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Abstract: DNA helicase unwinding activity can be inhibited by small molecules and by covalently
bound DNA lesions. Little is known about the relationships between the structural features of DNA
lesions and their impact on unwinding rates and processivities. Employing E.coli RecQ helicase as a
model system, and various conformationally defined DNA lesions, the unwinding rate constants
kobs = kU + kD, and processivities P = (kU/(kU + kD) were determined (kU, unwinding rate constant;
kD, helicase-DNA dissociation rate constant). The highest kobs values were observed in the case of
intercalated benzo[a]pyrene (BP)-derived adenine adducts, while kobs values of guanine adducts
with minor groove or base-displaced intercalated adduct conformations were ~10–20 times smaller.
Full unwinding was observed in each case with the processivity P = 1.0 (100% unwinding). The kobs

values of the non-bulky lesions T(6−4)T, CPD cyclobutane thymine dimers, and a guanine oxidation
product, spiroiminodihydantoin (Sp), are up to 20 times greater than some of the bulky adduct values;
their unwinding efficiencies are strongly inhibited with processivities P = 0.11 (CPD), 0.062 (T(6−4)T),
and 0.63 (Sp). These latter observations can be accounted for by correlated decreases in unwinding
rate constants and enhancements in the helicase DNA complex dissociation rate constants.

Keywords: RecQ helicase; unwinding; processivities; CPD and (6-4) thymine dimers; benzo[a]pyene
diol epoxide-DNA adducts; spiroiminodihydantoin

1. Introduction

Helicases are motor proteins that convert the free energy of ATP hydrolysis into the
mechanical energy required for the separation of double-stranded DNA into two single
strands [1]. Helicases are classified into superfamilies SF1 and SF2 [2]. The RecQ helicases,
that belong to the SF2 superfamily, are a highly conserved group of DNA helicases with
diverse roles in multiple DNA metabolic processes that include DNA recombination, repli-
cation, and DNA repair [3]. Defects in RecQ helicases are associated with susceptibilities to
cancer and premature aging, genome instability, and hypersensitivity to DNA damaging
agents in cultured cells [4–6]. The prototypical member of the RecQ protein group is the
E. coli RecQ helicase, which unwinds double-stranded DNA with a 3′→5′ polarity by an
ATP-driven inchworm mechanism [7]. Helicases have long been considered as potential
targets in chemotherapeutic applications [8]. However, the relationships between the struc-
tural features of helicase inhibitors and their efficiencies as inhibitors of DNA unwinding
activity are not well understood.

The objective of this work was to gain new insights into the relationships between
the chemical structures of different DNA lesions, their conformations in double-stranded
DNA, and their impact on helicase unwinding rates and efficiencies. The helicase E. coli
RecQ was selected because its structural features and mechanistic properties have been
extensively studied and characterized [3,6,7,9,10]. In addition, RecQ is of interest because,
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unlike many other helicases, it is known to unwind some non-canonical forms of DNA that
play important roles in DNA repair, recombination, and replication [11]. Finally, RecQ is
known to bind as a monomer to single- and double-stranded DNA substrates with similar
affinities [12], thus simplifying the analysis of DNA unwinding kinetics.

The DNA lesions studied include non-bulky DNA lesions generated in human tissues
exposed to the UV components of sunlight, and bulky DNA adducts derived from the ubiq-
uitous environmental pollutant benzo[a]pyrene (BP), also found in human tissues [13,14].
The bulky DNA adducts selected for this study include those derived from the metabolic
activation of BP to reactive diol epoxide derivatives [15]. The covalent binding of the
two enantiomeric BP-derived (+)- and (−)-7,8-dihydrodiol-9,10-epoxides (BPDE) forms
covalent bonds with the exocyclic amino groups of guanine or adenine in DNA. This
covalent bond formation occurs by cis- or trans-addition of the exocyclic amino groups of
guanine or adenine in DNA to the C10 position of BPDE [14]. These reactions generate
various stereoisomeric BPDE-N2-guanine (or N6-adenine) DNA adducts with different
DNA conformations [16]. The bulky BP polycyclic aromatic ring systems assume either
intercalative or external minor groove conformations [16–21]. The non-bulky DNA lesions
studied in this work include the ultraviolet light-induced cis-syn-cyclobutane thymine
dimer CPD, and the T(6−4)T thymine dimer photolesions, as well as the oxidatively gener-
ated spiroiminodihydantoin (Sp) lesion [22]. The chemical structures of these DNA lesions
are depicted in Figure 1. It is shown that the strongest inhibition of unwinding activity is
caused by the non-bulky, cross-inked thymine dimer lesions. By contrast, bulky polycyclic
aromatic DNA adducts are less inhibiting in a manner that depends on their conformations
in double-stranded DNA.
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oligodeoxynucleotides were purchased from Integrated DNA Technologies (Coralville, 

Figure 1. Structures of DNA lesions. (A) The BPDE-N2-dG or -N6-dA adduct. (B) SP(S),
Spiroiminodihydantoin (S stereochemistry). (C) Cyclobutanepyrimidine thymine dimer.
(D) pyrimidine(6−4)pyrimidone thymine dimer.

2. Materials and Methods
2.1. Materials

Recombinant E. coli RecQ helicase was purchased from the company Abcam. The 2′-
oligodeoxynucleotides were purchased from Integrated DNA Technologies (Coralville, IA, USA).
The racemic anti-BPDE ((+/−)-7R,8S)-dihydroxy-(9S,10R)-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene,
known as (+)-or (−)-anti-BPDE) was originally obtained from the National Cancer Institute
Chemical Carcinogen Repository.
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2.2. DNA Substrates

The bulky DNA adducts (Figure 1) were derived from the reactions of racemic mixtures
of anti-BPDE with the oligonucleotide 5′-d(CCATCXCTACC) with X = dG or dA. The
diol epoxides BPDE react with purines by cis- or trans-addition of the exocyclic amino
groups of guanine or adenine to the C10 carbon atom of BPDE (Figure 1). The modified
oligonucleotides were separated from one another and purified as described earlier [20].
The conformations of these DNA adducts embedded in double-stranded oligonucleotides
were previously determined by NMR methods [16,23,24].

The thymine dimer (CPD) and the pyrimidine(6−4)pyrimidone T(6−4)T lesions were
generated by UV irradiation of the oligonucleotide 5′-d(GCAAGTTGGAG) in aqueous
solutions. The oligonucleotide sequences containing the different photoproducts were
separated from one another by HPLC methods and further purified by gel electrophoresis,
as described earlier [25].

The 32-mer helicase-translocating sequences (Figure 2) containing the lesions were
prepared by ligating the 11-mer oligonucleotides with the 5′- and 3′-flanking 8- and 13-mer
sequences, 5′-Cy3-GCAGGCAT containing the Cy3 fluorophore, and 5′-GGATCCTCTTTTT.
The 32-mer modified sequences obtained by this approach were purified by denaturing
PAGE and annealed with 47-mer sequences containing the 22-mer complementary frag-
ments 5′-T26CCGGTAGCGATGGATGCCTGC-BHQ2 (Black Hole Quencher) by heating
the solution at 90 ◦C for 5 min, followed by slow cooling to room temperature overnight to
form the forked DNA substrates. We designed this forked DNA duplex with a short 10
nucleotide-long 3′-overhang that can accommodate a single RecQ molecule13.
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2.3. Monitoring Unwinding Kinetics by Fluorescence Methods

The RecQ helicase-catalyzed DNA unwinding kinetics were monitored in real time by
a fluorescence method [1]. The forked DNA substrates were labelled with the fluorophore
(Cy3) at the blunt end, and BHQ2 opposite Cy3 on the opposite strand (Figure 2). The
unwinding reactions were initiated by flow-mixing the reagents in buffer solution (20 mM
TRIS-HCl, pH 7.6, 10 mM KCl, 5 mM MgCl2, 2 mM DTT, 5% glycerol, and 0.1 µg/µL
bovine serum albumin) using two manually driven syringes connected through a T-mixer
to a quartz cell (3 × 3 mm). In typical experiments, equal volumes (50 µL) of a solution
containing the forked DNA substrate and ATP (2 mM) in the first syringe were combined
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with a solution in the second syringe that contained the RecQ helicase. The time-dependent
increase in the fluorescence intensity was monitored by a Photon Technology International
Spectrofluorometer (Division of Horiba, Edison, NJ, USA).

The fluorescence of the Cy3 dye was selectively excited with a green diode laser (515
nm, ∼200 µW) and the fluorescence emission was registered at 564 nm by a PC-interfaced
photomultiplier (resolution 200 ms/point). The monitoring of the fluorescence signal was
initiated within ~1 s after the flow-mixing of the reagents.

Unwinding of the double-stranded DNA substrates results in the formation of free
single-stranded oligonucleotides. At the 5 nM DNA concentrations used in most of this
work, the re-annealing of Cy3- and BHQ2 single-stranded oligonucleotides was negligible
on the time scale of our experiments (Supplementary Materials).

The fluorescence intensity corresponding to fully unwound DNA was measured
independently in each unwinding experiment by subjecting an aliquot of the same DNA
solution to formamide that resulted in the full unwinding of the double-stranded DNA.

3. Results and Discussion
3.1. Overview

The effects of non-covalently bound small inhibitors on helicase activities have been
extensively studied [8,11]. However, less attention has been focused on the effects of
covalently bound DNA adducts [26]. A set of three stereoisomeric bulky BP-G lesions
derived from the binding of (+)- or (−)-anti-BPDE to the exocyclic amino groups of guanine
in DNA, each characterized by remarkable differences in adduct conformations, are shown
in Figure 3.
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Figure 3. Conformations of stereoisomeric benzo[a]pyrene diol epoxide—derived N2-guanine
adducts (G) in double-stranded DNA. (A) (+)-trans-BP-G:C; (B) (−)-trans-BP-G:C; (C) (+)-cis-BP-
G:C. All three BP-modified guanine residues are paired with cytosine (C) in the opposite strand.

In this work, we used kinetic methods to determine the shapes of the unwinding curves
and the unwinding rate constants kobs using unmodified DNA as a benchmark. We provide
novel insights into (1) the magnitudes of helicase unwinding rates and processivities using
sets of bulky and non-bulky DNA lesions as substrates, and (2) the relationships between
the conformational and structural features of DNA lesions, and their impact on the helicase
unwinding rate constants and processivities. The objective of this study was to determine
the impact of a variety of conformationally distinct DNA lesions on the unwinding of
double-stranded DNA catalyzed by the helicase RecQ [7]. In the following section we
summarize the structural and conformational features of the DNA lesions employed in
this study.
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3.2. Determination of Helicase-Catalyzed Unmodified DNA Unwinding Parameters
3.2.1. Kinetic Parameters

Analysis of the unwinding kinetics suggests that the apparent unwinding rate constant
kobs is affected by two factors, the association rate constant for complex formation between
RecQ and the DNA substrate (rate constant ka), and the unwinding processivity. The latter
is defined as the probability that a helicase will successfully complete an unwinding step
instead of dissociating from the DNA substrate [1,9].

3.2.2. RecQ-Catalyzed Unwinding of Unmodified DNA

Following the injection of ATP into a pre-mixed helicase–unmodified DNA solution
with concentrations in the nanomolar range, a rapid burst phase is observable that is
attributed to pre-existing helicase DNA complexes as described earlier [9]; this burst phase
is followed by a slower unwinding component (Figure 4). The time dependence of the
latter component can be followed by monitoring the formation of single-stranded DNA
molecules ([DNA]ss) as a function of time and determining kobs by fitting the experimental
data points to the standard exponential equation [9]:

ssDNA(t)/ssDNAtot = (1 − exp[−kobs t]) (1)

where ssDNAtot is the overall concentration of DNA molecules with or without lesions.
Typical unwinding curves with unmodified forked DNA substrates (5 nM) at four different
RecQ concentrations (5–30 nM) are shown in Figure 4.
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(Figure 1). [DNA] = 5 nM. Fits of Equation (1) (red lines) to the experimental data points. The
following optimized kobs values were obtained at different RecQ concentrations with standard errors
representing 95% confidence intervals: (A) 0.0049 ± 0.0001 s −1 (5 nM), (B) 0.0087 ± 0.0001 s −1

(10 nM), (C) 0.0193 ± 0.0001 s −1 (20 nM), and (D) 0.0261 ± 0.0002 s −1 (30 nM).

The pre-steady state, single turnover kinetics of unwinding of double-stranded DNA
by RecQ, was extensively studied by Zhang et al. [9]. They showed that the unwinding step-
size of RecQ was ~4 base pairs, while the unwinding rate determined in these pre-steady
state, single turnover experiments; was ~84 bp/s. Under our experimental conditions,
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this fast-unwinding burst component is not time-resolved. The subsequent slow phase
is dependent on the diffusion-controlled formation of RecQ DNA complexes that, once
formed, undergo rapid reaction catalyzed by ATP. In the case of our DNA lesions, in contrast
to modified DNA, the reactions of ATP with the RecQ DNA complexes is significantly
greater than the observed unwinding rate (Supplementary Materials). The effects of RecQ
concentration on the slow-phase unwinding kinetics of unmodified DNA (5 nM) at four
different RecQ concentrations (5–30 nM), are depicted in Figure 5 [9]. The values of kobs
were determined from the best fits of Equation (1) to the second, slow phase (red lines)
superimposed on the experimental data points.
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line was determined by a least squares fit to the data points with a standard error representing a 95%
confidence interval. This slope is equal to the rate constant ka (um DNA) = (8.8 ± 0.4) × 105 M−1 s–1.

The values of kobs increase linearly as a function of RecQ concentration (Figure 5), thus
indicating that the unwinding rate is proportional to the rate of formation of helicase DNA
complexes. The bimolecular association rate constant calculated from the slope of the linear
plot in Figure 5 is ka = (8.8 ± 0.4) × 105 M−1s−1. The rate constant kobs depends on the
bimolecular encounter rate constant ka and the processivity P according to the equation [27]:

kobs = ka [CRecQ]P where P = kU/(kU + kD) (2)

The protein concentration is denoted by CRecQ, and the observed unwinding rate
constant kobs is defined as (kU + kD) [27]. The unwinding process is determined by the
competition between unwinding and the dissociation rate of the RecQ DNA complex,
defined by the rate constants kU and kD, respectively [9].

Adedeji et al. [28] considered the probability p that a helicase will successfully advance
by one step to unwind the next set of base pairs, instead of dissociating from the DNA
molecule. The probability of unwinding per bimolecular encounter is defined by the ratio
p = kU/(kU + kD) for each step. In the case of n-steps, the overall probability of fully
unwinding a double-stranded DNA sequence is a product of individual probabilities:

P = p1, p2, . . . , pn, = [kU/(kU + kD)]n (3)

with n representing the number of steps. This model provides the important insight that the
value of P derived from plots of the fractions of unwound ssDNA products as a function
of reaction time, can level off at a value of less than 1.0 if any single pn value in Equation
(3) is less than 1.0 for any of the steps in the double-stranded region. The presence of a
DNA lesion in any of the n-steps will thus lower the overall processivity. The validity of
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Equation (3) was demonstrated experimentally using unmodified DNA substrates with
double-stranded DNA sequences of different lengths [28]. In our experiments, the DNA
lesions were embedded at the ninth nucleotide counted from the single/double strand
junction of the forked DNA substrate (Figure 2). Thus, the RecQ helicase encountered the
DNA lesions during the ~third step within the double-stranded region (Figure 2).

3.3. Unwinding DNA Containing Bulky DNA Lesions

Typical examples of the impact of the bulky DNA lesions on RecQ-catalyzed unwind-
ing kinetics are shown in the following figures. These experiments were conducted at
concentrations of 5 nM DNA substrate and 5 nM RecQ, which correspond to the concen-
trations of the unmodified DNA experiment shown in Figure 4A. The kobs values were
calculated from the best fits of Equation (1) to the experimental data points. The reported
kobs values represent averages of three independent measurements.

Except for the BP-A:T duplexes, none of the other BP-modified DNA samples exhibited
burst signals at these low RecQ concentrations (5 nM).

3.3.1. Intercalated (+)-trans-BP-A:T Adenine Duplexes

The BP-A adducts are derived from the binding of the BPDE residue to the exocyclic
N6-amino group of adenine. The modified adenine residue is paired with T in the opposite
DNA strand, and the BP aromatic ring system assumes an intercalative conformation with-
out displacement of the modified adenine and is also flanked by normal undistorted base
pairs on both sides [24]. The BP-modified adenine base BP-A exists in a major syn-glycosidic
conformation instead of the normal B DNA anti conformation, which weakens the BP-A:T
base pairing at the site of the adduct. However, a less abundant anti conformation was
also detected, which suggests that the major syn-conformer exists in equilibrium with a
minor anti-conformer [24]. This conformational flexibility is a property that might help the
helicase to bypass this type of bulky BP-A DNA adduct.

The (+)-trans-BP-A:T adduct is the least DNA helix-distorting adduct as compared
to all the guanine BP-G:C adducts studied in this work. Consistent with these physical
properties, analysis of the (+)-trans-BP-A:T duplex unwinding curve (Figure 6) yields the
kobs value (22.8 ± 3) × 10−4 s−1; this value represents a moderate ~50% reduction relative
to the unmodified DNA kobs value of (49.0 ± 1) × 10−4 s−1 at the same RecQ and DNA
concentrations (Figure 4A).
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The anti-syn interconversion detected by NMR methods suggests that the flexible
conformations characterizing the BP-A adduct may enhance the successful bypass of the
(+)-trans-BP-A:T adduct by the RecQ helicase, thus enhancing the magnitude of kobs.

3.3.2. Minor Groove (+) and (−)-trans-BP-G:C Adducts

The polycyclic aromatic ring systems of the (+)-trans- and (−)-trans-BP-G adducts are at-
tached to the exocyclic N2-amino group of guanine (G) but with opposite orientations [20,21]
relative to the 3′ → 5′ direction of the translocation of RecQ (Figure 3).

The kinetic unwinding curves for these two duplexes are shown in Figure 7. The kobs val-
ues are (1.22 ± 10−4) s−1 (−)-trans-, and (2.91 ± 0.1) × 10−4 s−1 (+)-trans-BP-G:C duplexes.
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It was shown earlier that the (+)-trans-adduct causes a stronger and significantly more
flexible DNA bend than the (−)-trans adduct which is more rigid [29,30]. The greater
rigidity of the (−)-trans-BP-G-C and the greater conformational flexibility of the (+)-trans-
adduct are correlated with the ~two-fold greater unwinding rate constant associated with
the (+)-trans-BP-G:C adduct (Figure 7). The higher flexibility indicates that favorable
helicase DNA conformations can be sampled more frequently, thus leading to a higher
unwinding rate. Employing a different method that estimated the total yields of DNA
unwinding products catalyzed by the 3′ → 5′ WRN helicase, Khan et al. observed similar
(+)-trans/(−)-trans product ratios after fixed incubation time intervals [26].

3.3.3. Base-Displaced Intercalation of the (+)-cis-BP-G:C Adduct

The (+)-cis-BP-G:C adduct is characterized by a base-displaced intercalative conforma-
tion (Figure 3) with the BP aromatic ring system inserted between adjacent base pairs, while
the benzylic G deoxyguanosine ring is positioned in the minor groove with its plane parallel
to the helix axis; the partner base C is looped out into the major groove [17]. The flanking
base pairs are not disrupted and the BP aromatic ring system–base stacking interactions
stabilize the intercalated BP-G:Del adduct conformations [16,31].

The unwinding curve is shown in Figure 8, and the kobs value of the (+)-cis-BP-G:C
duplex is 1.42± 0.22 s−1, which is close to the (−)-trans-BP-G:C value of kobs = 1.22± 0.1 s−1.
These two adduct conformations are stereochemically related since both are characterized
by absolute R stereochemistry about the BP-deoxyguanosine linkage site. This means that
in both cases, the BP aromatic ring systems are positioned on the 3′-side of the modified
guanine residues which sterically hinder the progress of the RecQ helicase translocating in
the 3′→ 5′ direction.
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3.3.4. Intercalated ‘Deletion’ Duplexes, BP-G:Del

Deletion duplexes (Del) are identical to the full duplexes discussed up till now, except
for the deleted canonical Watson–Crick C nucleotide opposite the BP-G modified guanine
residue (abbreviated as G:Del). The Del duplexes containing DNA lesions occur in vivo
and, if not removed by cellular DNA repair systems, can contribute to mutagenesis [32,33].
In contrast to the minor groove conformations of the (+)- and (−)-trans-G:C duplexes, in
G:Del duplexes the same adducts are fully intercalated between adjacent base pairs without
displacement of the modified guanine residues from their usual positions [18,34].

3.3.5. Intercalated (+)- and (−)-trans-G:Del Duplexes

The kobs value of the (+)-trans-BP-G:Del adduct (4.33 ± 0.21) × 10−4 s−1 (Figure 6) is
modestly enhanced by a factor of 1.5 relative to the full (+)-trans-BP-G:C duplex kobs value.
However, in the case of the (−)-trans-BP-G:Del adduct, the (−)-trans-BP-G-Del kobs value is
(8.35 ± 0.6) × 10−4 s−1, which is ~seven times greater than the (+)-trans-BP- G:C kobs value.

This change is consistent with the minimal structural distortions of the G:Del duplex
that is characterized by, a thermodynamically stabilized intercalative conformation [23], in
contrast to both trans-BP-G:C duplexes that are thermodynamically less stable [16]. It is
remarkable that the deletion of a single nucleotide in the unmodified partner strand causes
a five-fold increase in the unwinding rate constant kobs.

3.3.6. Intercalated (+)-cis-BP-G:Del Deletion Duplexes

In the case of the (+)-cis-BP-G:Del adduct, the BP aromatic ring system remains inter-
calated as in the (+)-cis-BP-G:C duplex [35]. The structural features of the (+)-cis-BP-G:Del
duplex resemble those of the full (+)-cis-BP-G:C duplex [35]. The BP aromatic ring sys-
tem adopts a similar wedge-shaped intercalated structure, but the modified deoxyguano-
sine base is displaced into the minor groove with its plane aligned parallel to the DNA
helical axis.

Particularly noteworthy is the large increase in the kobs values from 1.42 ± 0.22 s−1 in
the full (+)-cis-BP-G:C duplex, to 5.99 × 10−4 s−1 in the (+)-cis-BP-G:Del duplex (Figure 8).

The structural features of the (+)-cis-BP-G:Del duplex are almost identical to those of
the full (+)-cis-BP-G:C duplex, except for the absence of the cytosine in the (+)-cis-BP-G:Del
duplex. Indeed, the only apparent difference between the full (+)-cis-BP-G:C duplex and
the (+)-cis-BP-G:Del duplex is the presence of the displaced cytosine positioned in the major
groove of the full (+)-cis-BP-G:C duplex [17]. This orphaned and unpaired cytosine residue
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appears to play a major role in diminishing the unwinding rate of the full duplex relative
to the (+)-cis-BP-G:Del duplex.

In summary, the kobs values of all DNA adducts discussed up till this point are com-
pared to one another in Figure 9.
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4. Non-Bulky DNA Lesions
4.1. Unwinding DNA Containing an Oxidative DNA Lesion

Spiroiminodihydantoin (Sp, S stereoisomer) is an oxidation product of 8-oxoguanine
in DNA [36] that is generated in vivo under conditions of oxidative stress associated
with the inflammatory response [37]. Thermodynamic, NMR, and molecular dynamics
simulation studies indicate that the propeller-like twisted Sp ring structure resides in
the major groove of double-stranded DNA and causes a significant destabilization of the
DNA duplex [38]. The kobs value determined from the Sp unwinding curve (Figure 10) is
(13.4 ± 0.9) × 10−4 s−1.
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4.2. Cis-Syn Cyclobutanepyrimidine (Thymine) Dimer (CPD) and the T(6−4)T UV
Irradiation Products

In the case of CPD, all Watson–Crick base pairs remain intact, but the helix is bent
by 90 at the site of the lesion. The T(6−4)T lesion is significantly distorted with the two
cross-linked thymine bases oriented with their planes perpendicular to one another; the
helix is bent by 44◦, and hydrogen bonding is absent at the 3′-flanking base pair [39,40].
The kobs values of the CPD and T(6−4)T lesions are (24.6 ± 1) × 10−4 and (21.2 ± 2) × 10−4,
respectively (Figure 10); within experimental error, these values are the same as the bulky
(+)-trans-BP-A:T value, while the Sp value is ~40% smaller (Figure 9). These observations
alone underscore the conclusion that the bulk of the DNA lesion alone does not seem to
affect the magnitudes of kobs unwinding rate constants. However, as discussed below, the
altered chemical structures of the nucleobases in these non-bulky DNA lesions are the
dominant factors that affect the processivities P.

Only one nucleotide is modified in the case of Sp, as well as in all of the bulky DNA
adducts, and the (+)-trans-BP-A:T adenine duplex. The DNA unwinding characteristics
of all bulky DNA adducts studied indicate that they diminish the rates of unwinding, but
not the processivities, since P = 1.0 in all cases. While the unwinding rates of duplexes are
slowed to different extents by different BP-G:C adducts, all are eventually fully unwound.
In the case of the non-bulky DNA lesions studied, P < 1.0, and full unwinding is not
achieved. The Sp processivity P = 0.63 is significantly smaller than the P = 1.0 value of the
bulky (+)-trans-BP-A:T and BP-G:C adduct duplexes. In the case of CPD, P = 0.11, and only
0.062 in the case of the T(6−4)T lesion (Figure 10).

These observations suggest that the altered chemical structures of these three non-
bulky lesions and the associated structural distortions of one (Sp), or two nucleobases (CPD
and T(6−4)T), dominate the mechanism of inhibition.

The processivity is defined as the probability that a helicase will proceed to the next
unwinding step rather than dissociating from the DNA. Since the processivity P = kU/kobs,
and kobs = kU + kD, a decrease in kU must be accompanied by a proportional increase in kD
since the kobs values remain constant. The strong reductions of the P values, but not the
unwinding rate constants (Figure 9), are due not only to the reduction in unwinding rate
constant kU, but also a strong enhancement of the dissociation constant kD relative to kU
(Equation (3)). The unwinding rate constants (kobs) are not significantly smaller than the
rate constants associated with the bulky DNA lesion, including the (+)-trans-A:T duplex. It
is noteworthy that P decreases in value in the case of the non-bulky DNA lesions, while the
kobs values do not change significantly. These results can be explained by considering that a
decrease in kU means that the residence time of the helicase bound to its DNA substrate
becomes longer. In turn, the longer residence time suggests that the probably of dissociation
of the helicase per step must also increase, thus leading to an increase in kD, and a lower
processivity P. Thus, there is a correlation between decreasing kU and increasing kD values
in this case.

The reason for the lower processivity and diminished kU rate constants of the two UV
photolesions may be due to the fact the helicase needs to bypass two nucleotides rather than
only one in the case of Sp and the bulky DNA adducts. In the case of the bulky polycyclic
aromatic adducts, the same phenomenon does not manifest itself, possibly because of non-
covalent Van der Waals interactions between the helicase and bulky polycyclic aromatic
ring systems that diminish the helicase dissociation rate constant kD. In the case of Sp, such
interactions are most likely minimal because of its non-aromatic nature and small bulk
(Figure 1B).

5. Summary and Conclusions

The unwinding rates of double-stranded DNA catalyzed by the 3′→ 5′ translocating E.
coli helicase RecQ is inhibited by bulky, benzo[a]pyrene diol epoxide-derived DNA guanine
and adenine adducts (BP-G and BP-A). In the case of the adenine adduct, intercalation of
the bulky BP polycyclic aromatic ring system does not strongly disrupt either base pairing
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or the normal B-DNA structure; the unwinding rate constant is diminished by a factor of
~two only, relative to unmodified DNA.

In the case of the bulky guanine adducts (BP-G:C), the BP aromatic ring system adopts
two types of adduct conformations: minor groove, or intercalation with displacement of
the modified guanine and partner C residues into the major or minor grooves of B-DNA.
The strong distortions of the normal B-DNA conformations in both cases result in up to
~50-fold decreases in unwinding rate constants. However, all BP-G:C duplexes, regardless
of BP-G:C adduct conformation, can be fully unwound (processivity P = 1.0).

The lowest unwinding processivities are observed in the case of the non-bulky guanine
oxidation product Sp, and the UV-radiation-induced products CPD TˆT and T(6−4)T
(Figure 1). However, their unwinding rate constants (kobs) are mostly and significantly
greater than the rate constants associated with most of the bulky DNA adducts (Figure 9).
Helicase unwinding is a multi-step process, and the RecQ helicase step size is four base
pairs per step. In the case of the CPD and T(6−4)T dimeric lesions, the helicase must bypass
two structurally distorted nucleobases out of four, rather than just one, thus accounting
for the lowest processivities that characterize these two lesions. These observations can be
accounted for by correlated decreases in unwinding rate constants and enhancements in
the helicase DNA complex dissociation rate constants.
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