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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious
and pathogenic coronavirus that emerged in late 2019 and caused a pandemic of respiratory illness
termed as coronavirus disease 2019 (COVID-19). Cancer patients are more susceptible to SARS-
CoV-2 infection. The treatment of cancer patients infected with SARS-CoV-2 is more complicated,
and the patients are at risk of poor prognosis compared to other populations. Patients infected
with SARS-CoV-2 are prone to rapid development of acute respiratory distress syndrome (ARDS)
of which pulmonary fibrosis (PF) is considered a sequelae. Both ARDS and PF are factors that
contribute to poor prognosis in COVID-19 patients. However, the molecular mechanisms among
COVID-19, ARDS and PF in COVID-19 patients with cancer are not well-understood. In this study,
the common differentially expressed genes (DEGs) between COVID-19 patients with and without
cancer were identified. Based on the common DEGs, a series of analyses were performed, including
Gene Ontology (GO) and pathway analysis, protein–protein interaction (PPI) network construction
and hub gene extraction, transcription factor (TF)–DEG regulatory network construction, TF–DEG–
miRNA coregulatory network construction and drug molecule identification. The candidate drug
molecules (e.g., Tamibarotene CTD 00002527) obtained by this study might be helpful for effective
therapeutic targets in COVID-19 patients with cancer. In addition, the common DEGs among
ARDS, PF and COVID-19 patients with and without cancer are TNFSF10 and IFITM2. These two
genes may serve as potential therapeutic targets in the treatment of COVID-19 patients with cancer.
Changes in the expression levels of TNFSF10 and IFITM2 in CD14+/CD16+ monocytes may affect
the immune response of COVID-19 patients. Specifically, changes in the expression level of TNFSF10
in monocytes can be considered as an immune signature in COVID-19 patients with hematologic
cancer. Targeting N6-methyladenosine (m6A) pathways (e.g., METTL3/SERPINA1 axis) to restrict
SARS-CoV-2 reproduction has therapeutic potential for COVID-19 patients.

Keywords: SARS-CoV-2; cancer; pulmonary fibrosis; acute respiratory distress; PPI; drug molecule;
single-cell RNA-seq; immunity; monocyte; m6A

1. Introduction

At the end of 2019, an acute respiratory disease called coronavirus disease 2019 (COVID-19)
was identified in China and then spread and became a worldwide pandemic, threatening
human health and public safety. The disease is caused by infection with a virus named
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus that is
highly contagious and pathogenic [1].

Cancer patients are more susceptible to viral infections due to a range of factors, such
as the poor health status, the presence of other chronic diseases and their systemic immuno-
suppression states caused by cancer and anticancer therapy. Therefore, the treatment of

Int. J. Mol. Sci. 2022, 23, 15698. https://doi.org/10.3390/ijms232415698 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms232415698
https://doi.org/10.3390/ijms232415698
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-1348-8992
https://doi.org/10.3390/ijms232415698
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms232415698?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 15698 2 of 21

cancer patients infected with SARS-CoV-2 is more complicated, and they are at risk of poor
prognosis compared to other populations [2]. Based on the large cohort study by Dai et al.
(2020), which included COVID-19 patients with cancer (n = 105) and COVID-19 patients
without cancer (n = 536), COVID-19 patients with cancer were at higher risk for all serious
outcomes compared to COVID-19 patients without cancer [3].

Even for COVID-19 patients without cancer, there are patients who have been de-
tected with high viral loads and develop severe respiratory symptoms. These patients
often experience dyspnea and hypoxemia and rapidly develop acute respiratory distress
syndrome (ARDS) [4]. ARDS is a clinical manifestation of acute lung injury. The severity
of ARDS is closely related to the patient mortality rate. In a retrospective cohort study by
Wu et al. (2020), among a total of 201 COVID-19 patients, 84 patients developed ARDS
symptoms, and 67 received mechanical ventilation. All patients who died developed
ARDS and received mechanical ventilation [5]. In addition, based on a clinical study of
5700 COVID-19 patients in the New York City area, patients who developed ARDS and
required mechanical ventilation had a mortality rate of 88.1%. The results of these studies
highlighted the fact that the development of ARDS was a leading cause of death in patients
infected with SARS-CoV-2 [6].

Pulmonary fibrosis (PF) is considered a sequelae of ARDS [7]. In a study of pulmonary
function from 110 patients who recovered from COVID-19 at time of hospital discharge,
more than one-third of the recovered patients developed abnormal pulmonary fibrosis.
In addition, 47.2% of recovered patients had impaired lung diffusing capacity for carbon
monoxide, and 25% of recovered patients had decreased total lung capacity [8]. Notably,
progressive pulmonary fibrosis has been shown to be the leading cause of death in the
majority of ARDS patients [7]. A significant proportion of survivors have radiographic
abnormalities due to the presence of pulmonary fibrosis [9], and they also experienced
long-term damage to lung functions [10]. The burden of post-COVID-19 pulmonary fibrosis
can be substantial for a subset of patients as they age [11]. Just a relatively small degree
of residual, not even progressive fibrosis, can contribute to considerable morbidity and
mortality in the elderly people infected with SARS-CoV-2, especially when many of them
may already have lung diseases.

In this study, several Gene Expression Omnibus (GEO) datasets were used to explore
biological relationships and potential therapeutic targets among COVID-19 patients with
and without cancer, and how these targets were related to ARDS and PF. Differentially
expressed genes (DEGs) were identified between COVID-19 patients and healthy controls
by using the GSE164571 and GSE147507 datasets. Then we identified the common DEGs
between COVID-19 patients with and without cancer, comparing them to the DEGs identi-
fied for COVID-19 patients earlier. These DEGs were used for the downstream analysis to
explore the systematic changes caused by COVID-19 and cancers based on the transcrip-
tomics patterns. First, Gene Ontology (GO) and pathways analysis based on these common
DEGs were performed to elucidate the biological processes of genome-based expression
studies. The protein–protein interaction (PPI) network was constructed from the common
DEGs to reveal the most significant connections between these proteins of interest, while
the hub genes were also identified from the PPI network. The construction of transcription
factor (TF)–DEG interactions and miRNA–DEG–TF coregulatory network elucidated the
ways in which DEG were regulated at the transcriptional and post-transcriptional levels.
Based on the principle of protein–drug interactions, drug molecules with potential value
for the treatment of COVID-19 patients with cancer were predicted. In addition, two genes
were identified as the common DEGs among ARDS, PF and COVID-19 cancer patients:
TNFSF10 and IFITM2. These two genes may serve as potential therapeutic targets in the
treatment of COVID-19 patients with cancer. The immunological features of potential
biomarkers were also explored and validated in other COVID-19 cohorts using single-cell
RNA-seq analysis based on the GSE153610 dataset. The workflow of the current analysis is
displayed in Figure 1.
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Figure 1. The workflow of current analysis. DEGs were identified between COVID-19 patients
without cancer and healthy controls by using the GSE164571 and GSE147507 datasets. Then we
identified the common DEGs between COVID-19 patients with and without cancer. Based on the
common DEGs, a series of analyses were performed, including GO and pathway analysis, PPI
network construction and hub gene extraction, transcription factor–DEG regulatory network con-
struction, transcription factor–DEG–miRNA coregulatory network construction and drug molecule
identification. In addition, the common DEGs among ARDS, PF and COVID-19 patients with and
without cancer were TNFSF10 and IFITM2. The immunological features of potential biomarkers were
also validated in COVID-19 patients with hematological cancer using single-cell RNA-seq analysis
based on GSE153610.

2. Results
2.1. Transcriptomic Differences between SARS-CoV-2 and Healthy Control

The GSE164571 dataset was used for the DEGs identification between COVID-19
patients with and without cancer [12]. Twelve peripheral blood mononuclear cell (PBMC)
samples were divided into three groups: two healthy controls, five COVID-19 patients
without cancer and five COVID-19 patients with cancer. We first identified DEGs between
COVID-19 patients without cancer and healthy controls. Among 784 genes were analyzed,
144 DEGs were identified as significant, including 107 upregulated genes and 37 down-
regulated genes (Figure 2A). We then used the GSE147507 dataset to narrow down the list
of DEGs [13], where 9510 genes were obtained from the RNA-seq data. Compared with
uninfected human lung samples, there were 814 DEGs, including 395 upregulated and
419 downregulated genes from human lung samples, infected with SARS-CoV-2 (Figure 2B).
The comparison of the common DEGs between SARS-CoV-2 and healthy control from the
above two GEO datasets was plotted using a Venn diagram (Figure 2C), where 32 common
DEGs were finally identified.

2.2. Identification of DEGs and Screening of Common Genes between COVID-19 Patients with and
without Cancer

Based on data from the GSE164571 dataset, comparing COVID-19 patients with cancer
and healthy control, we identified 66 upregulated and 43 downregulated genes from
109 DEGs (Figure 2D). These 109 DEGs were compared with the 32 DEGs obtained in
Figure 2C, and 22 common DEGs (Figure 2E) were found to be the overlapped genes that
had different expression patterns comparing COVID-19 vs. healthy control and comparing
COVID-19 patients with and without cancers. For example, it is shown in Figure 2F that, in
the GSE164571 dataset, compared with healthy control, CD69, LRRC32 and SNAI1 were
downregulated in COVID-19 patients with or without cancer, while 19 other genes were
upregulated in COVID-19 patients with or without cancer.
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Figure 2. Identification of DEGs and screening of common DEGs between COVID-19 patients
with and without cancer. The volcano plot depicts the DEGs between COVID-19 patients without
cancer and healthy controls by using the GSE164571 (A) and GSE147507 (B) datasets (Adjusted
p-value < 0.05, |log2FC| ≥ 1). Based on DEGs in (A,B), the common DEGs were shown through a
Venn diagram (C). Identification of DEGs between COVID-19 patients with cancer and healthy control
by using the GSE164571 dataset (D) (Adjusted p-value < 0.05, |log2FC| ≥ 1). The Venn diagram
(E) shows the common DEGs between 32 common genes derived from (C) and DEGs derived from
(D). (F) The heatmap shows gene expression changes in the following two groups of the common
DEGs from (E) in the GSE164571 dataset: COVID-19 patient without cancer vs healthy control,
COVID-19 patient with cancer vs healthy control. (G) The Venn diagram shows the common genes
between 22 DEGs obtained from Figure 2E and immune-related genes. (H) The 10 immune-related
genes obtained from Figure 2G were classified and visualized by a Sankey diagram. (I) Based on the
GSE164571 dataset, the expression levels of 10 immune-related genes obtained from Figure 2G were
visualized in different groupings by heatmap.

We further explored whether these 22 DEGs were involved in the immune system, and
in Figure 2G, it is shown that, among the 22 DEGs, 10 genes were immune-related genes. In
Figure 2H, the 10 immune-related genes were classified into two categories: antimicrobials
(CYBB, HCK, IRF9, OAS1, S100A12, S100A8, S100A9, TNFSF10) and cytokines (IL1RN,
TNFSF13B). In Figure 2I, it is highlighted that, in the GSE164571 dataset, compared with
healthy control, the 10 immune-related genes were upregulated in COVID-19 patients with
or without cancer. Therefore, it suggested that the corresponding immune responses were
activated in COVID-19 patients with cancer or not.
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2.3. Common Genes-Based GO and Pathway Analysis

The following 22 common DEGs (identified earlier) were used to performed gene
enrichment analysis via Enrichr platform: CD69, LRRC32, SNAI1, IRF9, PARP9, IL1RN,
IRF2, LY96, S100A12, CYBB, TNFSF10, IFITM2, TNFSF13B, FCGR2A, SELL, HCK, LILRA1,
P2RY13, OAS1, S100A9, SIGLEC5 and S100A8. The combined score performed by the
Enrichr platform was calculated by the logarithm of the adjusted p-value. Genes that
were enriched in the top 10 GO terms and pathways were listed in Figure 3. The results
of the GO analysis were summarized into three categories: biological process, cellular
component and molecular function. For the biological process category, the common DEGs
were highly enhanced in neutrophil-mediated immune responses and interferon-related
pathways. The result of the cellular component analysis shows that secretory granule
membrane, cytoplasmic vesicle lumen and cytoplasmic vesicle membrane are significantly
involved by the common DEGs, while the most significant changed molecular function
was RAGE (receptor for advanced glycation end products) receptor binding. The most
impacted pathways involved by these common DEGs between COVID-19 patients with and
without cancer were identified based on three databases: KEGG (Kyoto Encyclopedia of
Genes and Genomes), WikiPathways and Reactome. Type II interferon signaling pathway,
related pathways of coronavirus disease (COVID-19) and immune response are the top
pathways enriched by the common DEGs. Four genes: FCGR2A (FcRII–A), IRF9, OAS1
(2′–5′-oligoadenylate synthetase 1) and CYBB (also known as NOX2) were highlighted in
the related pathways of coronavirus disease (COVID-19) from KEGG database (Figure S1).
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Figure 3. Common genes-based GO and pathway analysis sorted by adjusted p-values. Enriched
genes are marked. (A–C) GO terms analysis results were shown, including biological process, cellular
component and molecular function. (D–F) Pathway analysis results were identified by KEGG (Kyoto
Encyclopedia of Genes and Genomes), WikiPathways and Reactome.

2.4. PPI Network Construction and Hub Genes Extraction

The 22 common DEGs were provided as input in STRING database, and the generated
file was then imported into Cytoscape software for visualization of the PPI network. The
PPI network can help to further analyze the interactions among the common DEGs obtained
in this study, such as extraction of the hub genes related to them. The highlighted common
DEGs in the PPI network were marked in red (Figure 4A), and the network consisted of
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51 nodes and 542 edges. In a PPI network, the most interconnected nodes are considered
as hub genes. In the Cytoscape software, the cytoHubba plugin was used to identify the
hub genes in the PPI network by the degree algorithm (Figure 4B). Sorted by the degree
value of each gene, the top five hub genes were identified as: TLR4, STAT1, IRF1, STAT2
and CYBB (NOX2). These hub genes can be regarded as potential biomarkers and may also
bring new perspectives for the treatment of diseases.
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Figure 4. PPI network construction and hub genes extraction. (A) Protein–protein interactions (PPI)
network of common DEGs between COVID-19 patients with and without cancer. The common
genes are highlighted with red nodes. The network contains 51 nodes and 542 edges. (B) The hub
genes were extracted from the PPI network of common DEGs. According to the degree value, the
highlighted TOP5 hub genes are TLR4, STAT1, IRF1, CYBB and STAT2. The network is made up of
47 nodes and 263 edges.

2.5. TF–DEG Interactions and miRNA–DEG–TF Coregulatory Networks

TF and miRNA interactions with DEGs can be considered as an important way to
examine the DEGs from expression changes at the transcriptional and post-transcriptional
levels. TFs–DEGs regulatory network was generated by the NetworkAnalyst platform.
The common DEGs interaction with TF-genes was depicted in Figure 5A. The network
contained 215 nodes and 325 edges, and 197 TF regulators were included in the network.
Notedly, IRF9 was regulated by 77 TF-genes and SNAI was regulated by 67 TF-genes. The
common DEGs were regulated by one or even multiple TF-genes, suggesting that DEGs
were highly interacting with different TF-genes. In the miRNA–DEG–TF coregulatory
network (Figure 5B), DEG expressions can be regulated not only by TF-genes, but also by
more than one post-transcriptional regulatory signature (miRNAs). The network contained
50 nodes and 82 edges, among which there were 10 miRNAs and 19 TF-genes. Only
TF-genes or miRNAs that regulated more than one DEGs were shown in the figure.

2.6. Prediction of Drug Candidate Molecules

The drug candidate molecules were predicted by the Drug Signatures Database
(DSigDB) of the Enrichr web platform. The results were based on the interaction of 22 com-
mon genes with drugs molecules. According to adjusted p-value, Figure 6 suggested the top
5 candidate drug molecules for COVID-19 patients with cancer. The results indicated that
Tamibarotene CTD 00002527 and suloctidil HL60 UP were the two potential drug molecules
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that could interact with most genes. In Table 1, the information is summarized for the top
5 drug candidates in terms of chemical formula, chemical structures and background.
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TNFSF13B

Figure 6. Prediction of drug candidate molecules. The drug candidate molecules were predicted
by the DSigDB database of the Enrichr web platform. The results were based on the interaction of
22 common genes with drugs and sorted by adjusted P-values. Enriched genes were marked.
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Table 1. Suggested TOP 5 drug compounds.

No. Name of Drugs DrugBank Accession
Number [14] Chemical Formula Chemical Structure Background

1 Tamibarotene DB04942 C22H25NO3
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TNFSF13B

Tamibarotene is a novel synthetic retinoid for acute
promyelocytic leukaemia (APL) [15]. Tamibarotene is currently

approved in Japan for treatment of recurrent APL and is
undergoing clinical trials in the United States [16].

2 Suloctidil DB13340 C20H35NOS
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TNFSF13B

A peripheral vasodilator that was formerly used in the
management of peripheral and cerebral vascular disorders [17].

3 Phorbol 12–myristate
13–acetate / C36H56O8
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TNFSF13B

It has a role as a protein kinase C agonist, an antineoplastic
agent, a reactive oxygen species generator, a plant metabolite, a
mitogen, a carcinogenic agent and an apoptosis inducer [18–20].

4 Acetohexamide DB00414 C15H20N2O4S
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2.7. Identification of DEGs for ARDS Patients

In general, infection and injury to the lungs is the main route by which SARS-CoV-2 in-
fects patients, resulting in pneumonia, and a more serious condition, ARDS [23]. Therefore,
the identification of DEGs in the pathogenesis of ARDS is crucial for the guidance of its
treatment. Morrell et al. (2018) assessed transcriptional activation based on paired alveolar
macrophages (AM) and peripheral blood monocytes (PBM) samples in human ARDS. The
findings suggested that serial measurements of genome-wide transcriptional changes in
AM and PBM from ARDS patients could clarify the biologic programs activated in ARDS.
Moreover, the relationship between the transcriptional changes of the two was also closely
related to clinical outcomes [24]. The GSE89953 dataset was used for the DEGs identifica-
tion between PBMs and AMs in ARDS patients. The RNA-seq data from 26 paired AMs and
PBMs samples were normalized (Figure 7A) and the PCA plot showed that transcriptome
differences between different types of samples were quite obvious (Figure 7B). UMAP plot
also indicated that different conditions can be well separated (Figure 7C). The expression of
the common DEGs obtained from Figure 2E in different samples was shown in Figure 7D.
The result showed that TNFSF13B, S100A12, SELL, P2RY13, TNFSF10, IFITM2, S100A9 and
S100A8 were upregulated in AMs samples, while these 8 genes were downregulated in
PBMs samples.
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Figure 7. Identification of common DEGs between paired alveolar macrophages (AM) and peripheral
blood monocyte (PBM) samples in acute respiratory distress syndrome (ARDS) patients. (A) The data
were normalized. (B,C) PCA and UMAP plots indicated that the different categories (AM and PBM
samples) were well differentiated. (D) The common DEGs obtained from Figure 2E were selected to
make the heatmap. The expression data for IRF9 was missing and therefore not shown.
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2.8. Identification of DEGs between PF and Healthy Control

Many COVID-19 patients with critical symptoms may develop long-term lung damage
after virus clearance, especially fibrotic interstitial lung disease. PF is a well-recognized
sequela of ARDS [7]. We identified the DEGs between normal and fibrotic human lung
tissues based on the GSE40839 dataset. The expression data from 10 normal and 8 fibrotic
human lung tissue samples were normalized (Figure 8A), and the PCA plot and UMAP
plot depicted that the different transcriptomes can be well differentiated (Figure 8B,C). The
expression of common DEGs obtained from Figure 2E in different samples was shown in
Figure 8D, and the heatmap showed that FCGR2A, LY96, TNFSF10, IFITM2, OAS1, IRF9
and IRF2 were downregulated in PF samples, while these 7 genes were upregulated in
normal samples.
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Figure 8. Identification of common DEGs between pulmonary fibrosis (PF) and healthy control.
(A) The data were normalized. (B,C) PCA and UMAP plots indicated that the different categories
(PF and normal samples) were well-differentiated. (D) The common DEGs obtained from Figure 2E
were selected to make the heatmap. The expression data for TNFSF13B and PARP9 was missing and
therefore not shown.

2.9. Identification of Common DEGs among COVID-19 Patients without and with Cancer, ARDS
and PF

Given that ARDS and PF may be potentially adverse symptoms for subsequent treat-
ment of cancer patients infected with SARS-CoV-2, the common DEGs were identified from
SARS-CoV-2, ARDS and PF datasets. The result suggested that TNFSF10 and IFITM2 were
the two most significant DEGs, which can be shown in the Venn diagram (Figure 9A). In
Figure 2F, the heatmap showed that, in the GSE164571 dataset, compared with healthy con-
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trol, TNFSF10 and IFITM2 were upregulated in COVID-19 patients with or without cancer.
In the volcano plots, 404 upregulated and 323 downregulated genes were included in the
obtained 727 DEGs from the ARDS dataset. TNFSF10 and IFITM2 were downregulated
(Figure 9B). The 566 DEGs contained 169 upregulated and 397 downregulated genes based
on the PF dataset. TNFSF10 and IFITM2 were downregulated (Figure 9C).
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Figure 9. Identification of common DEGs among COVID-19 patients without and with cancer, ARDS
and PF. (A) The Venn diagram suggested that TNFSF10 and IFITM2 are two very significant DEGs
based on GSE164571, GSE147507, GSE40839 and GSE89953 datasets. TNFSF10 and IFITM2 were
marked in the volcano plots from the GSE89953 dataset (ARDS) (B) and the GSE40839 dataset (PF)
(C) (Adjusted p-value < 0.05, |log2FC| ≥ 1).

2.10. Single-Cell RNA-Seq Analysis Revealed Immunological Features of TNFSF10 and IFITM2 in
COVID-19 Patients

Based on the PBMC samples from the cellxgene dataset, the expression data of TN-
FSF10 and IFITM2 in COVID-19 patients were obtained by Single-cell RNA-seq analysis.
The expression levels of IFITM2 and TNFSF10 in various immune cells were shown in
Figure 10A. This heatmap indicated that both genes were highly expressed in monocytes.
In addition, IFITM2 was also highly expressed in natural-killer (NK) cells (Figure 10B).

The single-cell RNA-seq data from Zhang et al. (2020) [25] were used to explore the
immunological features of potential biomarkers TNFSF10 and IFITM2 in COVID-19 cohorts.
The PBMC samples from 5 healthy donors and 13 COVID-19 patients were collected.
Figure 10C shows that 122,542 single cells were divided into 14 clusters. These samples in
different COVID-19 conditions were evenly distributed in the 14 clusters (Figure 10D). In
this COVID-19 cohort, TNFSF10 was highly expressed in CD14+ and CD16+ monocytes
(Figure 10E). IFITM2 was highly expressed in CD14+, CD16+ monocytes and NK cells
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(Figure 10F). We also used the single-cell RNA-seq data published by Stephenson et al.
(2021) [26] to verify the above conclusions. PBMC samples from 41 controls and 102 COVID-
19 patients were obtained. 781,123 single cells were classified into 18 clusters (Figure 10G,H).
Figure 10I,J described similar conclusions: compared with other immune cells, TNFSF10
was highly expressed in CD14+ and CD16+ monocytes. IFITM2 was highly expressed in
CD14+, CD16+ monocytes and NK cells.

C D

E F

G H

I J

A

B

K

Figure 10. Immunological features of TNFSF10 and IFITM2 in COVID-19 patients with or without
cancer by Single-cell RNA-seq analysis. (A,B) Based on the PBMC samples from the cellxgene dataset,
the expression level of TNFSF10 and IFITM2 in COVID-19 patients without cancer was obtained by
Single-cell RNA-seq analysis. More results were based on the single-cell RNA-seq data included
in the publication of Zhang et al. (2021) [25] (C–F) and Stephenson et al. (2021) [26] (G–J). (C) The
UMAP projection of 122,542 single cells from healthy donors (n = 5), moderate (n = 7), severe (n = 4)
and convalescent (n = 6) COVID-19 patient samples. Each dot represents a single cell. The 14 clusters
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were marked with corresponding colors. (D) The distribution of PBMC cell samples among 14 clusters
based on different clinical status. (E,F) The expression levels of TNFSF10 and IFITM2 in 14 clusters,
respectively. (G) The UMAP projection of 781,123 single cells from 41 controls and 102 COVID-19
patients. Each dot represents a single cell. The 18 clusters were marked with corresponding colors.
(H) The distribution of PBMC cells samples among 18 clusters based on different clinical status.
(I,J) The expression levels of TNFSF10 and IFITM2 in 18 clusters, respectively. Different categories
were distinguished by different colors, and the corresponding frequencies were marked. Lymph,
lymphocyte; mono, monocyte; prolif, proliferating. (K) Compared with recovered COVID-19 patients
without cancer, the volcano plot indicated changes in the expression levels of TNFSF10 and IFITM2
in monocytes of COVID-19 patients with hematologic cancer based on the GSE153610 dataset.

The immunological features of potential biomarkers were also validated in COVID-19
patients with hematologic cancer using single-cell RNA-seq analysis. Based on the GSE153610
dataset (Figure 10K and Table S1), compared with recovered COVID-19 patients without
cancer, TNFSF10 were upregulated in monocytes of cancer patients infected with SARS-
CoV-2, while IFITM2 were downregulated.

3. Discussion

Given the susceptibility of cancer patients to SARS-CoV-2 infection, cancer patients
are at high risk of developing respiratory complications associated with SARS-CoV-2
infection [27], and that is why cancer patients should require special care or treatment
during the SARS-CoV-2 pandemic. Here, we were trying to search for genes that can
provide some insights of the molecular mechanisms underlying the effects of SARS-CoV-2
infection in cancer patients.

In this study, GSE164571 and GSE147507 datasets were used to identify the common
DEGs between COVID-19 patients without and with cancer. In Figure 2F, the heatmap
showed that the 22 common DEGs were clearly distinguished in two different groups
according to the changes of their expression levels. Importantly, 10 immune-related genes
from 22 DEGs were upregulated in COVID-19 patients with or without cancer (Figure 2I).
Previous studies have shown that innate and adaptive immune responses were activated
after SARS-CoV-2 infection [28]. Our findings confirmed that the immune responses were
activated in COVID-19 patients with or without cancer.

According to the results of KEGG (Figure 3) pathway analysis, related pathways of
coronavirus disease (COVID-19) were identified based on the 22 common DEGs, which
confirmed that these DEGs were involved in the response to the viral infection and makes
the subsequent analysis based on these 22 common DEGs more convincing. The following
four genes were enriched in the related pathways of coronavirus disease (COVID-19) from
KEGG database: FCGR2A (FcRII–A), IRF9, OAS1(2′-5′-oligoadenylate synthetase 1) and
CYBB (NOX2). In a clinical study based on 182 COVID-19 cases by Violi et al. (2020) [29],
the results showed that NOX2 was highly activated in COVID-19 patients. In particular,
the degree of NOX2 activation was higher in those with severe conditions. Severe illness
and thrombosis in COVID-19 patients were closely related to oxidative stress caused by
NOX2 activation. A study involving 453 patients with severe COVID-19 suggested that
FCGR2A may be associated with the risk of death in patients infected with SARS-CoV-
2 [30]. The deficiency in IRF9 is associated with impaired control of multiple viruses
(including SARS-CoV-2), building the functional relationship between IRF9 and respiratory
viral infection [31]. OAS1 (2′–5′-oligoadenylate synthetase 1) is regarded as a SARS-CoV-2
restriction factor capable of initiating efficient blockade of viral replication [32].

Based on the result of molecular function identification (Figure 3C), RAGE receptor
binding was the most significant function carried out by the identified DEGs. Studies
have confirmed that members of the renin–angiotensin system (RAS) played a decisive
pathogenic role in mediating organ damage caused by SARS-CoV-2 infection. RAGE
is a member of the immunoglobulin superfamily and plays an important role in lung
pathological states, including ARDS and pulmonary fibrosis. RAGE overexpression or
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hyperactivation is critical for the deleterious effects of RAS in multiple major comorbidities
caused by SARS-CoV-2 infection, including hypertension, diabetes and cardiovascular
disease. RAGE could be considered as a potential therapeutic target in patients with
COVID-19 to improve multi-organ pathology caused by the virus [33].

In the PPI network established based on the DEGs, hub genes were identified based
on the topological metric (i.e., degree), and these hubs could be key therapeutic targets
or molecular markers in COVID-19 patients with cancer and associated with various
pathological and biological mechanisms. According to their degree values, a total of five
hub genes were selected (Figure 4B), including TLR4, STAT1, IRF1, STAT2 and CYBB. In
this network, the gene with the largest degree value was TLR4, which was one of the
most extensively studied toll-like receptor (TLR) family members. In different solid tumor
types, TLR4 is used as a biomarker to reveal tumor proliferation, differentiation, metastasis,
prognosis and patient survival status [34]. In addition, the overactivation of TLR4 leads
to prolonged or excessive innate immune responses after infection with SARS-CoV-2.
Therefore, SARS-CoV-2-induced myocarditis, ARDS and multiple-organ damage may be
due to TLR4 activation, aberrant TLR4 signaling and excessive inflammation in COVID-19
patients [35].

Sorted by adjusted p-value, the top five candidate drug molecules predicted from
the 22 common DEGs were Tamibarotene CTD 00002527, suloctidil HL60 UP, Phorbol 12–
myristate 13–acetate CTD 00006852, acetohexamide PC3 UP and 3′-Azido–3′-deoxythymidine
CTD 00007047 (Figure 6). Tamibarotene was the potential drug molecule with the smallest
adjusted p-value. Based on the findings of Liao et al. (2021), they clarified that tamibarotene
is a retinoid derivative with broad-spectrum antiviral activity. In a hamster model, in-
tranasal delivery of tamibarotene by spray freeze drying (SFD) technique showed efficacy
against SARS-CoV-2 virus [36]. Tamibarotene has shown efficacy in inhibiting tumor cell
growth in advanced hepatocellular carcinoma patients with acceptable tolerability [37].
Similarly, tamibarotene may lead to a new strategy for the treatment of acute promyelocytic
leukemia (APL) through improved relapse-free survival [38].

IFITM2 and TNFSF10 were the two DEGs that overlapped when comparing the gene
expression levels from patients of COVID-19, cancer, ARDs and PF. IFITM2 was upreg-
ulated in COVID-19 patients without cancer, which can be supported by the conclusion
from previous study that IFITM2 inhibited the entry of SARS-CoV-2 virus [39]. However,
compared with recovered COVID-19 patients without cancer, IFITM2 was downregulated
in COVID-19 patients with hematologic cancer (exitus) (Figure 10K). Thus, it may impair
the inhibition of SARS-CoV-2 entry, making the patients more prone to developing severe
clinical consequences. In addition, IFITM2 also has the effect of promoting cancer. Evidence
showed that IFITM2 was highly expressed in gastric cancer and renal clear cell carcinoma,
which associates with poor survival [40,41].

Another study indicated that TNFSF10 (TRAIL) was upregulated in bronchoalveolar
lavage fluid (BALF) and PBMC of patients infected with SARS-CoV-2 [42]. We also found
that TNFSF10 as an immune-related gene was upregulated in COVID-19 patients with
cancer (Figures 2F and 10K). Additionally, Han et al. (2022) revealed that TNFSF10 plays
an important role in the regulation of antiviral immune responses in triple-negative breast
cancer [43].

N6–methyladenosine (m6A) has been identified to be a frequent RNA modification
that affects transcript functions in virus-infected cells. SARS-CoV-2 RNA is modified
by m6A [44]. Further, Li et al. (2021) revealed the mechanism of m6A modification in
evading the host immune responses to viral infection [45]: RIG–I binds to SARS-CoV-2
viral RNAs thereby inhibiting their activity. In host cells, m6A regulator METTL3 adds
m6A modification to SARS-CoV-2 RNA, which reduces the binding of viral RNA to RIG–I,
thereby inhibiting the sensing and activation of the innate immune response. We explored
how METTL3 affects downstream molecules at the transcriptional level after SARS-CoV-
2 infection. The GSE167075 dataset contains the transcriptome data after depletion of
the m6A methyltransferase METTL3 in host cell infected with SARS-CoV-2. Then the
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integrated analysis revealed 1 common gene is shared among 32 common DEGs (COVID-19
vs. control) and the DEGs obtained by the GSE167075 dataset (Figure S2A). Compared
with healthy control, the common gene SERPINA1 was upregulated in both GSE164571
(Figure S2B) and GSE147507 (Figure S2C) datasets. In the volcano plot (Figure S2D),
451 upregulated and 940 downregulated genes were included in the obtained 1391 DEGs
from the GSE167075 dataset. Compared with controls, SERPINA1 was downregulated after
METTL3 depletion, which illustrates the therapeutic potential of targeting m6A pathways
(e.g., METTL3/SERPINA1 axis) to restrict SARS-CoV-2 reproduction.

NK cells are an important part of the innate immune system, which can suppress
tumor cells in humans through a variety of mechanisms [46]. NK cells are also the first line
of defense against invading viruses because of their ability to target infected cells directly
without the need for specific antigen presentation [47]. Figure 10B showed that IFITM2 was
highly expressed in NK cells of COVID-19 patients without cancer. How IFITM2 regulate
immune responses through NK cells is unknown in SARS-CoV-2-infected cancer patients.
This requires more clinical samples and experimental data to be explored in the future.

The two main types of blood monocytes are CD14++/CD16- and CD14+/CD16+
monocytes. Among them, CD14+/CD16+ monocytes are regarded as proinflammatory.
CD14+/ CD16+ monocytes are key players in infection and inflammation [48]. In addition,
CD14+/CD16+ monocytes are involved in antitumor response [49]. Excessive monocyte
activation is accompanied by cytokine storm and subsequent acute lung injury, leading to
ARDS, which is a direct consequence of infection with SARS-CoV-2 [50]. Figure 10E,F and
Figure 10I,J indicated that both TNFSF10 and IFITM2 were highly expressed in CD14+ and
CD16+ monocytes of COVID-19 patients without cancer. Changes in the expression levels
of these two potential biomarkers may affect the immune response of COVID-19 patients,
and they could also be helpful guiding the prognosis and treatment of SARS-CoV-2-infected
cancer patients with further evaluation.

4. Materials and Methods
4.1. GEO Dataset Used in This Study

We collected five datasets from GEO profiles (https://www.ncbi.nlm.nih.gov/geoprofiles/
(accessed on 20 December 2021)), including GSE164571, GSE147507, GSE89953, GSE40839
and GSE153610. To determine the genetic interrelationships shared among COVID-19 pa-
tients without and with cancer, ARDS and PF, the corresponding GEO datasets were used.
The GSE164571 dataset contains NanoString data from 12 PBMC samples [12], where the
samples were divided into 3 groups: five COVID-19 patients without cancer, five COVID-19
patients with cancer and two healthy controls. Table 2 describes the details of the patients
and healthy controls from GSE164571. The GSE147507 dataset depicts transcriptional re-
sponse to SARS-CoV-2 infection [13]. The GSE89953 dataset reveals transcriptional changes
in AM and PBM from patients with ARDS, and 26 paired AM and PBM samples were used
for RNA-seq analysis in this study. For the PF dataset (GSE40839), there are 10 normal
human lung tissues and 8 scleroderma-associated fibrotic human lung tissue samples.

4.2. Identification of Common DEGs among COVID-19 without and with Cancer, ARDS and PF

A critical step in this study is to acquire the DEGs of datasets GSE164571, GSE147507,
GSE40839 and GSE89953. The DEGs identification based on the GSE164571 dataset was
done by GEOquery [51] and limma package in GEO2R tool (https://www.ncbi.nlm.nih.
gov/geo/geo2r/ (accessed on 20 December 2021)). The Benjamini-Hochberg method was
applied to adjust the p-values [52]. The identification of the common DEGs from GSE147507,
GSE40839 and GSE89953 datasets was performed through the use of the R programming
language. Adjusted p-value < 0.05 and |log2FC| ≥ 1 were used as cutoff criteria to obtain
significant DEGs from all the datasets. The common DEGs were identified through the
overlap from a Venn diagram online tool called jvenn [53].

https://www.ncbi.nlm.nih.gov/geoprofiles/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
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Table 2. The details of the patients and healthy Controls from the GSE164571 dataset.

Group Serial
Number Sex Age Neoplastic Disease Degree of

Severity
Sample
Source

Anticancer
Treatment

Days between COVID-19
First Positive Swap and

Blood Collection

Healthy
Donors

HD Y F 54 N.A. N.A. PBMCs N.A. N.A.

HD 7 M 51 N.A. N.A. PBMCs N.A. N.A.

COVID-19
patients

without cancer

Sand-003 M 60 N.A. Critical PBMCs N.A. 37

Sand-004 F 69 N.A. Critical PBMCs N.A. 57

Sand-007 F 88 N.A. Moderate PBMCs N.A. 37

Sand-010 M 65 N.A. Mild PBMCs N.A. 2

Sand-100 M 68 N.A. Severe PBMCs N.A. 39

COVID-19
patients with

cancer

Sand-005 M 69
Clear cell renal cell

carcinoma
(CCRCC)

Severe PBMCs No treatment
(neo-diagnosis) 37

Sand-006 M 74 Chronic Lymphatic
Leukemia (CLL) Critical PBMCs No treatment

(neo-diagnosis) 42

Sand-008 M 70 Lung cancer Severe PBMCs No treatment 24

Sand-009 F 74 Gastrointestinal
Cancer Mild PBMCs No treatment

(neo-diagnosis) 2

Sand-011 M 69
Classical mixed

cellularity Hodgkin
Lymphoma

Severe PBMCs No treatment
(neo-diagnosis) 55

For the analysis of GSE40839 and GSE89953 datasets, the RNA-seq data were normal-
ized and then visualized using PCA and UMAP, which were plotted using R packages,
including ggplot2 [54] and umap.

4.3. Acquisition and Classification of Immune-Related Genes

A complete list of immune-related genes was obtained from the ImmPort website
(https://www.immport.org/shared/genelists (accessed on 20 December 2021)) [55] and
was used to identify the DEGs that were related to the immune system. The classification
of the immune-related DEGs was performed and visualized by R package ggalluvial [56].

4.4. Gene Ontology (GO) and Pathways Analysis Based on Common DEGs

Gene set enrichment is a statistical-based computational method used to determine
whether a pre-defined gene set shows statistically concordant differences, such as their
functions, related pathways, under different biological conditions [57]. GO terms based on
the identified common DEGs are obtained from the Enrichr (https://maayanlab.cloud/
Enrichr/ (accessed on 20 December 2021)) platform [58], and the GO terms are divided
into three categories including biological process, cellular component and molecular func-
tion [59]. KEGG [60], WikiPathways [61] and Reactome [62] databases were used to analyze
pathways involved by identified common DEGs. Pathway-related results were also imple-
mented using the Enrichr platform.

4.5. Analysis of PPI Network and Hub Genes Identification

The identification of protein–protein interaction sites can provide prominent insights into
protein functions, which is an important step in systems biology and drug development [63].
We used the STRING database (https://string-db.org/ (accessed on 20 December 2021)) [64]
to construct the PPI network based on shared DEGs to delineate the functional and physical
interactions between proteins. For a better visualization of the network, the obtained PPI
network was further analyzed and modified using Cytoscape (https://cytoscape.org/
(accessed on 20 December 2021)) [65]. There are many nodes and edges in the PPI network,
where the nodes represented the proteins/genes and the links depicted their interactions.
The nodes with the most interactions were regarded as hub genes. The degree algorithm is
applied to extract hub genes in the PPI network.

https://www.immport.org/shared/genelists
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
https://string-db.org/
https://cytoscape.org/
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4.6. Analysis of TF–DEG Interactions and miRNA–DEG–TF Coregulatory Network

TFs regulate transcription by recognizing specific DNA sequences [66]. The Network-
Analyst (https://www.networkanalyst.ca/ (accessed on 20 December 2021)) platform [67]
was used to perform the analysis identifying TF-gene interactions related to the common
DEGs. Transcription factors and gene targets were based on ChIP-seq data sourced from the
ENCODE database (https://www.encodeproject.org/ (accessed on 20 December 2021)) [68]
included in the NetworkAnalyst platform. TF–miRNA coregulatory interactions were ob-
tained from the RegNetwork repository (http://www.regnetworkweb.org (accessed on 20
December 2021)) [69]. And then the network showing miRNAs and regulatory TFs that
regulate DEGs of interest were also visualized by the NetworkAnalyst platform.

4.7. Prediction of Drug Candidate Molecules

To predict the possible drug candidates targeting the COVID-19 patients with cancer,
identified common DEGs were provided as an input in DSigDB [70] in the Enrichr platform.
Based on drug-protein interactions, top 5 drug candidates were predicted and the details
of these drugs were obtained from the DrugBank database (http://www.drugbank.ca/
(accessed on 20 December 2021)) [14].

4.8. Visualization of Single-Cell RNA-Seq Data

Specific single-cell RNA-seq datasets were visualized by the UCSC Cell Browser
(https://cells.ucsc.edu (accessed on 20 December 2021)) [71]. In the UMAP plot, canonical
cell markers were used to annotate different clusters by cell identity. The expression levels
of identified specific genes were distinguished based on their corresponding frequencies in
different clusters. Sample acquisition and all parameter settings for single-cell RNA-seq analysis
were described in the publications of Zhang et al. (2020) [25] and Stephenson et al. (2021) [26].

5. Conclusions

In this study, we compared the gene expression patterns between COVID-19, ARDS
and PF in cancer patients infected with SARS-CoV-2 and identified common DEGs among
them with more detailed analysis of these DEGs. TF–DEG interactions and miRNA–DEG–
TF coregulatory networks demonstrate the way in which DEGs expression is regulated by
changes at the transcriptional and post-transcriptional levels. Based on the principle of
drug–protein interaction, the top drug candidate molecule, Tamibarotene, exhibits antiviral
and anticancer properties, and therefore might be helpful for effective therapeutic targets
in COVID-19 patients with cancer. In addition, the common DEGs among ARDS, PF and
COVID-19 patients with and without cancer are TNFSF10 and IFITM2. These two genes
may be regarded as potential therapeutic targets in the treatment of COVID-19 patients
with cancer. Moreover, the immune responses were activated after SARS-CoV-2 infection
in COVID-19 patient with or without cancer. Targeting TNFSF10 and IFITM2 in CD14+
and CD16+ monocytes may affect the immune response of COVID-19 patients with cancer.
Specifically, changes in the expression level of TNFSF10 in monocytes can be considered as
an immune signature in COVID-19 patients with hematologic cancer.
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