along with diminished macrophage accumulation and adhesion molecule mRNA
expression [223]. Moreover, infusion of platelet-derived extracellular vesicles loaded
with MCC950 in ApoE−/− mice abrogated atherosclerotic plaque formation, through
the reduction in inflammation, macrophage proliferation, and T cell localization in the
plaque [224]. An interesting study was performed by Sharma et al. in ApoE−/− mice with
streptozocin-induced diabetes [225]. In this deleterious setting, NLRP3 inflammasome
activation was more evident, but was halted by the MCC950 administration. Moreover,
this agent attenuated numerous atherogenic processes, including oxidative stress, inflam-
mation, macrophage accumulation, necrotic core formation, and fibrous cap thinning [225].
Improvement in macrophage pyroptosis and inflammation with MCC950 was also proven
in the study of Zeng et al. [226]. In the most recent study of MCC950, it prevented leuko-
cyte migration through lower chemokine and adhesion molecule expression from en-
dothelial cells [227]. Interestingly, MCC950 attenuated leukocyte production by the bone
marrow. Arglabin has been investigated scarcely in atherosclerotic studies, promoting anti-
inflammatory (anti-inflammatory macrophage phenotype switching) and hypolipidemic
(reduction in total cholesterol and triglycerides) effects [228]. These were accompanied by
the prevention of atherosclerotic lesion expansion. Finally, VX765, a caspase-1 inhibitor pro-
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drug activated by intracellular esterases, attenuated VSMC pyroptosis and atherosclerosis
progression in ApoE−/− mice on a Western diet [229].

Table 2. Preclinical evidence of investigational cytokine-based therapies in atherosclerosis.

Agent Target Effect

MCC950 [222–225] NLRP3 inflammasome

↓ inflammatory mediators
↓ neutrophil influx/migration
↓ bone marrow leukocyte production
↓ oxidative stress
↓ adhesion molecule expression
↓macrophage infiltration
and pyroptosis
↓ T cell plaque localization
↓ lesion size
↓ fibrous cap thinning

Arglabin [228] NLRP3 inflammasome

Anti-inflammatory macrophage
phenotype switching
↓ total cholesterol and triglycerides
↓ lesion size

VX765 [229] NLRP3 inflammasome ↓ VSMC pyroptosis
↓ plaque progression

IL-10 gene transfer [105,230] IL-10
↓ inflammatory mediators
↓macrophage infiltration
↓ lesion size

IL-10 nanoparticles [231,232] IL-10

↑ fibrous cap thickness
↓ necrotic core formation
↓ inflammatory mediators
↓ lesion size

Exosomal IL-10 mRNA [233] IL-10 Prevention of atherosclerosis
progression

Mutant IFN-γR [234,235] IFN-γ

↓ lesion size
↓ lipid and macrophage area
↑ fibrosis
↑ VSMC content

Maraviroc [236,237] CCR5

↓monocyte recruitment
↑ endothelial function
↓ platelet-leukocyte aggregate
formation
↓ VSMC proliferation
↓ VSMC phenotypic transformation
into a synthetic cell type

Evasin-4 [238] RANTES
↓myocardial infarct size
↓ leukocyte recruitment
↓ oxidative stress

CCL2/CCR2 inhibitors [239] CCL2/CCR2

↓ aorta, carotid, and femoral
atherosclerotic lesions
↓macrophage accumulation
↑ collagen deposition a
↑ VSMC content

F1 [240] CX3CL1/CX3CR1
↓ atherosclerotic lesion development
↓macrophage accumulation
↓ inflammatory infiltration

M3 [241] CX3CL1/CX3CR1 Contradicting effect on lesion
progression

VSMC: vascular smooth muscle cell; IL: interleukin; IFN-γR: interferon-γ receptor.

Moving to IL-10 targeting, several studies have assessed the therapeutic value of
its overexpression towards atherosclerosis. Initial studies utilized viral vector-mediated
interleukin-10 gene transfer in ApoE−/− mice. A decrease in inflammatory mediators was
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observed, together with a reduction in macrophage infiltration, leading to a lower lesion
size [105,230]. A recent study proceeded to the delivery of nanoparticles incorporating IL-10
(Col-IV IL-10) in a mouse model of advanced atherosclerosis (LDLr−/− on a high-fat diet),
with the investigators noting enhanced fibrous cap thickness and attenuated necrotic core
formation [231]. In comparison to free IL-10 administration, nanoparticle delivery of IL-10
in the atherosclerotic plaque produced a greater anti-inflammatory effect and significant
atherosclerotic lesion regression [232]. Furthermore, exosome-mediated delivery of IL-10
mRNA in atherosclerotic plaque promoted its efficient translation by the various cells and
M1 macrophages. IL-10 protein was then retained in the plaque and acted accordingly to
attenuate atherosclerosis progression [233].

Anti-IFN-γ therapies have been attempted preclinically, since their clinical use is
currently limited by the feared side effects, namely infections. In ApoE−/− mice on
a high-fat diet, soluble mutant IFN-γ receptor injection every 2 weeks resulted in decreased
lesion size, lipid and macrophage area, as well as a higher degree of fibrosis and VSMC
content, both at the early and later stages of the atherosclerotic cascade [234,235].

In the field of anti-chemokine therapeutics, the blockade of RANTES receptors
attenuated atherosclerosis, as shown by impaired leukocyte migration and plaque
stabilization [242]. Maraviroc, a CCR5 antagonist, ameliorated endothelial function, platelet-
leukocyte aggregate formation, and carotid intima-media thickness in persons with human
immunodeficiency virus [236]. Preclinically, this agent also attenuated VSMC proliferation
and phenotypic transformation into a synthetic cell type [237], apart from its anticipated
role in limiting monocyte recruitment into the arterial wall [243]. Evasin-4, a RANTES
inhibitor, reduced myocardial infarct size, leukocyte recruitment, and oxidative stress while
also improving survival in wild-type mice subjected to left coronary artery ligation [238].
Modulation of the CCL2/CCR2 axis may constitute a fascinating approach against athero-
genesis. A recent meta-analysis of preclinical studies has been published, summarizing the
scientific evidence in this pathway [239]. CCL2/CCR2 inhibition attenuated atherosclerotic
lesions in the aorta, carotid, and femoral arteries. Moreover, it increased collagen deposition
and smooth muscle cell content, together with a decrease in macrophage accumulation.
The effect of this approach on lesion size and macrophage accumulation was consistent
regardless of lesion stage at onset, diet plan, pharmacologic target (CCL2 or CCR2), and
mouse model. Last but not least, inhibition of the CX3CL1/CX3CR1 axis may represent
another valid approach. F1, a modified CX3CR1 ligand, ameliorated atherosclerotic lesion
development in ApoE−/− and LDLr−/− mice through a reduction in macrophage accu-
mulation and inflammatory infiltration [240]. The effect was retained even in an advanced
atherosclerosis setting. M3, a compound that involves CX3CL1-inactivating properties, had
inconsistent effects in atherosclerosis since it prevented lesion progression in ApoE−/−

on a normal chow diet while it had no effect on disease progression in the presence of
a high-fat diet [241].

5. Conclusions

Inflammation represents a core pathophysiologic process in the evolution of atheroscle-
rosis. In particular, the impact of cytokines in the unstable atherosclerotic plaque has been
demonstrated in a variety of animal studies and, more recently, in human clinical trials. The
CANTOS study provided sound evidence that targeting the IL-1 pathway for secondary
prevention is indeed effective in reducing the instability of the atherosclerotic plaque. The
COLCOT and LoDoCo 2 trials of colchicine in coronary artery disease further enhanced
these observations.

The current challenge is the design and production of accessible drug formulations
that may selectively target other cytokine pathways that are associated with residual
cardiovascular risk. The effect of inhibition of the inflammasome, with a combined effect
on IL-1β and IL-18, may also be examined in future animal and clinical studies. Anti-
chemokine approaches are also attractive and warrant further investigation preclinically.
However, such anti-inflammatory approaches in atherosclerosis should take into serious
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account patient safety along with efficacy measures. In this regard, a method of direct
delivery into the atherosclerotic plaque through the use of nanoparticles deserves further
preclinical validation.
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