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Abstract: Interleukin 35 (IL-35), a new member of the IL-12 family of heterodimeric cytokines, could
induce two different types of regulatory cells including regulatory T and B cells such as IL-35-
induced regulatory T cells and IL-10-producing regulatory B cells (IL-10+Bregs), and IL-35-producing
regulatory B cells (IL-35+Bregs). These cells appear to play an important role in modulating the
immune system in numerous diseases. Several findings suggested that the expression of IL-35 is
dysregulated in many autoimmune, inflammatory, and allergic diseases. Due to the functions of
IL-35, it seems that this cytokine may act as an efficient therapeutic strategy for numerous conditions
including atopic dermatitis (AD). We aimed to provide a comprehensive overview of the role of IL-35
in modulating the immune system. Additionally, we highlight IL-35 as a specific immunological
target, discuss its possible involvement in the pathogenesis of AD, and hypothesize that IL-35 may
become a novel target for the treatment of AD. However, further studies are required to evaluate
this hypothesis.

Keywords: Interleukin 35; atopic dermatitis; regulatory T cell; regulatory B cell; iTr35 cells; immunological
disturbances

1. Introduction

Interleukin 35 (IL-35) represents a new member of the IL-12 family of heterodimeric
cytokines consisting of an α-subunit and a β-subunit, which also contains IL-12, IL-23,
and IL-27 [1]. IL-35 is made up of the IL-12α chain p35 and the IL-27β chain Epstein–Barr
virus induced 3 (EBI3) [2]. The expression of p35 and EBI3 subunits may be up-regulated
under the influence of pro-inflammatory stimuli such as TNF-α, IFN-γ, TLR3, and TLR4
ligands in different cell types [3]. The secretion pattern of the IL-35 distinguishes it from the
other members of the IL-12 family, which are primarily secreted by antigen-presenting cells
(APCs) [4]. It is believed that the main source of IL-35 are regulatory T cells developing
in the thymus (CD4+CD25+Foxp3+ T cells), named natural regulatory T cells (nTregs).
Moreover, in contrast to mouse nTregs, which constitutively express IL-35, human nTregs
only produce IL-35 after stimulation [5,6]. Collison et al. showed that the production of IL-
35 increased following contact regulatory T cells (Tregs) with conventional T cells (Tconv).
It was also suggested that IL-10 and IL-35 act together for maximal suppression mediated
by Tregs and that their function is enhanced by Tconv cells [7]. IL-35 induces the unique
population of the peripheral induced regulatory cells producing additional amounts of
IL-35. The generation of these cells is named IL-35-producing regulatory T cells(iTr35) and
does not express FoxP3 [8]. In addition, it was proved that IL-35 induces the conversion
of regulatory B cells (Bregs) to the Breg subset that produces IL-35 as well as IL-10. Thus,
regulatory B cells are also a source of IL-35 [9,10]. Dendritic cells, vascular endothelial cells,
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smooth muscle cells, and monocytes were also shown to secrete IL-35 by stimulations of
various proinflammatory cytokines and bacterial endotoxin LPS [11]. Additionally, some
cancer cells appear to produce IL-35 [12]. In addition to the secretion pattern, IL-35 differs
from other family members in the fact that it is considered a strict immunosuppressive/anti-
inflammatory cytokine. It was shown that trophoblast cells constitutively secrete IL-35
during pregnancy, which has a crucial role in preserving maternal–fetal tolerance [13,14].
These results support the immunosuppressive capability of this cytokine. Interestingly,
unlike transforming growth factor-β (TGF-β), which is constitutively expressed, IL-35 is
suggested to be expressed in human tissues in response to inflammation [11]. However, a
recent study on mice models has revealed that IL-35 is constitutively produced by cells in
the retina, including the photoreceptor rod cells and the cone cells, which indicate that its
housekeeping functions maintain ocular immune privilege [15].

In this review, we focus on the current understanding of IL-35, including its biological
function in regulating the immune system as well as in different diseases. In addition, we
highlight IL-35 as a specific immunological target and discuss its possible involvement in
the pathogenesis of atopic dermatitis (AD) and its possible relevance in the context of AD
therapy. We hypothesize that IL-35 may become a novel target for the treatment of AD.
From this work, we also wanted to open new insights into the pathogenesis of AD.

2. Receptor and Signaling Pathway of IL-35

IL-35 is unique from other members of the IL-12 family in its receptor. The IL-35
receptor may be a heterodimer or homodimer consisting of the configuration of the gp130,
IL-12Rβ2 chain, and IL-27Rα, which activates signaling pathways dependent on the pro-
teins STAT. Potential configurations of IL-35 receptors are gp130-gp130, IL-12Rβ2-IL-12Rβ2,
IL-12Rβ2-gp130, and IL-12Rβ2-IL-27Rα [16].

IL-12Rβ2 is expressed on the surface of activated T cells, NK cells, B cells, and dendritic
cells [15–18]. The IL-12Rβ2 subunit is undetectable on naive resting CD4+ T cells but its
expression may be significantly altered by different molecules. It was shown that IL-2 and
IL-27 are important inducers of the IL-35 receptor. There is evidence that these cytokines
increase the expression of the IL-12β2 receptor chain on T cells, and thus, increase sensitivity
to IL-35-mediated suppression [16]. In previous studies, IFN-γ was found to up-regulate
the expression of the IL-12β2 subunit, while IL-4 inhibits the expression of this subunit [17].
IL-12 and TNF-α were also described as molecules up-regulating the IL-12β2 subunit [16].

IL-27Rα is mainly expressed by activated CD8+ T cells, CD4+ T cells, B cells, mono-
cytes, and gp130 expressed by most immune cells [18,19].

The IL-35 signaling pathway, consisting of JAK1, JAK2, STAT1, STAT3, and STAT4
molecules, is different in B cells and T cells [4]. In B cells, IL-35 signaling through IL-
12Rβ2-IL-27Rα leads to the phosphorylation of STAT1 and STAT3, resulting in the pro-
duction of two population regulatory B cells that secrete IL-35 (IL-35+Bregs) and IL-10
(IL-10+Bregs) [10]. In T cells, IL-35 activates STAT1 and STAT4 via homodimeric receptors
including IL-12Rβ2-IL-12Rβ2 and gp130-gp130, and one heterodimeric receptor IL-12Rβ2-
gp130. The two homodimeric receptors are associated with only suppressing T cell prolifer-
ation while via heterodimeric receptor IL-35 mediates the suppression of T cell proliferation
and conversion of T cells into IL-35-induced regulatory T cells (iTr35). However, both the
complete heterodimeric receptor (IL-12Rβ2-gp130) and STAT1 and STAT4 signaling are
required for this conversion [16] (Figure 1).
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pression. IL-35 signal transduction via IL-12Rβ2-gp130, which activates STAT 4 and STAT1, can 

mediate the T cell suppression and induction of iTr35. The complete receptor of IL-12Rβ2-gp130 is 

required for the generation of iTr35. The green arrows indicate induction effects, and the red T-

shaped ends indicate suppression effects. 
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Figure 1. Receptor and signaling pathway of IL-35. IL-35 (Interleukin 35), IL-12Rβ2 (Interleukin
12 receptor subunit beta 2), IL-27Rα (Interleukin 27 receptor subunit alpha), JAK (Janus kinase), P
(Phosphorus), STAT1 (Signal transducer and activator of transcription 1), STAT3 (Signal transducer
and activator of transcription 3), IL-10+Bregs (IL-10-producing regulatory B cells), IL-35+Bregs (IL-
35-producing regulatory B cells, STAT4 (Signal transducer and activator of transcription 4), gp130
(Glycoprotein 130), iTr35 (IL-35-producing T cells). In B cells, IL-35 signals through IL-12Rβ2-IL-
27Rα and promotes the phosphorylation of STAT1 and STAT3, thereby inducing the generation of
IL-35+Bregs and IL-10+Bregs. In T cells, IL-35 signaling through IL-12Rβ2-IL-12Rβ2 and gp130-gp130
leads to the phosphorylation of STAT4 and STAT1, respectively, resulting only in T cell suppression.
IL-35 signal transduction via IL-12Rβ2-gp130, which activates STAT 4 and STAT1, can mediate the T
cell suppression and induction of iTr35. The complete receptor of IL-12Rβ2-gp130 is required for the
generation of iTr35. The green arrows indicate induction effects, and the red T-shaped ends indicate
suppression effects.

3. Expression of IL-35 in Human Diseases

Research findings suggested that the expression of IL-35 is dysregulated in many
diseases. Moreover, in different diseases, IL-35 may play different roles. In the majority of
diseases, research findings indicate a protective role of IL-35 by inhibiting inflammation
and immune modulation. However, there are also some conflicting data. For instance, some
studies found upregulated IL-35 in active systemic lupus erythematosus (SLE) patients and
in patients with treatment-naïve early rheumatoid arthritis (RA); levels of this cytokine
significantly decreased after the administration of treatment, which suggests that IL-35
may be pro-inflammatory in some diseases [20,21]. On the other hand, the increased serum
levels of IL-35 may be a response to severe inflammation as compensation feedback to
inhibit severe inflammation. It has been described that the upregulating expression of IL-35
subunits follows proinflammatory stimuli [3].

Table 1 summarizes the findings about IL-35 levels and biological functions in some
human diseases.
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Table 1. IL-35 levels in some human diseases.

Country and Authors Patients and Condition IL-35 Level Measurement Method Level in Blood Additional Information

Saudi Arabia 2022; Abushouk et al. [22] Children with Asthma vs.
Healthy individuals ELISA; serum

Increased; Asthma patients: 28.06 ± 8.39
pg/mL; Healthy control:

5.38 ± 5.54 pg/mL

IL-35 levels negatively correlated with
levels of IgE.

China 2015; Wong et al. [23] Adults and children with Asthma vs.
Healthy individuals ELISA; plasma

Increased; Asthma patients: 55.9
(6.6–419.0) ng/mL; Healthy control: 2.5

(0.1–16.1) ng/mL

IL-35 levels positively correlated with
disease severity scores.

China 2015; Wang et al. [24] Adults with Asthma vs.
Healthy individuals

ELISA; plasma; qPCR; IL-35 mRNA
expression levels in PBMCs

Decreased levels of IL-35 in plasma *.
Decreased mRNA levels of the IL-35

subunits *

IL-35 levels negatively correlated with
the frequency of IL-4-producing CD8+ T

(Tc2) cells and with the IL-4 level.

Iran 2017; Khoshkhui et al. [25] Children with Asthma vs.
Healthy individuals ELISA; serum

No significant difference; Asthma
patients: 30.9 (3.8–110.7) pg/mL;

Healthy control: 30.2 (6.1–239.7) pg/mL

China 2014; Ma et al. [26] Children with Asthma vs.
Healthy individuals

ELISA; serum; qPCR; IL-35 mRNA
expression levels in PBMCs

Decreased levels of IL-35 in serum *.
Decreased mRNA levels of the IL-35 *

IL-35 levels negatively correlated with
IL-4 levels and positively with IFN-y

levels.

China 2020; Wang et al. [27]
Adults: Allergic asthmatic patients vs.
Asymptomatic sensitized patients vs.

Healthy individuals

Flow cytometry; the iTr35 cell frequency
in PBMCs

Decreased iTr35 cell frequencies and
IL-35 levels in allergic asthmatic

patients *

1. sIgE levels negatively correlated with
the percentage of iTr35 cells in asthmatic

individuals; 2. Th2 cytokines levels
negatively correlated with the iTr35 cell
frequency in asthmatic, asymptomatic,

and healthy individuals; 3. Th2
cytokines and sIgE levels negatively

correlated with IL-35 levels in
asthmatic patients.

China 2020; Xie et al. [28] Children with Allergic rhinitis vs.
Healthy individuals ELISA; serum Decreased * IL-35 levels negatively correlated with

IL-17 and IL-23 levels.

China 2021; Huang et al. [29] Children with Allergic rhinitis vs.
Healthy individuals ELISA; plasma

Decreased; Allergic rhinitis patients:
138.52 ± 50.13 ng/mL; Healthy control:

426.45 ± 80.15 ng/mL

IL-35 levels negatively correlated with
ILC2s.

China 2018; Chen et al. [30] CSU patients vs. AD patients vs.
Healthy individuals ELISA; serum

Decreased in CSU patients: 73.46 ± 9.146
ng/mL; AD: 1264 ± 186.9 ng/mL;

Healthy control: 1349 ± 170.7 ng/mL

China 2014; Li et al. [31]
Patients with IBD: ulcerative colitis (UC)

Crohn’s disease (CD) vs. Healthy
individuals

ELISA; serum Decreased in UC and CD *. IL-35 levels negatively correlated with
UC activity.
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Table 1. Cont.

Country and Authors Patients and Condition IL-35 Level Measurement Method Level in Blood Additional Information

China 2018; Li et al. [32] Adults with Psoriasis vs.
Healthy individuals

ELISA; plasma; qPCR; PBMCs; Ebi3 and
p35 mRNA levels

Decreased IL-35 levels: 2.67 (1.38–21.81)
ng/mL vs. 7.92 (2.88–41.07) ng/mL;
Decreased mRNA levels of EBI3 and

p35 *

IL-35 levels negatively correlated with
IFNy, TNF-a, levels of IL-23, -17, and -22,
or the PASI and positively with TGF-β

and IL-10 levels.

Egypt 2022; Elbana et al. [33] Adults with Psoriasis vs.
Healthy individuals ELISA; serum

Decreased; Psoriasis patients:
72.65 ± 16.24 ng/L; Healthy control:

451.02 ± 117.16 ng/L

IL-35 levels negatively correlated with
TNF-α, IL-17, IFN-γ.

China 2019; Ye et al. [34] Adults with newly diagnosed SLE vs.
Healthy individuals ELISA; plasma Decreased *

IL-35+B cells and IL-10+B cells
decreased; The percentage of

IL-35+Bregs and IL-35 levels inversely
correlated with the SLE disease activity

index.

China 2013; Qiu et al. [20]

Patients with newly diagnosed SLE;
Pre-treatment SLE vs.
post-treatment SLE vs.
Healthy individuals

ELISA; serum

Increased; Pre-treatment: 9.94
(4.28–63.83) ng/L; Post-treatment: 5.78
(4.08–54.95) ng/L; Healthy control: 4.74

(3.38–12.45) ng/L

After prednisone treatment, the serum
levels of IL-35 decreased significantly.

China 2019; Li et al. [35] Adults with RA vs. Healthy individuals ELISA; serum
Increased; RA patients:

6.3 (4.8–10.0) pg/mL; Healthy control:
1.3 (0.7–2.5) pg/mL

IL-35 levels negatively correlated with
diseases activity based on ESR

(DAS28-ESR).

Czech Republic 2015; Šenolt et al. [21]
Adults with treatment-naïve early RA vs.

established RA vs. Control patients
with osteoarthritis

ELISA; Serum and synovial fluid

Serum: Increased in patients with
treatment-naïve early RA at baseline:

81.6 (20.7–564.4) pg/mL; Control
patients: 10.4 (0.6–64.1); Established RA
22.8 (1.2–145.5) pg/mL; Synovial fluid:

Increased Established RA: 445.0
(40.7–1908.0) pg/mL; Control patients:

125.5 (39.1–1062.0) pg/mL

IL-35 levels significantly decreased after
treatment initiation to 36.5

(5.0–204.8) pg/mL; Synovial fluid IL-35
levels positively correlated with disease

activity assessed by CRP and DAS28.

Egypt 2022; Kiwan et al. [36] Patients with AD vs.
Healthy individuals ELISA; serum

Decreased; AD patients:
69.7 ± 14.8 ng/L; Healthy control:

415.96 ± 99.25 ng/L

IL-35 levels negatively correlated with
diseases severity assessed by SCORAD,
TNF- α, IL-17 and positively correlated

with TGF-β.

Abbreviations: ELISA: enzyme-linked immunosorbent assay; qPCR: quantitative polymerase chain reaction; PBMCs: peripheral blood mononuclear cells; sIgE: specific IgE; ILC2s:
innate lymphoid type-2 cells; CSU: chronic spontaneous urticaria; AD: atopic dermatitis; IBD: inflammatory bowel disease; SLE: systemic lupus erythematosus; RA: rheumatoid arthritis;
* Some authors presented the results on diagrams, making it difficult to read the exact numerical values.
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4. Biological Function of IL-35

It was described that IL-35 may block the development of Th1 cells by limiting early
T-cell proliferation [2]. Liu et al. showed that IL-35 reduces the generation of Th1 cells while
enhancing IL-10 production in acute graft-versus-host disease (aGVHD) [37]. Jiang et al., in
addition to the inhibitory effect of IL-35 on the production of Th1 cytokines, demonstrated
a suppressing function on CD8+ cell activity by the inhibiting expression of costimulatory
molecule CD28 [38]. IL-35 has been shown to suppress GATA-3 expression, which is an
important transcription factor necessary for the development of type 2 innate lymphoid
cells (ILC2s) and Th2 cells [39,40] and IL-4 repression, resulting in the inhibition of type
2 cytokine production from naive CD4+ T cells [27]. Liu et al. reported that IL-35 inhibits the
proliferation of ILC2s and the production of type II cytokine by ILC2s more effectively than
IL-10 and TGF-β. In addition, the inhibition process occurred by up-regulating IL-12Rβ2
and gp130 by ILC2s after stimulation of IL-35, which suggests a direct regulatory role for
IL-35 on ILC2s [41]. The study evaluating the effect of IL-35 on human nasal epithelial cells
showed the inhibiting effect of this cytokine on the production of IL-25, IL-33, and TSLP [42].
Airway inflammation in the mice model was significantly reduced after local administration
of a plasmid that enhances IL-35 production. Levels of eosinophilia, neutrophilia, total
IgE, and the Th2 cytokine IL-4 were observed to be decreased [43]. Furthermore, it was
reported that IL-35 may mediate the conversion of Th2 cells to the iTr35; however, IFNγ

can inhibit this process [1]. Scientific reports indicate that IL-35 inhibits the differentiation
of Th17 cells through the down-regulation of retinoid-related orphan receptor γt (RORγt),
and retinoid-related orphan receptor α (RORα), which are essential for Th17 development
and function, and thus, reduce IL-17 levels. EBI3, which associates with p35 to form IL-35,
was found to negatively regulates the expression of IL-17, IL-22, and ROR γt, which is the
key transcription factor regulating Th17 cell differentiation [44]. Okada et al. also found
a direct inhibitory effect of IL-35 on Th17 differentiation via inhibiting the expression of
RORα and RORγt mRNA in Th17 cells, suppressing IL-17 expression [45]. Very similar
results were obtained by Yan et al. The authors showed that IL-35 treatment in patients
with proliferative diabetic retinopathy reduced RORα, RORγt, and Th17 cells [46].

IL-35 also suppresses the differentiation and maturation of dendritic cells [47]. In ad-
dition, to investigate the effect of IL-35 on the M1/M2 ratio of macrophages, a study found
that IL-35 treatment decreased the pro-inflammatory (M1) macrophages and increased
anti-inflammatory (M2) macrophages in experimental type 1 diabetes [48]. In psoriasis,
IL-35 was also described as a regulator of the M1/M2 macrophage ratio [49]. As previously
mentioned, IL-35 can induce the unique population of the regulatory cells termed iTr35 and
IL-10-producing regulatory B cells (IL-10+Bregs), and IL-35-producing regulatory B cells
(IL-35+Bregs) [8–10] (Figure 2). The function of these regulatory cells will be discussed in
the further part of this article.

Taking the above into account, it can be said that IL-35 is a cytokine playing a role
in modulating an adaptive immune response and an innate immune response. Moreover,
unlike many inflammatory autoimmune diseases where IL-35 appears to play a protective
role, high levels of this cytokine have been linked to cancer onset. [3,50]. Additionally, IL-35
has been shown to contribute to the development of chronic infections. For instance, it has
been demonstrated that IL-35 promotes the replication of the HBV virus [51].
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Figure 2. The function of IL-35. Th1 (T helper cells 1), INFγ (Interferon gamma), Th2 (T helper
cells 2), IL-4 (Interleukin 4), IL-5 (Interleukin 5), IL-13 (Interleukin 13), Th17 (T helper 17), IL-17
(Interleukin 17), IL-22 (Interleukin 22), ILC2 (Innate lymphoid type-2-cells), DCs (Dendritic cells),
M1 (M1 macrophages), M2 (M2 macrophages), IL-10+Bregs (IL-10-producing regulatory B cells),
IL-35+Bregs (IL-35-producing regulatory B cells), iTr35 (IL-35-producing T cells). IL-35 can block the
development of Th1, Th2, Th17, and ILC2 cells by suppressing transcription factors such as T-bet,
GATA-3, RORα (retinoid-related orphan receptor α), and RORγt (retinoid-related orphan receptor
γt), resulting in a decrease in corresponding cytokines. IL-35 can also suppress CD8+ T cells and DCs,
decrease M1, and increase M2. IL-35 can induce iTr35 and IL-35+Bregs generation and the resulting
cells produce additional IL-35. IL-35 can induce IL-10+Bregs which secrete IL-10. The green arrows
indicate induction effects and the red T-shaped ends indicate suppression effects.

5. IL-35-Induced Regulatory T Cells (iTr35)

The regulatory T cells are molecules that play an important role in modulating the
immune system, maintaining tolerance to self-antigens, and preventing autoimmune dis-
ease [52]. They can be divided into two main subtypes: natural Tregs (CD4+CD25+Foxp3+
T cells), which develop in the thymus, and induced Tregs, which are derived from naïve
CD4+ T cells in the periphery after TGF-β or IL-10 stimulation. TGF-β-induced regulatory
T cells express Foxp3 and mainly secrete TGF-β. In turn, IL-10-induced regulatory T cells
(Tr1) do not express Foxp3 and are known to the fact-producing IL-10 [53–56].

The population of iTr35 is the newest type of regulatory T cell and differs from
the above-mentioned induced regulatory T cells. First, in contrast to TGF-β-induced
regulatory T cells, iTr35 does not express FoxP [38]. Moreover, it was established that iTr35
mediates suppression via IL-35 but not via the other inhibitory cytokines IL-10 or TGF-β,
differentiating them also from other previously known induced regulatory populations [8].

In patients with grass pollen allergy, iTr35 cells were found to be dysregulated and
treatment with sublingual immunotherapy recovered these cells. The authors also found
that IL-35 secreted by iTr35 has suppressed aberrant type 2 immune responses elicited
by group 2 innate lymphoid cells (ILC2s) and Th2 cell proliferation and cytokine produc-
tion [57]. Furthermore, Liu et al. found that iTr35 suppresses the differentiation of ILC2s
and the expression of type cytokines by ILC2s through ICOS: ICOSL cell–cell contact and
IL-35 [41]. Research on iTr35 in asthma has determined the decreased frequency of these
cells and IL-35 levels in peripheral blood mononuclear cells (PBMCs) in patients with
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allergic asthma compared with asymptomatic (patients without Derp1 allergy) and healthy
individuals. Additionally, it was shown in vitro that iTr35 cells inhibited effector T cells
(Teff) proliferation, the naïve CD4+ T-cell proliferation and differentiation into Th2 cells,
the GATA-3 mRNA expression level, and allergen-induced Th2 cytokine production in an
IL-35-dependent manner, suggesting that allergen-specific iTr35 cells inhibit Th2-immune
responses at the transcriptional and differentiation levels [27]. It has also described the
ability of iTr35 to downregulate the development and differentiation of Th17 cells [58].

Summing up, these studies present iTr35 in light of the potential novel immune regu-
lators, which could benefit AD patients. However, no study has measured the frequency
of iTr35 in patients with the AD so far, and the role of this new subset of Tregs in patients
with AD remains unknown.

6. Regulatory B Cells (Bregs)

Regulatory B lymphocytes (Bregs) participate in the maintenance and restoration of
immune homeostasis by suppressing immune-mediated inflammation. Their role was
described in several health conditions such as autoimmune diseases, cancer, infections,
transplantation, pregnancy, and in allergic diseases [59].

As previously mentioned, IL-35 is capable of inducing IL-10-producing regulatory B
cells (IL-10+Bregs) and IL-35-producing regulatory B cells (IL-35+Bregs) [10]. The most
examined mechanism of Bregs action is the production of IL-10. It has been described
that IL-10+Bregs inhibit Th1, Th17, and CD8+ T cell responses and convert naïve CD4+
T cells into regulatory T cell populations and IL-10-secreting type-1 regulatory CD4+ T
cells (Tr1) [60]. Recently, IL-35+Bregs were described as a new type of immunity regulator.
Mice lacking IL-35 production by B cells were associated with a disability to recover
from the T cell-mediated demyelinating autoimmune disease experimental autoimmune
encephalomyelitis (EAE) [9]. This study indicates that IL-35+Bregs are critical regulators of
immunity during autoimmune diseases. On the other hand, IL-35+Bregs were found to be
upregulated in neoplastic diseases. For instance, in patients with advanced gastric cancer,
an elevated level of IL-35+Bregs was associated with the progression of the disease [61].
There is accumulating evidence that Bregs induce and maintain allergen tolerance. During
allergen immunotherapy (AIT), Bregs by IL-10 were found to suppress T effector cells
including Th2 responses, induce Tregs, inhibit dendritic cells (DCs) maturation, modulate
Tfh cell responses, and induce the production of anti-inflammatory IgG4 antibodies [62].

7. Immunological Imbalance in Atopic Dermatitis

Depending on the chronicity of lesions in atopic dermatitis (AD), there are observed
changes in the dominance of various types of cytokines. In the phase of acute lesions,
in the skin, the accumulation of cytokines from the Th2 and Th22 axes and to a lesser
extent, Th17, is observed. With disease chronicity, there are observed significant increases
in Th1 cytokines with the intensification of Th2 and Th22 responses [63]. According
to the IgE levels, AD can be divided into extrinsic and intrinsic AD. Patients with the
classic extrinsic (80%) phenotype are characterized by traditional immune polarization
towards Th2, elevated IgE levels, and eosinophilia. The normal level of IgE and greater
immune polarization towards Th1 and Th17/Th22 are associated with intrinsic AD (20%)
patients [63]. In adults, AD is the result of immune polarization mainly towards Th2 and
Th22 cytokines in blood and the skin. Pediatric AD is characterized by the expression of
Th2, Th22, and Th17 cytokines, and the expression of Th17 cytokines is higher than in
adults [63]. Moreover, depending on ethnicity, Asian AD with greater Th17 and lower Th1
axis activation than European American AD—characterized by mainly Th2, Th22, and Th1
immune polarization—and African American AD with primarily Th2/Th22 axis activation,
can be distinguished [63].

Thus, the dominance of various types of cytokines involved in AD development
depends on the phase of the disease, age, and race of the patient. The causes of immune
dysregulation in AD are not well-established yet. The immune system in AD is heteroge-
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neous and complex. It is known that both innate and adaptive immunity are involved in
the pathogenesis of the disease.

8. IL-35 as a Novel Regulatory Cytokine and Its Potential Involvement in Pathogenesis
and Therapeutic Effects in Atopic Dermatitis

IL-35 shares a common subunit p35 as well as a receptor chain IL-12Rβ1 with IL-12,
which is known to be involved in the pathogenesis of AD. The upregulated secretion
of IL-12 is observed in the chronic lesions of AD and is responsible for stimulating the
differentiation of Th0 cells into Th1 type, resulting in the switch to a Th1-type cytokine
milieu associated with increased IFN-γ expression [64]. Moreover, the association between
the IL12Rβ1 promoter polymorphisms and the increased risk of AD in Japanese subjects
has been found [65]. Additionally, in the Korean population, the polymorphism of the
IL-12Rβ1 gene was significantly associated with the AD phenotype, especially the allergic
type of AD [66]. Thus, the possible involvement of IL-35 in the pathogenesis of AD could
be concluded.

IL-35 has been described as an immunomodulator and may be involved in the patho-
genesis of AD in several ways. It has an important role in blocking Th2 cells, which are
the key to AD development [27,40,67]. Furthermore, the upregulated expression of IL-33,
IL-25, and TSLP is observed in patients with AD, and IL-35 could cause the suppression of
these cells, which in turn will also result in the inhibition of a Th2 immune response [42]
p. 35, [68]. TSLP triggers the onset of the inflammatory cascade in AD and has been
described as a master regulator of type 2 immune responses [69]. This proinflammatory
cytokine appears to be a promising therapeutic target, and indeed, results of various studies
show the association between the downregulation of TSLP expression and an alleviation
of the symptoms of AD [70,71]. Several clinical studies are currently ongoing with TSLP
as a therapeutic target [72]. Considering the roles of TSLP and its involvement in AD
pathogenesis, it seems that patients with AD could benefit from the inhibition of TSLP
by IL-35.

There is evidence that IL-35 has a direct inhibitory effect on ILC2s from which AD
patients may also benefit [41]. ILC2s, which are the innate counterparts of Th2 cells, have
been reported to be increased in AD skin lesions. These cells produce proinflammatory
cytokines such as IL4, IL5, and IL13 and it has been found that low levels of ILC2s are
associated with lower skin inflammation in AD mice models [73,74]. In addition, IL-35 has
been found to suppress the development of Th1 cells, which together with Th2 and Th22,
drive the chronic phase of AD [2,63].

The activity of IL-35 has been found to directly inhibit the differentiation of Th17 cells,
which also indicates the possible involvement of this interleukin in the pathogenesis of
AD [44–46]. IL-17 and IL-22 were described to contribute to skin barrier dysfunction [67].
Moreover, in murine AD models, IL-17 has been described to mediate Th2 immune re-
sponses, and IL-17 deficiency led to impaired Th2 induction [75]. Th17 response in AD
as a therapeutic target is considered. This polarization is characteristic for children and
Asian AD, who may be the targeted group considering personalized treatment according to
immunotypes. Some phase II clinical trials have been carried out with a focus on targeting
Th17 cytokines in the treatment of moderate-to-severe AD patients [76]. However, the key
point with the interpretation of the results should be the fenoendotype characteristic of the
studied group. Furthermore, it has been shown that IL-35 has a regulatory effect of IL-35
on the balance of Tregs/Th17 cells [77,78]. Some reports indicated an existing immune
imbalance in Th17 and Tregs cells in AD, which may contribute to its pathogenesis and
development [79]. Thus, the potential regulatory role of IL-35 in AD in this context can also
be inferred.

Taking this into account, IL-35, in theory, would contribute to restoring balance to
the observed immune dysregulation in AD (Figure 3). Undoubtedly, further studies are
required to investigate the precise effect and signaling pathway of IL-35 in AD.
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Figure 3. Potential involvement of IL-35 in the pathogenesis and its potential therapeutic effect in
atopic dermatitis (AD). FLG (filaggrin), TSLP (Thymic stromal lymphopoietin), IL-25 (Interleukin 25),
IL-33 (Interleukin 33), Th2 (T helper cells 2), ILC2 (Innate lymphoid type-2-cells), IL-4 (Interleukin
4), IL-5 (Interleukin 5), IL-13 (Interleukin 13), EOS (Eosinophils), IL-10+Bregs (IL-10-producing
regulatory B cells), IL-35+Bregs (IL-35-producing regulatory B cells), IL-31 (Interleukin 31), Th22 (T
helper cells 2), IL-22 (Interleukin 22), Th17 (T helper cells 17), IL-17 (Interleukin 17), Th1 (T helper
cells 1), IL-2 (Interleukin 2), IL-12 (Interleukin 12), TNFα (tumor necrosis factor alfa), INFγ (Interferon
gamma), Treg (Regulatory T cells), iTr35 (IL-35-producing T cells), IL-35 (Interleukin 35). This figure
presents the main cytokines involved in AD pathogenesis, the links between them, and their roles,
indicated by black arrows. IL-35 may have anti-inflammatory effects in AD via the possible inhibition
of Th1, Th2, Th17, and Th22 cell responses. IL-35 can induce the conversion of B cells into regulatory
B cells that produce IL-35 as well as IL-10. IL-35 can also induce iTr35 cell generation, which releases
an additional amount of IL-35, creating a positive feedback loop. The green arrows indicate induction
effects and the red T-shaped ends indicate suppression effects.

9. Regulatory T Cells in Atopic Dermatitis

The role of regulatory T cells in the pathogenesis of AD is widely discussed. Studies
examining Tregs frequencies in AD obtained conflicting results. A study by Verhagen
et al. aimed to determine the presence and function of regulatory T cells in the skin of
individuals with atopic dermatitis, revealing significantly expressed IL-10-secreting Tr1
cells. In turn, CD25+Foxp3+ Tregs were absent [80]. In another study, CD4+CD25+FOXP3+
Tregs in the peripheral blood were not significantly altered but increased numbers of
FOXP3+ Tregs were detected in AD skin [81]. Fujimura et al. also showed the presence
of FOXP3+ Tregs in AD lesion skin [82]. Roesner et al., who analyzed circulating Tregs
frequencies of adult patients with AD, detected a positive correlation between these cells
and disease severity [83]. Similar results were obtained by Ito et al., who also showed
increased frequencies of FOXP3-positive CD4+CD25+ T cells in peripheral blood and their
association with disease severity [84]. Another study additionally found higher frequencies
of circulating Tregs, but moreover, the authors showed impaired iTregs generation in AD
patients [85]. In contrast, a meta-analysis that included Chinese populations has revealed a
decreased proportion of Tregs in the peripheral blood of patients with AD [86].

Nevertheless, reports indicate a potential involvement of Tregs in the pathogenesis of
AD. Thus, the fact that Tregs are the main source of IL-35 indirectly suggests a possible role
for IL-35 in the pathogenesis of AD. Moreover, it was revealed that the loss of one of the



Int. J. Mol. Sci. 2022, 23, 15709 11 of 16

IL-35 receptor subunits, gp130 or IL-12Rβ2, could impact the conversion ability of iTr35,
and thus, IL-35 production [16]. Interestingly, one study found mutations in IL-12Rβ2 in
atopic individuals [87]. Additionally, Chen et al. showed that IL-12Rβ2 may be regulated
by miR-151a, which is involved in the pathogenesis of AD [88]. It is also known that IL-4,
which is one of the main players in AD, inhibits IL-12Rβ2 expression, leading to the loss of
IL-12 signaling [17]. Thus, the question whether genetic defects and the immunological
regulation of IL-12Rβ2 expression interferes with the conversion of iTr35 and, consequently,
the production of IL-35 by them in AD individuals comes to light. Although, on the other
hand, the deficiency of IL-35 can significantly reduce the regulatory activity of Tregs [2].

10. Regulatory B Cells in Atopic Dermatitis

Regulatory B cells are an interesting research area due to their immunomodulation
functions in several conditions. Unfortunately, the number of studies on the role of these
cells in AD is limited. The first scientific reports on the regulatory role of B cells in AD
arose in 2015 when a decreased number of IL-10-producing B cells was demonstrated in
an Atopic Dermatitis-Like Mouse Model. In addition, the results of this study suggested
that IL-10-producing B cells have a defective regulatory function on IgE secretion [89].
Additionally, Yoshihara et al. showed that the frequency of IL-10-producing regulatory B
cells is decreased in patients with AD. Moreover, an inverse correlation between these cells
and disease severity was found [90].

The precise role of IL-10-producing regulatory B cells in AD is not yet fully understood.
However, the current reports about the aberrant number of these cells in AD indirectly
indicate the potential involvement of IL-35 in AD pathogenesis due to its capability of
inducing IL-10-producing regulatory B cells.

11. Discussion

As discussed above, IL-35 can inhibit the development of Th1, Th2, and Th17 cells
in the early stage of the proliferation of these cells while inducing the generation of the
regulatory T cells releasing IL-35, termed iTr35, as well as the conversion of Breg cells to
a Breg subset that produces IL-35 and IL-10 [8–10]. Through the inhibition of Th1, Th2,
and Th17 cells, IL-35 induces anti-inflammatory effects. In addition, the generations of
iTr35 cells and Breg cells promoted by IL-35 play also a significant role in the regulation
of immune responses via the secretion of immunosuppressive cytokines. For this reason,
IL-35 acts as an important role in modulating the immunity system.

Dysregulated levels of IL-35 are observed in many diseases including asthma, allergic
rhinitis, CSU, IBD, psoriasis, cancers, viral diseases, and connective tissue diseases as well
as AD; research data suggest that IL-35 may play different roles in different diseases [20–36].
For some diseases, the results of IL-35 concentrations obtained in different studies appear
to be contradictory. Regarding asthma, some studies indicate elevated levels of IL-35 in
patients compared to healthy people [22,23]. On the other hand, some authors obtained
opposite results and one study showed no significant differences between healthy and
asthmatic patients [24–26]. The possible reasons for these different results may be the
heterogeneity of airway inflammation in asthma patients and the different subtypes of this
disease. Another reason may be that some of these studies included only children, others
included only adults and some included patients of all ages. Finally, in the mentioned
research, different samples including plasma, serum, and peripheral blood mononuclear
cells (PMBCs) were tested. Conflicting results were obtained regarding SLE patients. In
one mentioned study in Table 1, adults with newly diagnosed SLE presented decreased
levels of IL-35 compared to healthy people [34]. In turn, Qiu et al. showed that newly
diagnosed SLE patients have higher IL-35 serum levels compared to healthy people, and
after prednisone treatment, the serum levels of this cytokine decreased significantly [20].
Perhaps, in the study by Qiu et al., the group of patients presented upregulated levels of
IL-35 in response to severe inflammation. This hypothesis is supported by the fact that
the serum level of this cytokine decreased after treatment. This may partially explain the
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differences in results between these two studies. Likewise, in the case of RA, IL-35 levels
significantly decreased after treatment [21].

Due to the anti-inflammatory effects of IL-35, this cytokine is under consideration to be
a promising drug for the treatment of inflammatory diseases. Additionally, the regulatory
cells, including iTr35 cells and IL-35+Bregs with immunosuppressive capacity, could be
induced via recombinant IL-35 protein therapy [74]. The use of IL-35 recombinant protein
in the treatment of acute colitis and psoriasis showed good therapeutic effects in mouse
models [91]. In another study, mice treated with IL-35 were characterized by significantly
alleviated lupus flare and nephritis, which was associated with the expansion of Tregs and
IL-10-producing Bregs [92]. IL-35 appears to be a crucial cytokine able to regulate immune
responses and can be a therapeutic target for a large variety of diseases. Although the levels
and immunomodulatory effects of IL-35 may vary from disease to disease, this fact does
not exclude this cytokine from being considered a therapeutic target. Targeting therapy to
reduce or upregulate IL-35 concentration would be used depending on its concentration
in a given disease. Considering the role of this interleukin in maintaining the immune
balance, it seems to be involved in the pathogenesis of AD and could also be a promising
new therapeutic target in this disease. However, this proposal has limitations. To date,
only a few human studies have been carried out on the serum levels of IL-35 in AD [30,36].
Nevertheless, the results from these studies seem inconsistent. One study suggests a
decreased serum concentration of IL-35 in AD, which may indicate the involvement of
this cytokine in the pathogenesis of the disease. However, based only on this one research,
it cannot be clearly stated. The serum level and function of IL-35 in AD still need to be
investigated in further studies to confirm our hypothesis.

In recent years, great advances in new therapeutic strategies for the treatment of
AD emerged: monoclonal antibodies directed against interleukins involved in disease
pathogenesis or their receptors, and small molecule drugs inhibiting JAK-STAT signaling
pathways have been developed. By their counteraction, these drugs focus mainly on
suppressing components of the immune system involved in the processes underlying the
inflammatory response in AD [93,94]. The presented role of IL-35 and its potential use in
the treatment of a variety of diseases with similar immune polarization to AD opens a new
potential perspective on the treatment of AD. Perhaps in the future, it is worth considering
immunomodulatory therapies, which, unlike currently available therapies, will focus on
stimulating molecules such as regulatory cells, which through their naturally secreted
immunosuppressive cytokines, will modulate the immune system in AD, leading to the
expected therapeutic goal.

12. Conclusions

Based on the mentioned data, IL-35 appears to have a significant influence on modu-
lating the immune response in many inflammatory diseases. It might be that its activity
depends on the cytokine milieu. Most of the available data indicate an anti-inflammatory
and protective effect of this cytokine, but a few reports suggest its pro-inflammatory effect.
Therefore, the function of IL-35 in the pathogenesis of many diseases including AD still
needs to be investigated in the future. Further research will not only elucidate the role of
IL-35 in AD pathogenesis, but may also identify a novel therapeutic target.
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