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Abstract: Most proteins function as part of various complexes, forming via stable and dynamic
protein–protein interactions (PPIs). The profiling of PPIs expands the fundamental knowledge
about the structures, functions, and regulation patterns of protein complexes and intracellular
molecular machineries. Protein interactomics aims at solving three main tasks: (1) identification
of protein partners and parts of complex intracellular structures; (2) analysis of PPIs parameters
(affinity, molecular-recognition specificity, kinetic rate constants, and thermodynamic-parameters
determination); (3) the study of the functional role of novel PPIs. The purpose of this work is to
update the current state and prospects of multi-omics approaches to profiling of proteins involved
in the formation of stable complexes. Methodological paradigm includes a development of protein-
extraction and -separation techniques from tissues or cellular lysates and subsequent identification
of proteins using mass-spectrometry analysis. In addition, some aspects of authors’ experimental
platforms, based on high-performance size-exclusion chromatography, procedures of molecular
fishing, and protein identification, as well as the possibilities of interactomic taxonomy of each
protein, are discussed.

Keywords: interactomics; protein–protein interactions; mass-spectrometric identification; size-exclusion
chromatography; interactome taxonomy of proteins; stable protein complexes; molecular fishing;
affine chromatography

1. Introduction

Most of the protein molecules in living systems function not alone but as part of various
protein complexes—from the simplest dimeric structures to complex molecular systems
consisting of dozens of subunits. The formation of protein complexes is realized by protein–
protein interactions (PPI). Therefore, the scientific field called protein interactomics is aimed
at solving three main problems: (1) identification of protein partners and parts of complex
intracellular structures; (2) establishing the parameters of PPI (affinity, molecular-recognition
specificity, rates of complexes’ formation and dissociation, thermodynamics, and complex
structure); (3) study of the functional role of the identified PPI. Successful solutions of
these problems can significantly expand our fundamental knowledge about the structure,
principles of functioning, and regulation of protein complexes and intracellular molecular
machineries. In terms of application, it is important to find PPIs that can be used as targets
for innovative drugs that selectively regulate biological processes at the level of PPIs.

The initial task of protein interactomics is the systemic analysis of PPI and cataloging
of protein complexes. The complexity of this task is due to the multilevel architecture,
structural and functional dynamism, and flexibility of the protein interactome as a result of
molecular rearrangements in the cell as a response to the action of many endogenous and
exogenous factors.

Diverse protein complexes can be characterized using a number of criteria: (1) the num-
ber of individual proteins (subunits) involved in the complexes—dimers, trimers, tetramers,
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etc.; (2) subunit identity—homo- and hetero-dimers, etc.; (3) functional significance—mono-
or multi-functional complexes; (4) the number of proteins interacting with the target protein
in the oligomeric complex.

Functionally significant protein complexes can be conventionally divided into stable
(long-lived) and dynamic (short-lived, also known as metastable or transient) ones. This
assessment of protein complexes is based on the following PPI parameters: equilibrium
dissociation constant (KD), association and dissociation rate constants (kon and koff, respec-
tively), and half-life (t1/2) of a complex [1–3]. Dynamic protein complexes are typically
multifunctional because they are part of many signaling and metabolic pathways, either
through the presence of multiple domains or by the formation of transient complexes that
vary in function [4]. Moreover, the lifetime of a dynamic protein complex determines the
effectiveness of a certain biological process.

Databases such as hu.MAP v.2.0 [5] (accessed on 5 September 2022, http://humap2
.proteincomplexes.org/), CORUM v.3.1 [6] (accessed on 5 September 2022, https://mips.
helmholtz-muenchen.de/corum/), and Complex Portal (accessed on 5 September 2022) [7]
(https://www.ebi.ac.uk/complexportal/home) are important web-based tools for cata-
loging and interpreting interactome-profiling data and contain information on 6965, 5134,
and 2472 protein complexes, respectively. However, one of the main problems of protein
interactomics is the lack of information about the involvement of most proteins in the
formation of stable protein complexes. This problem is further complicated by the fact that
the spectrum of PPIs of a particular protein may differ depending on its subcellular and
tissue localization, as well as in normal conditions and in the presence of a pathological
process [8]. There is still a general methodological problem of analyzing and distinguishing
between stable and dynamic protein complexes [9]. It is due to the lack of unified protocols
for the preparation of tissue or cellular lysates that results in the different dissociation rate
of native protein complexes and an existence of many customized techniques for protein
complexes’ separation. The purpose of this work is to assess the current possibilities and
prospects of interactome profiling of proteins involved in the formation of stable protein
complexes based on the methodological paradigm of separation of proteins and their stable
complexes with subsequent mass-spectrometric identification.

2. Interactome Profiling of Stable Protein Complexes

In the field of protein interactomics, there is still no universal method for PPI detec-
tion, so most studies use various combinations of proteomic methods. Each of them is
optimized for highly specialized tasks with its own set of advantages and disadvantages. A
panel of several state-of-the-art analytical methods is often used to identify possible stable
protein complexes. These include yeast two-hybrid assay [10], the chemical cross-linking
approach [11,12], density-gradient ultracentrifugation [13], co-immunoprecipitation, and
tandem affinity purification [14–16], as well as blue native gel electrophoresis [17,18].

All methods of protein co-elution are based on the separation of protein complexes
under native conditions. The basic idea here is that proteins belonging to the same complex
elute or migrate together during separation [19]. Among these methods, co-fractionation
based on size-exclusion-chromatography (SEC) fractionation [20–22] and ion-exchange-
chromatography (IEX) fractionation [23,24] are most commonly used due to their high
reproducibility of routine experimental protocols and availability of scientific equipment.
The high technical level of interactome profiling based on SEC and/or IEX in conjunction
with other proteomic methods allows the achievement of good separation of individual
proteins and protein complexes [25–27]. For an accurate panoramic assessment of the
distribution of native proteins between monomeric and oligomeric forms, as well as het-
erocomplexes in lysate fractions, there is an approach combining SEC fractionation with
multi-angle light scattering (MALS) [28,29]. For semi-quantitative and quantitative evalua-
tions of proteins in lysate samples, different variants of mass-spectrometric identification
of proteins are used [30,31], including density-gradient analysis by mass spectrometry
(qDGMS) [32], stable-isotope labeling with amino acids in cell culture (SILAC) [33,34],

http://humap2.proteincomplexes.org/
http://humap2.proteincomplexes.org/
https://mips.helmholtz-muenchen.de/corum/
https://mips.helmholtz-muenchen.de/corum/
https://www.ebi.ac.uk/complexportal/home


Int. J. Mol. Sci. 2022, 23, 15697 3 of 15

and pulse SILAC (pSILAC) to study the dynamics and turnover number of proteins in
complexes [35]. The general scheme of panoramic protein interactome profiling can be
divided into two blocks: “Data-generation block” and “Analytical block” (Figure 1). The
data-generation block consists of preanalytical and preparative phases. The analytical block
includes phases of bioinformatics and verification of the results of interactome profiling.
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Figure 1. The general scheme of the panoramic-interactome-profiling protocol.

2.1. Preanalytical and Preparative Phases

The preanalytical stage consists of choosing and optimizing the method of sample
preparation of a biological sample for the conversion of protein material into a lysate using
mild solubilization conditions in order to preserve the native stable protein complexes.
Depending on the goals of the experiment, it is possible to include the stage of sample en-
richment with a material with a specific subcellular localization, for example, a cytoplasmic
or membrane fraction.

The preparative step includes either SEC fractionation of the lysate material or serial
rounds of SEC and IEX in order to increase the separation efficiency of protein complexes
with different physicochemical properties. The principle of SEC is to separate the compo-
nents of a complex mixture according to their molecular weights (whereas IEX uses their
charge differences) in a separation column packed with chemically inert sorbent. The larger
the molecule, the smaller the depth of its penetration into the sorbent granule containing
pores with different sizes. As a result, the path of large molecules in the sorbent is shorter
than that of small molecules. Therefore, large molecules leave the separation column
faster than small ones. The principle of high-performance SEC is to separate the lysate
material into multiple fractions, each containing proteins and multiprotein complexes of
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the same molecular weight (MW). As a result of subsequent analysis of the protein content
in the fractions, protein elution profiles can be obtained depending on the properties of
the “molecular sieve” used. To do this, after SEC fractionation, proteins in each fraction
are subjected to enzymatic proteolytic cleavage (for example, trypsinolysis) according to
standard protocols, followed by mass-spectrometric analysis (LC-MS/MS) of proteolytic
peptides and bioinformatics data processing.

A typical example of a chromatogram of a high-performance SEC fractionation of a
whole tissue lysate is shown in Figure 2. Data were obtained from our previous experi-
ments [36]. The tissue lysate sample was separated into 22 fractions, and for comparative
analysis of the protein composition of the fractions, six representative fractions were chosen.
These fractions covered the range of single-protein molecules (45–60 kDa), the range of
dimers and trimers (60–150 kDa), and the range corresponding to high-molecular-weight
protein complexes (150–450 kDa). With an average protein molecular weight of 42 kDa
(according to the UniProt database), the latter complexes consisted of at least four or more
subunits. It follows from the chromatogram that there are two pronounced protein peaks,
one of which is in the region of single-protein molecules (MW ≈ 45 kDa), and the other
peak ≈ 350 kDa, whose area is 2.5 times larger than the former, is in the region of protein
complexes with MW range from 150 to 350 kDa.
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part of protein complexes with MW corresponding to the average MW of the fractions. It 

Figure 2. A typical chromatogram of a high-performance SEC fractionation of whole liver tissue lysate.
AKTA Purifier 10 chromatograph (GE Healthcare) and HiLoad 16/600 high resolution column (GE
Healthcare), filled with Superdex 200 and equilibrated with HBS-EP buffer (10 mM HEPES (pH 7.4),
150 mM NaCl, 3 mM EDTA, and 0.05% Tween-20), were used for protein separation. Six lysate fractions,
which were selected for comparative analysis of the protein composition, are indicated by numbers 1–6.
The figure was adapted with permission from Ref. [36]; “Pleiades Publishing, Ltd.”, 2018.

Further, the distribution matrix of individual proteins, identified by LC-MS/MS
analysis in the test lysate fractions covering the range from 15 to 700 kDa, is presented
in Table 1. It shows that, in most fractions, there are many proteins with significantly
lower MW than the average MW of the fraction, determined by the calibration of the
chromatographic column. These proteins, obviously, could appear in these SEC fractions
only as part of protein complexes with MW corresponding to the average MW of the
fractions. It should be noted that in rare cases, the presence of proteins with MW above
the average MW of the fraction is observed. This effect may be due to the presence of
proteolytic fragments of these proteins or high-adhesion properties of some proteins, which
causes their slow movement in the SEC column.
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Table 1. A distribution matrix of proteins identified by LC-MS/MS analysis in SEC fractions of liver
tissue lysate.
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Proteins with MW values less than the average MW of a fraction are highlighted in green. Proteins whose MW
values correspond to the average MW of a fraction are single proteins and highlighted in yellow. Proteins whose
MW values exceed the average MW of a fraction are likely fragmented or with high-adhesion properties and
highlighted in light-gray color. The data were obtained in the framework of [36] and are presented here for
the first time).

Formally, three main types of protein states can be distinguished according to SEC
elution profiles: (I) the protein is present only in the monomeric form and does not par-
ticipate in the formation of stable protein complexes, (II) the protein is present in the
form of homodimers and/or heterodimers, (III) the protein participates in the formation
of multimeric complexes of a higher order. Intermediate types of protein states (IV–VI)
include different combinations of types I, II, and III. Table 2 provides examples of such
a conditional classification based on SEC fractionation of whole liver tissue lysate and
mass-spectrometric protein identification [36]. For example, apolipoprotein A–I (31 kDa) is
found both in monomeric form and in SEC fractions with MW values of 250 and 440 kDa as
part of high-order complexes. Therefore, the identification of several types of protein states
makes it possible to obtain specific information about the participation of each protein in
the formation of stable protein complexes and the sizes of these complexes. In addition,
combinatorial analysis of the MW sums of identified proteins in a SEC fraction allows us to
compile a limited list of potential protein partners for each target protein.
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Table 2. Types of conditions of proteins in tissue lysates based on SEC elution profiles.

Type Description Examples * Protein Name

I Monomeric form only **

1 
 

Type Description Examples * Protein Name 

I Monomeric form only ** 

 

Apoptosis-inducing factor 1 
(mitochondrial), O95831,  

66.9 kDa,  
monomer 

II 
Homodimers and 

heterodimers 

 

3-hydroxyisobutyrate 
dehydrogenase 
(mitochondrial),  

P31937,  
35.3 kDa,  

homodimer 

III Homooligomers and 
heterooligomers *** 

Very long chain specific acyl-
CoA dehydrogenase 

(mitochondrial), P49748,  
70.4 kDa,  

homodimer 

IV I and II 

 

Aspartate aminotransferase 
(mitochondrial),  

P00505,  
47.5 kDa,  

homodimer 

V I and III 

 

Apolipoprotein A–I,  
P02647,  

30.8 kDa,  
homodimer 

VI I, II, and III 

 

Peroxisomal multifunctional 
enzyme type 2,  

P51659,  
79.7 kDa,  

homodimer 

Apoptosis-inducing factor 1
(mitochondrial), O95831,

66.9 kDa,
monomer

II Homodimers and
heterodimers

1 
 

Type Description Examples * Protein Name 

I Monomeric form only ** 

 

Apoptosis-inducing factor 1 
(mitochondrial), O95831,  

66.9 kDa,  
monomer 

II 
Homodimers and 

heterodimers 

 

3-hydroxyisobutyrate 
dehydrogenase 
(mitochondrial),  

P31937,  
35.3 kDa,  

homodimer 

III Homooligomers and 
heterooligomers *** 

Very long chain specific acyl-
CoA dehydrogenase 

(mitochondrial), P49748,  
70.4 kDa,  

homodimer 

IV I and II 

 

Aspartate aminotransferase 
(mitochondrial),  

P00505,  
47.5 kDa,  

homodimer 

V I and III 

 

Apolipoprotein A–I,  
P02647,  

30.8 kDa,  
homodimer 

VI I, II, and III 

 

Peroxisomal multifunctional 
enzyme type 2,  

P51659,  
79.7 kDa,  

homodimer 

3-hydroxyisobutyrate
dehydrogenase
(mitochondrial),

P31937,
35.3 kDa,

homodimer

III Homooligomers and
heterooligomers ***

1 
 

Type Description Examples * Protein Name 

I Monomeric form only ** 

 

Apoptosis-inducing factor 1 
(mitochondrial), O95831,  

66.9 kDa,  
monomer 

II 
Homodimers and 

heterodimers 

 

3-hydroxyisobutyrate 
dehydrogenase 
(mitochondrial),  

P31937,  
35.3 kDa,  

homodimer 

III Homooligomers and 
heterooligomers *** 

Very long chain specific acyl-
CoA dehydrogenase 

(mitochondrial), P49748,  
70.4 kDa,  

homodimer 

IV I and II 

 

Aspartate aminotransferase 
(mitochondrial),  

P00505,  
47.5 kDa,  

homodimer 

V I and III 

 

Apolipoprotein A–I,  
P02647,  

30.8 kDa,  
homodimer 

VI I, II, and III 

 

Peroxisomal multifunctional 
enzyme type 2,  

P51659,  
79.7 kDa,  

homodimer 

Very long chain specific
acyl-CoA dehydrogenase
(mitochondrial), P49748,

70.4 kDa,
homodimer

IV I and II

1 
 

Type Description Examples * Protein Name 

I Monomeric form only ** 

 

Apoptosis-inducing factor 1 
(mitochondrial), O95831,  

66.9 kDa,  
monomer 

II 
Homodimers and 

heterodimers 

 

3-hydroxyisobutyrate 
dehydrogenase 
(mitochondrial),  

P31937,  
35.3 kDa,  

homodimer 

III Homooligomers and 
heterooligomers *** 

Very long chain specific acyl-
CoA dehydrogenase 

(mitochondrial), P49748,  
70.4 kDa,  

homodimer 

IV I and II 

 

Aspartate aminotransferase 
(mitochondrial),  

P00505,  
47.5 kDa,  

homodimer 

V I and III 

 

Apolipoprotein A–I,  
P02647,  

30.8 kDa,  
homodimer 

VI I, II, and III 

 

Peroxisomal multifunctional 
enzyme type 2,  

P51659,  
79.7 kDa,  

homodimer 

Aspartate aminotransferase
(mitochondrial),

P00505,
47.5 kDa,

homodimer

V I and III

1 
 

Type Description Examples * Protein Name 

I Monomeric form only ** 

 

Apoptosis-inducing factor 1 
(mitochondrial), O95831,  

66.9 kDa,  
monomer 

II 
Homodimers and 

heterodimers 

 

3-hydroxyisobutyrate 
dehydrogenase 
(mitochondrial),  

P31937,  
35.3 kDa,  

homodimer 

III Homooligomers and 
heterooligomers *** 

Very long chain specific acyl-
CoA dehydrogenase 

(mitochondrial), P49748,  
70.4 kDa,  

homodimer 

IV I and II 

 

Aspartate aminotransferase 
(mitochondrial),  

P00505,  
47.5 kDa,  

homodimer 

V I and III 

 

Apolipoprotein A–I,  
P02647,  

30.8 kDa,  
homodimer 

VI I, II, and III 

 

Peroxisomal multifunctional 
enzyme type 2,  

P51659,  
79.7 kDa,  

homodimer 

Apolipoprotein A–I,
P02647,

30.8 kDa,
homodimer

VI I, II, and III

1 
 

Type Description Examples * Protein Name 

I Monomeric form only ** 

 

Apoptosis-inducing factor 1 
(mitochondrial), O95831,  

66.9 kDa,  
monomer 

II 
Homodimers and 

heterodimers 

 

3-hydroxyisobutyrate 
dehydrogenase 
(mitochondrial),  

P31937,  
35.3 kDa,  

homodimer 

III Homooligomers and 
heterooligomers *** 

Very long chain specific acyl-
CoA dehydrogenase 

(mitochondrial), P49748,  
70.4 kDa,  

homodimer 

IV I and II 

 

Aspartate aminotransferase 
(mitochondrial),  

P00505,  
47.5 kDa,  

homodimer 

V I and III 

 

Apolipoprotein A–I,  
P02647,  

30.8 kDa,  
homodimer 

VI I, II, and III 

 

Peroxisomal multifunctional 
enzyme type 2,  

P51659,  
79.7 kDa,  

homodimer 

Peroxisomal multifunctional
enzyme type 2,

P51659,
79.7 kDa,

homodimer

* the dots from left to right indicate the following MW: 15, 45, 60, 85, 150, 250, and 440 kDa. ** MW of a protein
corresponds to average MW of a SEC fraction. *** the number of subunits > 2. The data were obtained in the
framework of [36] and are presented here for the first time.
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2.2. Bioinformatic Phase

The generation of hypotheses on the composition of stable protein complexes is often
based on the correlation of protein co-elution profiles. The tissue and cellular lysates used
for SEC fractionation contain a heterogeneous mixture of thousands of individual proteins
and protein complexes with different compositions. In order to predict the compositions
of possible stable protein complexes present in each fraction, a number of bioinformatic
algorithms are used to analyze the LS-MS/MS data [30,37]. These algorithms use certain
combinatorial assumptions and data clustering, which generate the redundant number of
final hypotheses, especially in the case of predicting the protein heterocomplexes containing
three or more subunits. In order to reduce the redundancy of hypotheses, systemic bio-
logical filters are used, such as gene co-expression, data on known protein complexes and
paired PPI (for example, the CORUM portal), gene ontology analysis, and PPI networks
construction [38]. The prediction of combinatorial hypotheses of binary protein complexes
(both homodimers and heterodimers), which can be rather easily verified experimentally
in vitro, can serve as an additional tool for the analysis of protein co-elution profiles. In the
absence or difficulty in obtaining protein co-elution profiles (for example, when analyzing
proteins in only one SEC fraction), we offer our own “Dimers” program, the code of which
is presented in a Figshare repository (DOI: 10.6084/m9.figshare.21526443). One of the pos-
sible algorithms used in our practice for tissue-lysate SEC-fraction PPI data interpretation is
presented in Figure 3. As can be seen from the figure, the two-stage data analysis “Dimers”
algorithm includes the generation of combinatorial hypotheses for dimeric protein com-
plexes and the selection of hypotheses by two descriptors: MW and a semi-quantitative
assessment of the protein content in the fraction. At the first stage, a combinatorial analysis
of protein pairs is carried out so that the sum of their MW (molecular weight of a possible
dimer) is in the range of ± 10% of the average MW of the SEC fraction. Intermediate
list #1 contains a list of predicted dimeric protein complexes that meet this criterion. For
example, in the case of an average MW of the SEC fraction equal to 45 kDa, this interval
corresponds to the range from 40.5 to 49.5 kDa. At the second stage, for each pair of
proteins (conditional dimer) from list #1, a semi-quantitative assessment of their content in
the fraction is performed according to the values of emPAI (exponentially modified protein
abundance index) [39]). This approach is based on the assumption that both proteins are
involved in the formation of only joint dimeric complexes, and accordingly, these values
for two interacting proteins should not be significantly different. If protein X is involved
in the formation of two dimeric complexes XY and XZ, then its emPAI value may differ
significantly from proteins Y and Z, provided that the latter are involved in the formation
of only these complexes. So, if the quotient of dividing the larger emPAI value (protein X)
by the smaller value (protein Y) does not exceed 1.5, then this possible dimer is registered
in list #2. Thus, the final list #2 contains only those dimeric protein complexes from list
#1 that consist of a pair of proteins with close emPAI values. For example, if the emPAI
values for protein X and for protein Z are 1.4 and 1.0, respectively, then the division quo-
tient is 1.4 (which is less than 1.5); therefore, the two proteins X and Z can hypothetically
participate in the formation of a dimeric complex. Usually approximately 10% of predicted
combinatorial protein complexes from list #1 end up in list #2, which significantly reduces
the total number of PPI hypotheses. Hypotheses of target protein complexes (list #2) can
first be theoretically “verified” by analyzing pre-existing interactomics information in the
electronic databases or by constructing PPI networks by means of methods of mathematical
modelling [40,41]. Thus, by using the STRINGdb portal (accessed on 12 September 2022,
https://string-db.org/), one can explore data on the mutual positioning of two proteins
in the PPI network (the presence of direct interactions and common protein partners, as
well as the shortest paths between them). It is also advisable to include additionally in the
general protocol the computer modeling of possible 3D structures of the proposed dimeric
complexes using the methods of molecular docking [42] and molecular dynamics [43],
including the AlphaFold2 and RoseTTAFold platforms [44,45]. In the case of a positive

https://string-db.org/


Int. J. Mol. Sci. 2022, 23, 15697 8 of 15

result of theoretical “verification” of a potential dimeric protein complex, its experimental
verification can be planned using one or more PPI-detection methods [46].
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2.3. Experimental Verification of Possible Protein Complexes

A variety of methods can be used to verify stable protein complexes identified by
panoramic interactome profiling of proteins in tissue and cellular lysates. One approach
that we have successfully used to identify protein partners that form stable complexes with
a target protein is the direct-molecular-fishing procedure. The protocol of this procedure is
based on the affinity isolation and mass-spectrometric identification of potential protein
partners from the whole lysate (or from its SEC fractions), where a target protein (“bait” pro-
tein) is covalently immobilized on a solid support (chromatography resins or paramagnetic
nanoparticles) [47–49]. However, it should be noted that the molecular-fishing procedure
allows us to isolate from the lysate not only the first-order protein partners that directly
interact with the target protein but also second-order, third-order, etc. that are part of the
complex structure. Therefore, for proteins that were found in the same SEC fraction with
a target protein and were also isolated by the molecular-fishing procedure on an affinity
sorbent with the same target protein, it is desirable to perform instrumental verification of
their PPI to differentiate direct and indirect protein partners. Among the existing various
proteomic technologies that are suitable for PPI detection, we preferentially use surface
plasmon resonance (SPR) optical biosensors, where the first protein is immobilized on
the surface of a special optical chip and the second protein is injected into the biosensor
flow cell in different concentrations. PPIs are recorded in real time as a set of sensorgrams
that can be used to calculate the rate constants’ association and dissociation, as well as the
equilibrium dissociation constant (KD) of protein complex.
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As an example of the implementation of an approach, based on the intersection of SEC
profiling and molecular-fishing data, interactomic analysis of microsomal cytochrome b5
(CYB5A) as a target protein can be demonstrated. Previously, a semi-quantitative assess-
ment of the distribution of proteins co-fractionated with CYB5A in SEC fractions of liver
tissue lysate was performed [36]. We found that, among them, there are eight metabolic
enzymes (CAT, LSS, UGP2, CYP4A11, ACAA1, EPHX1, ALDH1A1, and CYP2C9), which
were isolated from lysates prepared from liver tissue and HepG2 cells, in molecular-fishing
experiments using CYB5A as a target protein [36,50]. Protein-distribution profiles in the
SEC fractions of the lysate are shown in Figure 4. It can be seen from the figure that
almost all the amount of ACAAT1 (MW = 44.8 kDa) is present in monomeric form in
the SEC fraction (45 kDa), while CYB5A (MW = 15.3 kDa) is present in trace amounts in
this SEC fraction. This indicates the absence of stable protein complexes between these
proteins, and one can only assume that ACAAT1 is an indirect partner of CYB5A. Control
SPR experiments showed a positive concentration-dependent binding of microsomal cy-
tochrome P450 2C9 (CYP2C9) with covalently immobilized CYB5A on the optical chip of a
biosensor [50]. CYP2C9 and CYP4A11 are considered to be known functionally significant
direct protein partners of CYB5A presented in high-MW SEC fractions. The ALDH1A1
protein (MW = 55.4 kDa) exists as a homotetramer [51]. However, its peak content is found
in SEC fractions from 100 to 170 kDa, which corresponds to its dimeric form, which is
co-fractionated with the CAT (MW = 60 kDa) and CYB5A (MW = 15.3 kDa) proteins. The
formation of a heterocomplex involving CYB5A–CAT–EPHX1–ALDH1A1 is possible in
the region of MW ≈ 200 kDa, while in the region of higher-molecular-weight complexes
(250–450 kDa), the co-fractionation of CYB5A, EPHX1 (MW = 53.1 kDa), and UGP2 (MW
= 57 kDa) takes place. Thus, in this example, out of eight of CYB5A’s protein partners,
isolated by the molecular-fishing procedure, it can be assumed that only three proteins
(CAT, EPHX1, and UGP2) are direct-interaction partners for CYB5A, according to a high
similarity of their co-fractionation profiles.
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Figure 4. Co-fractionation profiles of CYB5A and its protein partners in the liver tissue lysate (ac-
cording to the data in [36,50]). The profiles were plotted using points, which correspond to average
molecular-weight values of SEC-fraction MW: 15, 30, 48, 60, 90, 130, 290, and 400 kDa. The x-axis
shows the MW of the SEC fractions, and the y-axis shows the semi-quantitative assessment of a protein
content in each SEC fraction. LC-MS/MS analysis was performed on an Orbitrap Fusion hybrid
orbital mass spectrometer (Thermo Scientific) in the positive ionization mode in an NSI (nanospray
ion) source (Thermo Scientific). The selection of proteins had Mascot score values > 50. The follow-
ing are the abbreviated protein names: CYB5A—microsomal cytochrome b5 (UniProt ID P00167);
CAT—catalase (UniProt ID P04040); UGP2—UTP-glucose-1-phosphate uridylyltransferase (UniProt
ID Q16851); ACAA1—3-ketoacyl-CoA thiolase, peroxisomal (UniProt ID P09110); EPHX1—epoxide
hydrolase 1 (UniProt ID P07099); and ALDH1A1—aldehyde dehydrogenase 1A1 (UniProt ID P00352).
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3. Biomedical Aspects of Protein Interactome Profiling

Determination of the spectrum of disease-associated proteins and their mapping in PPI
networks is important for understanding the mechanisms of pathogenesis. It is also useful
for finding ways to influence key molecular points, the functioning of which is impaired
both in infectious and non-infectious diseases [52]. This research area has been successfully
developing along with the advances in protein-identification technologies, new experimental
omics approaches, and bioinformatics software for data interpretation [53,54]. Thus, the omics
approach based on SEC and label-free quantitative MS profiling made it possible to catalog
stable nuclear protein complexes isolated from the human glioblastoma cell line T98G with
partial verification by an independent method of direct interactions of a number of proteins
co-fractionated with histone deacetylase 1 (HDAC1) [55]. According to the literature, certain
PPIs are known that can be directly related to the etiology of human diseases (examples
of which are given in Table 3), mainly with neoplastic transformation as the most-studied
phenomenon at the molecular level. A broad spectrum of disease-related PPIs favors the
use of protein-interactome-profiling methods, including SEC-LC-MS/MS, to identify such
PPIs with the prospect of studying their medical significance for disease prognosis, as well as
finding PPIs as molecular targets for pharmacotherapy and gene therapy.

Table 3. Examples of disease-related PPIs.

Protein Complex Disease Prognostic Value Drug Target

LMO2/LDB1 *,
LMO2/LDB1/TAL1/E12 Cancer [56,57] [58,59] [60]

TP53/EP300 Cancer [61] [62] [63]

FGFx/FGFRx Cancer [64] [65] [66]

TP63/mutTP53 Cancer [67] [68] [69]

HTT/HAP-1 Neurological
disorders [70] [71] [72]

* LMO2—nuclear LIM domain only 2; LDB1—LIM domain-binding protein 1; TAL1—T-cell acute leukemia
protein 1; E12- E-protein 12; TP53—cellular tumor antigen p53; EP300—histone acetyltransferase p300; TP63—
tumor protein 63; FGF (R)—fibroblast growth factor (receptor); HTT—huntingtin; HAP-1—huntingtin-associated
protein-1; mut—mutant.

Preparative SEC-based separation of proteins in lysates followed by LC-MS/MS analy-
sis was used to detect quantitative changes in the elution profile of proteins in HT29 intesti-
nal adenocarcinoma cell culture when treated with the HSP90 inhibitor tanespimycin [73].
New HSP90-dependent PPIs involving the isocitrate dehydrogenase [NAD] regulatory
subunit 3 (IDH3) were also identified. To reveal on- and off-targets for pharmacologically
active small molecule compounds in tissue or cellular lysates, a number of modern pro-
teomic approaches based on the detection of binding, such as drug affinity responsive
target stability (DARTS) and cellular thermal shift assay (CETSA) and its variants—thermal
proteome profiling (TPP) and isothermal dose–response CETSA [74–76], are used. Along
with activity-based protein profiling (ABPP) [77] utilizing chemical proteomics technologies
for detecting labeled molecules, the SEC-LC-MS/MS protocol can be implemented as an
additional panoramic method for mapping potential protein targets for the action of bio-
logically active metabolites or drugs. It should be noted that the SEC-LC-MS/MS protocol,
unlike ABPP, provides important information about stable protein complexes sensitive
to the presence of an unmodified metabolite, while irreversible interactions of chemically
modified compounds in the active center of one of the proteins can greatly complicate the
search for modulators of the target PPI. Comparison of the results of protein profiling of
the lysate pre-incubated in the absence (control) or presence of biologically active com-
pounds/drugs reveals changes in the co-elution profiles of some proteins involved in the
formation of stable protein complexes. Such “heat” PPIs can be considered as potential
targets for active compounds or drugs. Previously, we studied the effect of the endogenous
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non-peptide bioregulator isatin (indole-2,3-dione) on SEC profiles of proteins in rat liver
tissue lysate using the SEC-LC-MS/MS protocol [78]. Lysate samples were incubated on
ice for one hour with the addition of working buffer (control) and isatin solution at a final
concentration of 100 µM (experiment), which corresponds to the limit of its physiological
concentration in tissues. Comparative analysis of protein SEC profiles revealed that the ad-
dition of isatin affected the SEC profiles of about half of the identified known isatin-binding
proteins. Moreover, we found three new isatin-dependent proteins whose oligomeric state
is modulated by isatin: ATP-citrate synthase (tetramer), triosephosphate isomerase (dimer),
and argininosuccinate synthase (tetramer). In addition, analysis of the profiles of known
isatin-binding proteins showed that there are 20 proteins that participate in the formation
of the stable part of the protein interactome. Among them, about 65% of the identified
proteins participate in the formation of multimeric protein complexes, 25% in homodimers
or heterodimers, and only 10% are detected as single molecules.

4. Conclusions

Studies of stable protein complexes encounter an extremely important methodological
aspect consisting of the transformation of a biomaterial (tissue samples or cells) into a liquid
phase (lysate). Therefore, the methods of sample preparation of biomaterial for the analysis
of the protein interactome as a whole and the preparation of tissue lysates, in particular,
carry elements of customization. This is especially true for the choice of the composition of
lysis buffers, since there is no standardization in these approaches that are focused on the
stabilization of the specific native protein complexes. The existence of a large number of
lysis buffers and protocols for the preparation of lysates increases the objective differences
in the results of interactome profiling, which complicates the comparative analysis of data
from different sources.

Another problematic aspect of protein interactome studies is the participation of not
only canonical forms of proteins in PPIs but also their various proteoforms arising as a result
of alternative splicing and post-translational modifications. Moreover, the appearance of
specific post-translational modifications of protein partners is possible, which occur only
after the formation of stable complexes. To date, there is no systematic information on
the relationship between the formation of protein complexes and the presence of specific
proteoforms [79], which requires more detailed investigations.

In conclusion, it should be noted that there is a positive outlook for the deeper fun-
damental understanding of protein-interactome-profiling data. This is an opportunity to
carry out partial interactome taxonomy of each identified protein. The participation of
the protein in the formation of stable complexes (the stable part of the interactome) can
be characterized by two groups of parameters. The first group (qualitative parameters)
includes the following: (1) the fact that the protein participates in the formation of sta-
ble protein complexes; (2) the fact that the protein is involved in one or more complexes;
(3) the size of the complexes in which the protein participates; (4) the fact that the protein can
be in the free monomeric state; (5) a list of proteins found in the same fractions along with
the analyzed protein (co-fractionation hypotheses); (6) a list of potential protein partners
(in case of the sum of the molecular weights of the partner protein and the target protein
corresponds to the average MW of the SEC fraction); (7) hypotheses about the possible
functional role of the protein. The second group includes the following semi-quantitative
parameters: (1) the percentage distribution of the protein between the fractions (monomeric
form and complexes of different sizes), (2) the ratio of the amount of each protein in the
SEC fraction to the amount of the analyzed protein, (3) the list of potential protein partners
based on semi-quantitative estimates.
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