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Abstract: The ability of the body to maintain homeostasis requires constant communication between
the brain and peripheral tissues. Different organs produce signals, often in the form of hormones,
which are detected by the hypothalamus. In response, the hypothalamus alters its regulation of bodily
processes, which is achieved through its own pathways of hormonal communication. The generation
and transmission of the molecules involved in these bi-directional axes can be affected by redox
balance. The essential trace element selenium is known to influence numerous physiological processes,
including energy homeostasis, through its various redox functions. Selenium must be obtained
through the diet and is used to synthesize selenoproteins, a family of proteins with mainly antioxidant
functions. Alterations in selenium status have been correlated with homeostatic disturbances in
humans and studies with animal models of selenoprotein dysfunction indicate a strong influence on
energy balance. The relationship between selenium and energy metabolism is complicated, however,
as selenium has been shown to participate in multiple levels of homeostatic communication. This
review discusses the role of selenium in the various pathways of communication between the body
and the brain that are essential for maintaining homeostasis.
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1. Introduction

The hypothalamus is the central coordinator of homeostatic processes in the body,
such as blood pressure regulation [1], temperature control [2], circadian rhythm [3], and
energy balance [4]. Various organs and tissues throughout the body constantly commu-
nicate to the hypothalamus, oftentimes in the form of hormones, providing information
on their status. In response, the hypothalamus sends signals back to the body through
different ‘axes’ of communication and influences behavior through connections to other
brain regions. Disruption of the mechanisms underlying these pathways can result in
homeostatic disorder. A common example of this is the tendency of the hypothalamus to
develop leptin resistance during obesity. Due to the inflammation and damage caused by
the obese state, the hypothalamus becomes less responsive to the appetite suppressing ef-
fects of the adipose tissue-derived hormone leptin, and, thus, impeding the individual from
losing weight [5]. Similar disruptions of hypothalamic function can have wide-ranging
effects as the hypothalamus controls a multitude of physiological functions. As the obesity
and diabetes pandemics continue to worsen [6,7], fully understanding the intricacies of
energy homeostasis and the pathology of metabolic disorder is a top priority for researchers
seeking to help improve human health.

Poor nutrition is undoubtedly a major contributor to the development of metabolic
disorder [8,9]. While there is an extensive well of knowledge on the effects of macronutrients
(e.g., carbohydrates, fats, and proteins), the importance of micronutrients (e.g., vitamins,
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minerals and other trace elements) and other related factors, such as nutrigenomics and gut
microbiota dynamics, has become more apparent over the years [10–17]. The focus of the
field has, accordingly, shifted towards pursuing precision nutrition as a basis for therapeutic
intervention [18,19]. The essential trace element selenium is critical for health, especially
brain function, and has garnered increasing attention in this regard [20–22]. Selenium is
known to influence energy metabolism in various ways and abnormal selenium status
has been tied to metabolic disorders [23–26]. Transgenic disruption of either selenium
metabolism or direct targeting of selenoproteins has resulted in detrimental metabolic
phenotypes in multiple studies [27–33]. Accumulating evidence has also begun to reveal
an important supportive role for selenium within the hypothalamus [21,34,35]. This review
discusses the axes of communication responsible for the hypothalamic maintenance of
homeostasis, with a focus on energy metabolism, and summarizes the current knowledge
of the involvement of selenium.

2. Overview of Selenium in Biological Function

The antioxidant trace element selenium maintains cellular physiology, largely by help-
ing to prevent oxidative stress. It is used by cells to produce selenoproteins, a family of
enzymes that participate in various redox reactions. To date, a total of 25 selenoproteins
have been identified in mammals, although some variability exists between species. To
synthesize selenoproteins, selenium must be incorporated into the 21st amino acid, se-
lenocysteine (Sec), which is, essentially, a cysteine, wherein the sulfur atom is replaced by
selenium. This elemental substitution results in a more efficient redox enzyme as, although
cysteine is present in various antioxidant proteins as well, sec is more reactive, due to the
chemical attributes of selenium. The valence electrons in a selenium atom are more tightly
held than those of sulfur and selenium is, therefore, more prone to perform the nucleophilic
attack involved in reductive reactions. Additionally, since selenium, as the heavier element,
is much less capable of forming π bonds, the selenium–oxide species that forms after the
reduction event is itself more readily reduced [36]. Although the high reactivity of selenium
makes it a potent antioxidant, the drawback is that there is a higher risk of toxicity. Thus,
selenium is handled in a tightly regulated manner throughout the body [37].

As an essential micronutrient, selenium must be obtained through the diet. It is
typically found in fruits, vegetables, cereals, meats, eggs, dairy, and legumes [38,39]. For
adult humans, the recommended daily allowance (RDA) of selenium is 55 µg/day, although
the RDA is higher under certain conditions, such as during pregnancy [40]. After being
ingested, selenium is digested and absorbed through the intestines, and, then, shuttled to
the liver, the principal distributor of selenium [41]. In the liver, selenium can be packaged
for transport to various organs, including to the kidneys for excretion. The primary
mechanism through which selenium travels through the bloodstream to reach target tissues
involves a unique selenoprotein, called selenoprotein P (SELENOP). Often referred to as the
‘selenium transporter’, SELENOP is distinct from other selenoproteins, in that it can contain
up to ten Sec residues, rather than just one, and, in fact, has multiple functions, including
heavy metal binding capabilities and possible enzymatic redox activity [42]. Circulating
SELENOP is able to bind receptors, such as the low-density lipoprotein receptor-related
protein 2 (LRP2), also known as megalin, in the kidneys, and LRP8, in the testes and brain,
after which it is posited to become endocytosed. Cells can then metabolize SELENOP
and recycle its Sec residues for de novo production of selenoproteins [43]. This mechanism
allows for selenium to be safely distributed and delivered to areas of need.

The unique process of selenoprotein synthesis relies on a cadre of dedicated molecular
machinery [44]. In short, the incorporation of Sec requires the translational reprogramming
of an UGA stop codon as Sec [45]. This requires the recognition of a stable loop structure
within the selenoprotein, mRNA, called the Sec insertion sequence (SECIS), by the SECIS-
binding protein 2 (SECISBP2). The recruitment of a complex of proteins follows, and
includes, the UGA anticodon-containing Sec-tRNASec (TRSP), which is needed to insert
Sec [46]. The molecular mechanisms involved in selenoprotein synthesis are summarized
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in Figure 1. It is worth noting that there appears to exist a selenoprotein “hierarchy”,
in which the synthesis of some selenoproteins, traditionally referred to as the “essential”
selenoproteins, is prioritized over others when selenium supply is limited. This system
is partially maintained by the affinity of SECISBP2 for the SECIS element, which can vary
between selenoprotein mRNA species. For example, the affinity is much higher for the
essential glutathione peroxidase 4 (GPX4) and thioredoxin reductase (TXNRD) sub-family
but is lower for GPX1 [47]. Consequently, when TRSP levels are reduced, due to selenium
scarcity, GPX4 and the TXNRDs are more capable of successfully recruiting TRSP and are,
therefore, more preferentially translated. Selenoprotein mRNAs that lack Sec insertion
at the UGA site are eventually be degraded via nonsense mediated decay [48]. These
mechanisms have been adapted to effectively utilize selenium and maintain a favorable
profile of selenoprotein expression within the cell. Through the production of these unique
enzymes with covalently bound Sec, organisms can utilize the high reactivity of selenium
to efficiently regulate redox balance.
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Figure 1. Diagram of dietary selenium metabolism and selenoprotein synthesis and function. Se-
lenium is obtained through the diet and is commonly found in meats, eggs, dairy, grains, fruits,
vegetables, nuts, and legumes. Following digestion and absorption through the gut, it is metabo-
lized by the liver, and distributed throughout the body via the circulatory system. Inside the cell,
selenophosphate synthetase 2 (SEPHS2) uses selenium (Se) to generate selenophosphate. PSTK
(Protein serine threonine kinase) phosphorylates Ser-tRNASec, which is then converted into Sec-
tRNASec by selenocysteine synthase (SEPSECS) using selenophosphate. The stem loop-containing
selenocysteine insertion sequence (SECIS) in the selenoprotein mRNA is recognized by SECISBP2
(SECIS-binding protein 2), which helps stabilize the mRNA to allow for the recruitment of EEFSec
(eukaryotic selenocysteine-specific elongation factor) and other members of the selenoprotein transla-
tion complex. The ribosomal protein L30, eukaryotic translation initiation factor a3 (eIFa3), and the
nucleolus-resident phosphoprotein nucleolin have all been identified as SECIS-binding proteins, but
their precise role in selenoprotein synthesis has not been well-elucidated [49]. The selenoproteins with
the most well-characterized mechanisms of action include the glutathione peroxidases (GPXs), which
reduce hydrogen peroxide (H2O2) and lipid hydroperoxides (LOOHs), the thioredoxin reductases
(TXNRDs), the iodothyronine deiodinases (DIOs), which activate/de-activate thyroid hormones,
methionine-R-sulfoxide reductase B1 (MSRB1), and the Se carrier selenoprotein P (SELENOP), which
delivers selenium to cells through its interactions with LRP2 (low density lipoprotein receptor-related
protein 2; also called megalin) and LRP8.
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Specific catalytic mechanisms of action have been confirmed for about half of the
25 known mammalian selenoproteins. These are the GPXs, the TXNRDs, methionine-R-
sulfoxide reductase B1 (MSRB1), the iodothyronine deiodinases (DIOs), and selenophos-
phate synthetase 2 (SEPHS2), in addition to SELENOP, as described above. The first to
be reported as a selenoprotein, GPX1, is one of the most ubiquitously expressed and is
present in the cytoplasm and mitochondria, where it catalyzes the reduction of hydrogen
peroxide [50–52]. This reaction involves the oxidation of the selenol in the selenocysteine
residue of GPX1 by hydrogen, followed by its subsequent reduction by glutathione (GSH).
Another member of the GPX sub-family, GPX4, is essential in many tissues as it primarily
reduces lipid hydroperoxides [53]. In doing so, it helps prevent ferroptosis, a form of iron-
dependent programmed cell death that has gained increasing attention since its discovery
10 years ago for its wide-ranging roles in physiology and its potential as a therapeutic
target in human disease [54]. The TXNRDs catalyze the reduction of oxidized thioredoxin
(TXN), a major disulfide reductase that is critical for cellular health, and are a generally
highly expressed selenoprotein sub-family with strong therapeutic potential [55]. MSRB1
is responsible for reducing methionine sulfoxide (MetO) to methionine (Met). It supports
a wide variety of cellular functions and recent reports elucidated a role for MSRB1 in the
innate immune response [56]. The DIOs collectively regulate thyroid hormone activity [57].
DIO1 and DIO2 catalyze the conversion of the inactive thyroid hormone T4 to the active T3
form through the removal of an iodine atom. DIO3 carries out the deactivation of thyroid
hormone by either reducing T4 into the inactive reverse T3 (rT3), or by converting T3 to
T2 [58]. SEPHS2 is unique in that it directly partakes in selenium metabolism by helping to
synthesize selenophosphate, which provides the selenium used to make Sec-loaded TRSP
for selenoprotein translation [59].

In addition to the aforementioned selenoproteins, others have been determined to aid
in various mechanisms and processes, but a specific enzymatic reaction has not been fully
characterized and confirmed. For example, there are several selenoproteins localized to
the ER that are involved in calcium (Ca2+) homeostasis and the endoplasmic reticulum
(ER) stress response. These include DIO2, SELENOF, SELENOK, SELENOM, SELENON,
SELENOS, and SELENOT [60]. SELENOF (previously known as SEP15) facilitates protein
folding by mediating disulfide bond formation in glycoproteins, but has not yet been tied
to Ca2+ homeostasis [61]. SELENOK plays a role in the ER associated protein degradation
(ERAD) pathway and supports store-operated Ca2+ entry (SOCE) from the ER by facili-
tating the palmitoylation of inositol triphosphate receptors (IP3Rs) [62,63]. Although the
mechanisms are unknown, SELENOM helps prevent excessive levels of cytosolic Ca2+

and appears to be a thiol-disulfide oxidoreductase [64]. SELENON senses ER luminal
Ca2+ levels and, by acting as an oxidoreductase, activates the sarcoendoplasmic reticulum
calcium transport ATPase (the SERCA pump) to replenish ER Ca2+ stores [65]. SELENOS
participates in ERAD as a member of a multi-protein complex that facilitates the removal
of misfolded peptides via retro-translocation followed by ubiquitin-mediated degrada-
tion [66]. Finally, SELENOT is thought to regulate Ca2+ homeostasis by acting on pumps
and channels and may also be involved in ERAD [67,68]. These ER-resident selenoproteins
may play an important role in preventing ER stress in the hypothalamus, which is thought
to be a major contributor to metabolic disorder [69]. Table 1 summarizes the various
selenoproteins and their known functions.
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Table 1. Selenoprotein names and functions.

Selenoprotein Abbreviation(s) Function/Reactions Catalyzed

lodothyronine deiodinases (1–3) DIO (1–3)

Types 1 and 2 activate thyroid
hormones (T4 to T3) and type 3
deactivates (T3 to T2, or T4 to rT3).
Type 2 localizes to the ER.

Glutathione peroxidases (1–4, 6) GPX (1–4, 6)

Reduces hydrogen peroxide
species. Type 1 is present in
cytosol. Type 4 reduces
phospholipid hydroperoxides.

Methionine sulfoxide reductase B1 MSRB1 Reduces
sulfoxidated methionipes.

Selenophosphatase synthetase 2 SEPHS2 Synthesis of selenophosphate to
support selenoprotein synthesis.

Selenoprotein F SELENOF Thiol-disulfide oxidoreductase in
the ER.

Selenoprotein H SELENOH
Localized to the nucleus. Thought
to conduct redox sensing to
support transcription.

Selenoprotein I SELENOI
Ethanolamine phosphotransferase
to support the synthesis of
phosphatidylethanolamine.

Selenoprotein K SELENOK

Palmitoylation of inositol
triphosphate receptors to facilitate
store-operated Ca2+ entry from
the ER.

Selenoprotein M SELENOM Thio-disulfide oxidoreductase in
the ER.

Selenoprotein N SELENON Oxidoreductase that senses ER
luminal Ca2+ levels.

Selenoprotein O SELENOO Localized to the mitochondrion.

Selenoprotein P SELENOP
Secretory glycoprotein that
delivers selenium to cells
throughout the body.

Selenoprotein S SELENOS Participates in ER associated
protein degradation.

Selenoprotein T SELENOT Thought to regulate Ca2+

homeostasis in the ER.

Selenoprotein V SELENOV Regulates O-GlcNAcylation.

Selenoprotein W SELENOW Proposed to have
antioxidant function.

Thioredoxin reductases (1–3) TXNRD (1–3)
Reduction of oxidized thioredoxin.
Type 1 localizes to cytoplasm,
type 2 to mitochondria.

Selenium and selenoproteins support a wide variety of physiological functions in the
body. Amongst the most well-described are its roles in fertility, thyroid gland physiology,
and neurological function [70–73]. For example, selenium facilitates reproductive efficiency
and GPX4 plays a crucial role in sperm motility [74]. There is also increasing evidence that it
is important during pregnancy and for ovarian physiology [70]. The thyroid gland contains
the highest level of selenium content per weight of all organs and is highly dependent
on the actions of selenoproteins [75,76]. In addition to its ability to curb oxidative stress,
selenium directly regulates thyroid hormone metabolism in the form of the DIO sub-
family. Aside from these functions, selenium has been shown to support immunity, bone
homeostasis, cardiovascular health, energy metabolism, and various others functions, and
has also demonstrated anti-cancer, anti-inflammation, and anti-viral properties, including
potentially protecting against SARS-CoV2 infection [77–84].
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The brain relies heavily on selenium, due to its high metabolic rate and production
of reactive oxygen species (ROS) [85]. Selenium is preferentially retained in the brain
when dietary selenium is restricted, due to this high level of dependence [86,87]. Studies
on animal models with disruptions to either selenoprotein expression or function have
oftentimes yielded neurological phenotypes, typically involving neuromotor and memory
deficits [88–91]. While the importance of selenium to neurodevelopment and neuronal
health has been well-established, emerging evidence also implicates a critical role in adult
neurogenesis, as well as the potential to directly influence neuronal activity by modulating
redox signaling events [92–94]. In clinical studies, selenium deficiency has been impli-
cated in multiple brain disorders in humans [95–97]. Selenium has been proposed as a
supplemental therapy for the treatment of neurodegenerative diseases and strokes [98,99].
Recently, a prominent role for selenium in the hypothalamus has begun to come to light
as well. This review discusses the influence of the essential trace element selenium, and
the selenoproteins it is used to synthesize, in pathways of homeostatic communication.
This topic is broken down into three main sections: (1) the physiology and inner workings
of the hypothalamus, (2) the outward pathways from the hypothalamus that regulate
homeostasis throughout the body, and (3) the routes of communication from the body to
the hypothalamus.

3. Selenium in Hypothalamic Function

Interest in the role of selenium in hypothalamic health and function has grown in
recent years. The hypothalamus is the central control system through which signals are sent
to, and from, the brain to maintain physiological homeostasis. This vital brain structure is
situated at the base of the brain and contains several anatomically and functionally distinct
nuclei. The arcuate nucleus (ARC) lies at the most mediobasal aspect of the hypothalamus
and is in direct contact with the median eminence (ME), an area with a loose and dynamic
blood–brain barrier (BBB) [100]. The ME contains fenestrated capillaries that allow the
diffusion of hormones and nutrients from the blood into the brain, where they can be
detected by ‘first order neurons’ in the ARC [101]. The ARC is the most actively involved
hypothalamic nucleus in directly receiving signals from the body and has been the focus of
many recent investigations of selenium in the hypothalamus.

Two very prominent homeostatic sensory neuron populations that reside in the ARC
are the agouti-related peptide (AGRP)-positive and pro-opiomelanocortin (POMC)-positive
neurons [102]. These neurons express receptors for metabolic hormones, such as ghrelin,
leptin, and insulin, and can also detect nutrients like glucose. In response, AGRP and
POMC neurons adjust food intake and energy expenditure to help the organism meet the
energy demands of its environment. AGRP neurons are particularly involved in these
processes as their localization is concentrated nearest to the ME and there is evidence that
many of them have projections that extend to the outside of the BBB making them extremely
sensitive to fluctuations in the levels of circulating homeostatic signals [103,104]. The in-
fluence exerted by AGRP neuron activation, which promotes a positive energy balance,
primarily by increasing feeding behavior, is in opposition to that of POMC neurons, which
promote a negative energy balance by increasing energy expenditure. The activities of
these two important neuronal populations often work synergistically, however, to regulate
pituitary gland activity via the melanocortin system [105,106]. The hypothalamus, and par-
ticularly the ARC, is susceptible to oxidative stress, ER stress, and inflammation-mediated
dysfunction under conditions of metabolic stress, such as the consumption of a high fat
diet (HFD) [21,69,107–109]. It, therefore, stands to reason that protecting the hypothalamus
would be a major mechanism through which selenium helps maintain energy balance.

One of the earliest reports on the role of selenium in the hypothalamus involved
measurements of several trace elements in the rat hypothalamus during various states
of reproductive function (e.g., proestrus and estrus of cycling females, castrated males,
etc.). In this study, Merriam et al. observed that, while levels of iron, copper, zinc, arsenic,
bromine, and rubidium all changed, only selenium levels stayed consistent across all
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conditions [110]. As noted by the authors, not much was known about the physiological
functions of selenium at the time (the year 1979), which was preceded by the discovery of
the first selenoprotein only several years prior [50,111]. Still, this finding was reminiscent of
studies performed roughly a decade later showing that selenium is preferentially retained
in the brain when dietary selenium is restricted [112]. Several other studies over the next
couple of decades, following the report by Merriam et al., began unveiling the importance
of selenium to pituitary gland function [113–118]. It was not until the 2000s, however,
that a clearer picture of the role of selenium and selenoproteins in the hypothalamus itself
began to develop.

Transcriptomic studies indicated that selenoproteins are abundantly expressed in
the hypothalamus, especially AGRP and POMC neurons [119,120]. Selenoprotein gene
expression in the hypothalamus was also noted to become altered by changes in diet and
homeostatic signals. In the paraventricular nucleus (PVN), for example, 4 of the 100 genes
most positively regulated in response to leptin are selenoproteins: Gpx3, GPx4, Selenok,
and Selenom [121]. Although the physiological significance of these observations remains
to be elucidated, their upregulation may serve to support increased neuronal activity
levels, as leptin promotes the production and release of hypophysiotropic hormones from
secretory neurons in the PVN that go on to act on the anterior pituitary. The increased
Gpx4 expression is noteworthy, due to its essential anti-ferroptotic function in the brain.
Consumption of a high-fat, high-sucrose (HFHS) diet was reported to cause a decrease
in Gpx4 gene expression, however, which may exacerbate the oxidative damage and
inflammation that results from an HFHS diet [122]. The ER-resident SELENOM may play an
important neuroprotective role by regulating Ca2+ homeostasis and limiting ER stress [64].
An interesting parallel exists in that a study by Pitts et al. demonstrated that whole-body
Selenom KO caused obesity, accompanied by leptin resistance, in mice [28]. Impaired
hypothalamic function contributes to this phenotype as SELENOM was subsequently
shown to enhance hypothalamic leptin signaling [123]. The underlying mechanism involves
SELENOM suppressing ER stress through its intrinsic TXN-like activity.

The thyroid hormone regulator DIO2 is another selenoprotein with a well-documented
role in hypothalamic physiology. Lacking expression of DIO1, the brain depends on DIO2
as the sole thyroid hormone activating enzyme [124]. The ME is lined with a special
ciliated type of cells called tanycytes that regulate the exchange of hormones and nutrients
between the ARC and the bloodstream. Tanycytes express high levels of DIO2, which
become upregulated under inflammatory conditions, and may play an initiating role in
hypothalamic thyroid hormone activation [125–128]. This possibility is supported by
work from Coppola and colleagues showing that fasting upregulates DIO2 expression to
elevate T3 levels in the ARC [129]. The increase in T3 then activates uncoupling protein-2
(UCP2) within AGRP neurons, resulting in elevated activity. Thus, DIO2 plays a role in
promoting food seeking behavior through its metabolism of the thyroid hormone within
the hypothalamus.

In 2017, a study by Yagishita et al. addressed the general role of hypothalamic seleno-
proteins using two mouse models with conditional KO of the Trsp gene [130]. Mice with
rat-insulin-promoter-driven Cre (RIP-Cre) were crossed with mice in which the Trsp gene
was flanked by lox-p sites, effectively ablating selenoprotein synthesis in the hypothalamus
using the Cre-lox system. Since RIP is also expressed in pancreatic β cells, the researchers
also crossed the Trsp floxed mice with insulin-induced gene 1 (Ins1)-Cre mice to stop the
production of selenoproteins, specifically in β cells, but not the hypothalamus. In compar-
ing the metabolic phenotypes of these two mouse models, the authors were able to deduce
the contributions of hypothalamic selenoproteins. The TrspRIPKO mice gained more excess
weight, while on an HFD, compared to Trsp floxed control mice lacking Cre recombinase,
and displayed glucose intolerance, hypothalamic leptin resistance, and systemic insulin
resistance [130]. The TrspIns1KO mice did not display the same phenotype, so the effects
were attributed to the loss of Trsp in the hypothalamus.
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Yagishita and colleagues next assessed oxidative stress in the hypothalamus by imag-
ing malondialdehyde (MDA), a product of polyunsaturated fatty acid peroxidation, as
well as oxidized GSH (GSSG) and reduced GSH, and measuring lipid metabolites using
liquid chromatography [131]. Mice with deletion of Trsp in the hypothalamus had more
MDA-positive cells and a higher GSSG/GSH ratio than controls with the largest differences
observed in the PVN and the mediobasal hypothalamus (MBH), which contains the ARC.
The hypothalamus of TrspRIPKO mice also had increased levels of oxidized phosphatidyl-
cholines. Further analysis determined that broad inhibition of selenoprotein synthesis
caused oxidative damage to leptin receptor (LEPR)-expressing POMC neurons, which the
authors hypothesized was a key factor in the development of leptin and insulin resistance.
The authors proposed that a lack of POMC neuron activation by leptin and insulin down-
regulated the sympathetic tone in brown adipose tissue (BAT) to promote obesity. This
hypothesis was supported by an observed decrease in UCP1 expression in TrspRIPKO mouse
BAT [132]. Interestingly, Cre-dependent upregulation of Nrf2 (nuclear factor erythroid
2-related factor 2) alleviated both the metabolic phenotype and the oxidative damage to
POMC neurons. As a transcription factor, NRF2 regulates GSH metabolism-related genes,
including Gpx4, and the authors concluded that increasing NRF2 in astrocytes upregulated
GSH promoting genes and may have, subsequently, supplied GSH to neurons [133–135].

The study by Yagishita et al. provided strong evidence that selenoproteins are needed
in the hypothalamus to maintain energy homeostasis and that disturbances in their activity
can have significant deleterious metabolic effects throughout the body. A key aspect is that
the RIP-Cre driver affected multiple neuronal types beyond just POMC neurons, as well as
astrocytes in the hypothalamus [130]. The conditional Trsp knockout was confirmed to not
have affected AGRP neurons, however. As mentioned above, AGRP neurons are unique in
that they are the most active in detecting homeostatic signals due to their partial ability to
bypass the BBB. There is also evidence that this influential population of neurons develops
leptin resistance prior to the rest of the hypothalamus during obesity [104]. As such, AGRP
neurons have gained increasing attention from researchers as candidate targets for the
treatment of metabolic disorders [103,120,136]. The role of selenoproteins, specifically in
AGRP neurons, was more recently addressed in a study that used a conditional KO of Trsp
using AGRP promoter-driven Cre expression.

Ablation of selenoprotein synthesis just in AGRP neurons surprisingly resulted in
the opposite phenotype as that of TrspRIPKO mice, as TrspAGRPKO mice gained less weight
on an HFD than controls [35]. This effect was only observed in female TrspAGRPKO mice,
however, as male mice were unaffected by AGRP-specific Trsp deletion. Although the
underlying cause of the sex-dependent nature of this phenotype was not determined, it
is not all that surprising, as the hypothalamus is a very sexually dimorphic brain region,
especially in terms of the regulation of energy metabolism [137–139]. Interestingly, female
TrspAGRPKO mice did not develop leptin resistance, despite being fed an HFD, and seemed
to have greater BAT activation than HFD-fed control mice [35]. Thus, like the study by
Yagishita et al., the underlying mechanisms may have involved changes in the sympathetic
control of BAT thermogenesis. Recently, an axis through which leptin inhibits AGRP
neurons to upregulate sympathetic innervation of white adipose tissue (WAT) and BAT
was discovered [140] and may be involved in these studies targeting AGRP neurons. The
contrasting data gained from RIP-Cre and AGRP-Cre driven KO of selenoprotein translation
demonstrated that selenium can dramatically impact whole-body metabolism by acting in
the hypothalamus and that the nature of this relationship is cell type-dependent.

Yet another study that focused on AGRP neurons descended from the initial discovery
of the impact of a selenium metabolism enzyme on energy balance. Roughly a decade ago,
Seale and colleagues reported that global KO of the gene for the intracellular recycling
enzyme selenocysteine lyase (Scly) resulted in metabolic deficits in mice [27]. By catalyzing
the breakdown of selenocysteine residues from degraded selenoproteins into selenide, Scly
allows the cell to re-use the selenide for de novo selenoprotein synthesis [141]. The Scly KO
mice were noted, by Seale et al., to exhibit glucose intolerance, high levels of insulin and
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leptin in the serum, and hepatic steatosis, among other symptoms. When challenged with a
selenium-deficient diet, the Scly KO mice developed metabolic syndrome, including obesity
and hypercholesterolemia [27]. Interestingly, the results were sex-specific, as the phenotype
was found to be milder in female mice. The authors rationalized that the disruptions to
energy homeostasis caused by the loss of Scly may be due to insufficient selenoprotein
action to prevent oxidative stress in one or multiple tissues. It was further hypothesized
that increased oxidative stress in the liver, due to the absence of Scly, may promote the
inhibition of insulin signaling by protein tyrosine phosphatase 1B, and, subsequently,
reducing glucose uptake and lipogenesis.

Subsequent investigations by the same group of researchers led to the discovery that
male Scly KO mice were significantly more vulnerable to developing HFD-induced obesity,
and western blot analysis of hypothalamic tissue revealed that the expression of several
selenoproteins in the hypothalamus decreased, due to a lack of Scly [142,143]. To pinpoint
the underlying cause of the obesogenic phenotype induced by constitutive Scly KO, a
conditional Scly KO in AGRP neurons was generated. Similar to the result obtained with
AGRP-specific Trsp ablation, SclyAGRPKO mice were found to be less susceptible to HFD-
induced obesity and maintained hypothalamic leptin sensitivity while on an HFD [34].
Unlike the TrspAGRPKO mice, however, the metabolic phenotype of SclyAGRPKO mice was
not sex-specific.

While the loss of Scly agitates selenoprotein expression, KO of Trsp prevents selenopro-
tein synthesis altogether and, therefore, likely causes a greater amount of oxidative insult.
It is, therefore, possible that the AGRP neurons of SclyAGRPKO mice experience enough
oxidative stress to alter their physiology, whereas in TrspAGRPKO mice, the neurons are
degenerating. Indeed, the phenotype of TrspAGRPKO mice mirrors that of a model from
another study in which progressive neurodegeneration was induced in AGRP neurons. Xu
et al. deleted mitochondrial transcription factor A (TFAM) in AGRP neurons and observed
that, while the males were largely unaffected, female TfamAGRPKO mice had reduced adi-
posity [144]. This finding was initially surprising to the authors since chemical ablation
of AGRP neurons in adult mice caused anorexia and death due to failure to thrive [145].
It was later revealed, however, that progressive AGRP neuron degeneration induced a
compensatory mechanism of adult neurogenesis that produced new leptin-responsive
AGRP neurons [146].

An alternative explanation for the lean phenotype caused by disrupting selenopro-
teins in AGRP neurons is that an increase in ROS simply causes the neurons to become
less active. This hypothesis is supported by past experiments using patch clamp elec-
trophysiology on mouse brain slices, which showed that ROS had an inhibitory effect
on AGRP neuron activity, while stimulating POMC neurons [147,148]. Diano et al. hy-
pothesized that peroxisomes, organelles involved in controlling ROS, actively work to
maintain AGRP neuron activity and limit POMC neuron firing by reducing endogenously
produced ROS levels [147,149,150]. Interestingly, multiple studies indicated that selenium
shows an ability to promote antioxidant mechanisms by activating the transcription fac-
tors peroxisome proliferator-activated receptor alpha and gamma (PPAR-α/γ) [14]. One
possible mechanism of action, through which a loss of selenoprotein function could in-
hibit AGRP neurons, involves hydrogen peroxide activation of ATP-sensitive potassium
channels (KATP channels) [151–153]. The opening of KATP channels causes an efflux of
potassium that hyperpolarizes the neuronal cell membrane [154]. The important role of
KATP channels in AGRP neurons has already been established and is known to be involved
in the mechanisms of action of some homeostatic hormones [155–157]. Furthermore, KATP
channels have been suggested as a therapeutic target for treating metabolic disorders [158].

The fact that consumption of an HFHS diet is known to cause a decrease in hypotha-
lamic GPX4 levels raised the question as to whether GPX4 is an essential enzyme in the
hypothalamus. This question was addressed in a study by Schriever et al. that sought
to determine the effects of conditional Gpx4 KO in the hypothalamus [159]. In this study,
the authors first confirmed that an HFHS diet reduced Gpx4 expression in the hypothala-
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mus and, then, generated both AGRP and POMC neuron-specific GPX4 KO mice using
the Cre–lox system. Surprisingly, the loss of Gpx4 in POMC neurons had no discernible
effect on whole-body metabolism. Male Gpx4AGRPKO mice, on the other hand, gained
more body weight and fat mass than controls while on an HFHS diet. Although male
Gpx4AGRPKO mice exhibited reduced locomotor activity and respiratory quotient during
the light phase, no changes were seen in either food intake or energy expenditure. Like
the Gpx4POMCKO mice, however, female Gpx4AGRPKO mice showed no signs of altered
metabolism, compared to controls, while on an HFHS diet. These findings contrasted with
the observation that fasting lowers Gpx4 expression in POMC neurons, but not AGRP
neurons. Additionally, neither conditional KO model affected systemic glucose tolerance
or the density of AGRP and POMC neurons. The mild impact on energy homeostasis
and lack of any signs of neuronal degeneration suggested that, contrary to expectations,
GPX4 antioxidant activity was not essential within AGRP or POMC neurons. These cell
populations may depend more on other selenoproteins, such as those that reside in the
ER, for which mounting evidence points to an essential role in the brain and metabolic
disease [160,161].

To date, the majority of evidence that selenium is important for hypothalamic func-
tion is centered around the signal detection capabilities of the ARC, especially regarding
leptin sensitivity [21]. Although GPX4 was surprisingly found not to be an essential
player in maintaining ARC neuronal health and physiology, further investigations might
uncover unique roles for other selenoproteins in the hypothalamus. One area with po-
tential promise is adult hypothalamic neurogenesis. Although this phenomenon is not
as well-characterized as neurogenic activity in other brain regions, like the hippocampus,
hypothalamic neurogenesis impacts homeostatic processes, including energy metabolism,
sexual activity, and temperature regulation [162]. Recently, a ground-breaking study delin-
eated a central role for selenium in regulating exercise-induced hippocampal neurogenesis.
In this study, Leiter et al. showed that liver-derived SELENOP is secreted into the blood-
stream in response to physical exercise and binds to LRP8 in the hippocampus to stimulate
neural precursor cells [93]. Interestingly, genetic disruption of either Selenop or Lrp8 abol-
ished the ability of exercise to induce adult hippocampal neurogenesis. Might SELENOP
also play a similar role in mediating neurogenesis in the hypothalamus? Interestingly, cir-
culating SELENOP is studied as a potential mediator of metabolic disorder and, although
mechanisms involving the pancreas and BAT were reported, the physiological effects of
SELENOP in the hypothalamus were not reported on [163–165]. Another potential area of
interest is the intersection between selenium and the sexual dimorphism of the hypothala-
mus. Many studies on selenium biology yielded sex-specific results, including studies of
energy metabolism [166]. Considering the numerous sex differences reported in the studies
reviewed in this section, could hypothalamic function be an underlying mechanism to ex-
plain the sexually dimorphic effects of selenium and selenoproteins on energy homeostasis?
The role of selenium in hypothalamic function is a growing field and further investigation
into these areas is warranted.

4. Signals from Brain to Body

The hypothalamus is responsible for regulating homeostasis throughout the body
and does so through multiple axes of communication. For example, neurons of the hy-
pothalamus have connections to brain stem nuclei that control different organs via direct
sympathetic nervous innervation. The hypothalamus also releases neurohormones that
enter the bloodstream to bind receptors in peripheral tissues, or can act on the anterior pitu-
itary to induce the release of various pituitary gland hormones that have specific targets in
the body. This review mainly considers the endocrine pathways controlled by the hypotha-
lamus. The axes regulating the thyroid and adrenal glands are the most well-characterized
in terms of interactions with selenium, but evidence relevant to other axes is also discussed.
The effects discussed in this section are graphically summarized in Figure 2.



Int. J. Mol. Sci. 2022, 23, 15445 11 of 38

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 11 of 41 

 

 

 
Figure 2. Hypothalamic axes of communication and the various effects of selenium. The 
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from the anterior pituitary gland. Selenium (Se) has shown an ability to upregulate the thyrotropin-
releasing hormone receptor (THR) and gonadotropin-releasing hormone receptor (GnRHR) in the 
pituitary gland. Along the hypothalamic–pituitary–thyroid (HPT) axis, selenium has shown a 
capacity to limit thyroid-stimulating hormone (TSH) from the pituitary gland and is intimately 
involved in thyroid hormone metabolism, as it is used to synthesize the iodothyronine deiodinase 
(DIO) sub-family of selenoproteins. Evidence from multiple lines of investigation suggest that 
selenium plays a role in normalizing the HP–adrenal axis under conditions of elevated stress, 
through mechanisms involving the limiting of adrenocorticotropic hormone (ACTH) secretion from 
the pituitary and glucocorticoid (GC) secretion from the adrenal gland. Additionally, the negative 
feedback loop of the HPA axis is supported, by helping the brain maintain GC receptor (GCR) 
expression levels, which are typically downregulated by chronic over-activation. Selenium seems 
to promote the secretion of luteinizing hormone (LH) from the pituitary gland and the expression 
of the receptors for LH (LHR) and follicle-stimulating hormone (FSHR) in the ovaries. Selenium is 
also important for maintaining sufficient production of sex hormones, including testosterone (TST), 
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from the anterior pituitary gland. Selenium (Se) has shown an ability to upregulate the thyrotropin-
releasing hormone receptor (THR) and gonadotropin-releasing hormone receptor (GnRHR) in the
pituitary gland. Along the hypothalamic–pituitary–thyroid (HPT) axis, selenium has shown a capacity
to limit thyroid-stimulating hormone (TSH) from the pituitary gland and is intimately involved in
thyroid hormone metabolism, as it is used to synthesize the iodothyronine deiodinase (DIO) sub-
family of selenoproteins. Evidence from multiple lines of investigation suggest that selenium plays a
role in normalizing the HP–adrenal axis under conditions of elevated stress, through mechanisms
involving the limiting of adrenocorticotropic hormone (ACTH) secretion from the pituitary and
glucocorticoid (GC) secretion from the adrenal gland. Additionally, the negative feedback loop of
the HPA axis is supported, by helping the brain maintain GC receptor (GCR) expression levels,
which are typically downregulated by chronic over-activation. Selenium seems to promote the
secretion of luteinizing hormone (LH) from the pituitary gland and the expression of the receptors
for LH (LHR) and follicle-stimulating hormone (FSHR) in the ovaries. Selenium is also important
for maintaining sufficient production of sex hormones, including testosterone (TST), estradiol (E2),
and progesterone (P4). Finally, selenium affects the HP–pituitary axis by supporting prolactin (PRL)
secretion from the pituitary. There is also potential for selenium to regulate the hypothalamic release
of prolactin-releasing peptide (PrRP), through its influence on dopamine (DA) transmission. CRH:
corticotropin-releasing hormone, T4/3/2: thyroid hormones. Effects of selenium are shown in red.

4.1. Hypothalamic–Pituitary–Thyroid Axis

The most well-characterized pathway of communication from the hypothalamus
in terms if interactions with selenium is the hypothalamic–pituitary–thyroid (HPT) axis.
Thyrotropin-releasing hormone (TRH), originating from the hypothalamus, binds its re-
ceptor in the anterior pituitary to cause the release of thyroid-stimulating hormone (TSH),
which goes on to induce thyroid hormone secretion from the thyroid gland [167]. Activa-
tion of the HPT axis has a direct impact on energy homeostasis and an imbalance within
the axis can make an organism more vulnerable to developing metabolic disorders and
obesity [168]. Among the major physiological processes affected by thyroid hormones
are energy expenditure, thermogenesis, liver metabolism, bone homeostasis, and cardio-
vascular function [169–174]. Selenium plays an essential role in the HPT axis as the DIO
selenoprotein sub-family is responsible for the activation and de-activation of thyroid
hormones via deiodination [175,176].

Many reviews have been published in recent years summarizing the ways in which
selenium is implicated in numerous pathologies related to thyroid endocrine abnormalities,
including autoimmune thyroiditis [177,178], Hashimoto’s thyroiditis [179,180], Graves’ dis-
ease [181,182] and Graves orbitopathy [181], subclinical hypothyroidism [183], subclinical
hyperthyroidism [184], goiter [185], postpartum thyroid dysfunction [186], post-COVID-19
thyroid dysfunction [187], as well as thyroid disorders in general [188]. Reviews have also
been published highlighting the relevance of selenium to non-thyroidal conditions that
remain metabolically pertinent, including metabolic syndrome [189], type 2 diabetes [190],
gestational diabetes mellitus [191], and gestational disorders [192]. Despite numerous
studies [178] reporting that selenium supplementation reduces thyroid autoantibody lev-
els in patients with autoimmune thyroiditis, however, recent meta-analyses have found
evidence of clinical efficacy to be lacking [193–195]. Numerous reviews have also been
published summarizing the role of selenium in endocrinological disease [196], thyroid func-
tion [72,197,198], pathophysiology [198], and maintaining homeostasis in general [199]. As
such, the focus of this sub-section is on articles published within the last year, to provide the
latest insights from this well-investigated field. An emphasis was placed on publications
describing how selenium availability affects the release and metabolism of the following
hormones, relevant to the HPT axis, as well as their receptors; TRH, TSH, and the thyroid
hormones (T4, T3, T2).

The environmental pollutant di-(2-ethylhexyl) phthalate (DEHP) is known to disrupt
thyroid hormone function [200]. The relationship between selenium and DEHP was first
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formally discussed in literature in 1991 [201]. More recently, both selenium and selenium
nanoparticles were found to be protective against the toxic effects of DEHP. Selenium was
found to ameliorate the effects of DEHP exposure, both in a rat model of DEHP thyrotoxicity
and in an immortalized human thyroid cell line [202]. These protective effects included
maintaining TRH receptor abundance in the pituitary at both the protein and transcript
levels. Additionally, selenium nanoparticles exerted protective effects against DEHP-
induced thyroidal disruption in male rats, including by maintaining levels of free T3 (fT3)
and T4 (fT4) in the serum [203]. The heavy metal nickel chloride was another toxic pollutant
that induced ROS accumulation [204]. The effects of selenium on nickel chloride induced
hepatic lipid peroxidation were first investigated in 1998 [205]. Recent reports indicated
that selenium was protective against nickel chloride-induced reductions in plasma T3 and
T4, and increased in TSH in pregnant rats [206]. It is important to note that some of these
studies made use of selenium nanoparticles, which are composed of selenium particles
bound to various active compounds to improve their effectiveness [207]. Such compounds
allow for efficient delivery of selenium to cells while avoiding the risk of toxicity involved
with supplementing with other forms of selenium [208]. Selenium nanoparticles gained
attention for their cytoprotective effects in neurons and astrocytes [209], and in their ability
to cross the BBB [210].

Several studies were recently published reporting on selenium status and hormone
levels in pregnancy. Contrasting evidence on the association between serum selenium
status and circulating levels of T3 were reported, with some finding low serum selenium
to be associated with reduced fT3 [191], and others finding low serum selenium to be
associated with increased fT3 [211]. The association of low serum selenium with high
fT3 was also found to correlate with high total T3. However, a lack of association was
observed regarding T4 levels, suggesting this relationship was not mediated by thyroidal
hormone production. Rather, the inverse association between plasma selenium levels and
the total/free T3 ratio may have been communicated via levels of DIO3, the selenoprotein
responsible for inactivating T3. Low serum selenium was also associated with an increased
incidence of gestational diabetes mellitus [191]. A non-linear association was also found
between third-trimester maternal selenium status and TSH levels, with a significant inverse
relationship found at maternal serum selenium levels below 103.7 ug/L, but no significant
relationship above that threshold [212].

Several associations have been established between an individual’s selenium status
and HPT hormone levels. A recent study, following 22 Japanese patients at risk for selenium
deficiency, found that inadequate selenium status was associated with abnormal thyroid
hormone levels, where TSH, fT4, and fT4/fT3 ratio were low, and fT3 was high [213]. Inter-
estingly, a recent animal study found that when mice were placed on a low selenium diet
(0.02 mg/kg), selenium levels in the thyroid gland were maintained, but reduced selenopro-
tein expression was observed in the liver and kidneys, targets of thyroid hormones [214].
While selenium supplementation was reported to induce no significant therapeutic effect
on patients with subclinical hypothyroidism [215], co-treatment of selenium was found
to enhance the efficacy of levothyroxine sodium (LT4) in treating chronic lymphocytic
thyroiditis patients with hypothyroidism, yielding greater improvements to inflammatory
factors, compared to treatment with LT4 alone [216]. Selenium supplementation was also
found to increase the efficacy of antithyroid drugs in the treatment of Graves’ disease [217].

In a rat model of experimental autoimmune thyroiditis, selenium yeast was found
to partially attenuate immune imbalances, including preventing fluctuations in serum
TSH [218]. Additionally, in a recent study following males with chronic autoimmune
thyroiditis suffering from infertility, selenium supplementation was effective at improving
sperm parameters [219]. Collectively, these findings highlight the breadth of research
currently being conducted on selenium and the HPT axis. While most studies addressed
the impact of selenium on thyroid hormone secretion and metabolism, there was also a
reported effect on the TRH receptor.
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4.2. Hypothalamic–Pituitary–Adrenal Axis

The hypothalamic–pituitary–adrenal (HPA) axis comprises the endocrine component
of the “fight or flight” stress response [220,221]. In response to stressful stimuli, the
hypothalamus releases corticotropin-releasing hormone (CRH), which induces the secretion
of adrenocorticotropic hormone (ACTH) from the anterior pituitary. ACTH then acts upon
the adrenal gland to cause the release of corticosteroids, including the glucocorticoid
(GC) class of stress hormones. The GC receptor (GCR) is present in nearly every tissue
in the body. Thus, the effects of GC action are wholistic, but are commonly known to
include gluconeogenesis, arousal, and immunity [222–224]. Due to their anti-inflammatory
properties, GCs are widely prescribed for various conditions and diseases [225]. Selenium
seems to play a strong role in protecting against the damage and dysfunction caused
by overactivation of the HPA axis. This relationship has been studied in the brain more
intensively in recent years, using rodent models, and progress in the field was recently
reviewed by our group [226]. In sum, treatment with selenium, mostly in the form of
selenium-containing compounds, was shown to have a therapeutic effect against stress-
induced neurological impairments and oxidative damage in rodent models.

Over the past couple of years, three additional studies were published demonstrating
the promising capabilities of seleno-compounds. The first, by Muller et al., reported
that m-trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] exerted antidepressant-like
effects in a mouse model of lifestyle-induced depression [227]. This model relied on a
combination of a calorically dense diet and ethanol consumption to induce a depressive-
like phenotype in mice. This phenotype was associated with an increase in opioid receptor
levels and a decrease in GCR levels in the cerebral cortex [227]. These molecular changes,
as well as the associated depressive-like behavioral phenotype, were abolished by (m-
CF3-PhSe)2 treatment [227]. Treatment also lowered levels of the oxidative marker MDA,
while upregulating the antioxidant enzyme superoxide dismutase (SOD) in the cerebral
cortex. In addition to its pharmacological effects and ability to support SOD expression,
previous work from the same group confirmed that (m-CF3-PhSe)2 had its own endogenous
antioxidant activity [228].

Another compound, 7-chloro-4-(phenylsenyl) quinoline (4-PSQ), was also recently
shown by de Oliveira and colleagues to be effective in attenuating depressive-like pheno-
types in mice following acute restraint stress (ARS) [229]. Among other mechanisms, the
researchers reported that direct attenuation of the HPA axis activation may be involved in
this finding, as 4-PSQ treatment prior to ARS maintained circulating corticosterone (CORT),
the main active GC in mice, at levels similar to those of the unstressed controls [229]. This
suggested that prophylactic administration of 4-PSQ might have the capacity to prevent
hyperactivation of the HPA axis, keeping CORT levels near baseline. Indeed, similar results
from previous studies suggested that selenium had a “normalizing” effect on the HPA axis
under stressful conditions and prevented the elevation of circulating GC levels usually
caused by stress. This effect was typically accompanied by a normalization of ACTH levels
as well, suggesting that selenium regulated the HPA axis at the level of the hypothalamus
or pituitary gland. One common theme noted in various papers that reported an HPA axis
normalization effect was that selenium-based therapy reversed the GCR downregulation
typically caused in the brain by chronic stress [226]. Brain-residing GCR provided the nega-
tive feedback loop that prevented hyperactivity of the HPA axis. and its downregulation
contributed to the dysfunction of the axis [230]. The restoration of GCR expression on the
part of selenium was observed in the prefrontal cortex and the hippocampus, but it remains
to be tested on GCR in the hypothalamus, which is the most influential site in terms of
maintaining the negative feedback loop.

The third recent study utilized the organoselenium compound, 3-[(4-chlorophenyl)
selanyl]-1-methyl-1H-indole (CMI), which was previously reported to ameliorate depressive-
like symptoms in mice following ARS [231,232]. To investigate the functions of CMI further,
Casaril et al. used a mouse model in which chronic intragastric (i.g.) CORT administration
caused mice to develop anhedonic- and anxiogenic-like symptoms [233]. This model of
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stress mimicked long-term hyperactivation of the HPA axis, which had been shown to
illicit depressive-like phenotypes paralleled in humans [234]. In the study by Casaril et al.,
a single i.g. dose of CMI following two weeks of CORT ingestion alleviated the behavioral
deficits and reduced ROS and lipid peroxidation, while normalizing the expression of Gcr,
brain-derived neurotrophic factor (Bdnf ), synaptophysin (Syp) and Nrf2 in the hippocam-
pus [233]. Furthermore, this therapeutic effect was abolished following co-administration of
PI3K and/or mTOR inhibitors (LY294002 and rapamycin) via intracerebroventricular (i.c.v.)
injection. This suggested that the mechanism of action of CMI on stress-induced depressive-
like phenotypes might rely partly on PI3K/mTOR signaling pathways within the brain.
The authors proposed that CMI upregulated Bdnf in order to activate the PI3K/mTOR
pathway and, subsequently, upregulated Syp, which was reduced by CORT administration
alone. Thus, a restoration of synaptogenesis could play a central role in the fast-acting
ability of CMI to reverse the effects of chronic CORT.

Similar to previous studies using organoselenium agents, CMI treatment reduced
plasma CORT back to the level of controls. Plasma CORT was not measured in the experi-
ments with LY294002 and rapamycin, however, so it is still unclear whether the PI3K/mTOR
pathway is involved in a stabilization of the HPA axis by CMI. Interestingly, the PPAR-γ
agonist rosiglitazone was shown to reverse the HPA axis over-activation present in diabetic
rats by upregulating PI3K [235]. Moreover, the hypothalamus is an active center of adult
neurogenesis and synaptogenesis [236]. Could these processes be involved in normalizing
the HPA axis in a way that is facilitated by selenium? As mentioned in the section on
selenium and hypothalamic function, a role for SELENOP and selenium in hippocampal
neurogenesis was recently uncovered [93].

Several studies have also been published on the effects of selenium on GCs in fish. Like
in mammals, GCs are a major stress hormone in fish and are secreted by the hypothalamic–
pituitary–inter-renal (HPI) axis, analogous to the HPA axis in mammals [237,238]. One
study found that treatment of iridescent sharks (Pangasianodon hypothalamus) with selenium
nanoparticles effectively protected against raised cortisol levels following arsenic and
heat stress [239]. A contrasting result was found in gilthead seabream (Sparusaurata),
where long-term supplementation with hydroxy-selenomethionine (OH-SeMet) resulted
in elevated plasma cortisol levels following a crowding stress test [240]. Basal cortisol
levels were unaffected by supplementation, suggesting that OH–SeMet supplementation
may have sensitized the HPI stress response. Another study in white sturgeon (Acipenser
transmontanus) found that exposure to environmental SeMet decreased tissue sensitivity to
glucocorticoids, as inferred by a lower abundance of GCRs [241].

In vitro studies from Miller et al., on the effects of selenite and SeMet on adrenocortical
cell lines isolated from rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fonti-
nalis), with a relevant focus on ACTH-stimulated cortisol secretion, were conducted [242].
Researchers found that cortisol secretion in these cell lines was impaired by selenite but not
by SeMet. Their findings suggested that this impairment was caused by a disruption of the
cortisol biosynthetic pathway, leading the investigators to attempt to restore cortisol synthe-
sis by introducing precursors and signaling molecules in a step-wise manner to isolate the
disrupted step. In brook trout cells, cortisol secretion was restored by pregnenolone, sug-
gesting that selenite impaired cortisol secretion in this cell line by disrupting pregnanolone
synthesis. Pregnenolone is synthesized from cholesterol [243], and not only does selenium
have a documented hypocholesterolemic effect, but the SELENOP receptor in the brain,
LRP8, is heavily involved in cholesterol homeostasis, pointing towards a potential avenue
for further investigation [244,245]. In the same study by Miller et al. on rainbow trout cells,
cortisol secretion was restored by N6,2′-o-dibutyryladenosine 3′,5′-cyclic monophosphate
(dbcAMP) [242]. This suggested that selenite might disrupt cortisol secretion in this cell
line early on in the pathway by interfering with the binding of ACTH to melanocortin
2 receptors, resulting in disrupted cAMP production via adenylyl cyclase.

Additional insight on the potential role of selenium action in the adrenal gland is pro-
vided by a study on pigs that found that selenium deficiency reduced antioxidant capacity
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and induced oxidative stress in adrenal tissue, with evidence that this effect was mediated
by the toll-like receptor 4 (TLR4)/NF-kB pathway [246]. Specifically, investigators found
that Se deficiency was associated with reductions in miR-30d-R_1, a microRNA (miRNA)
that negatively regulates TLR4 expression, suggesting that the observed inflammation
might have been caused by dysregulation of the TLR4/NF-kB pathway [247]. Interestingly,
TLR4 over-expression in human adrenocortical cells inhibited cortisol and aldosterone
production [248]. Selenium may, therefore, support the HPA axis by facilitating a mecha-
nism of miRNA downregulation of TLR4 to promote adrenal steroidogenesis. Yet another
study on mice. by Chanoine et al., revealed that selenium deficiency blunted the adrenal
response to ACTH, resulting in decreased CORT secretion [249]. The authors also observed
an increase in adrenal isoprostane F2α, which was indicative of oxidative stress, and a
decrease in adrenal gland GPX activity, which might have contributed to the blunting of
the ACTH response.

Yet another interesting relationship between selenium and the stress response is the
role that selenoproteins play in the development of the HPA axis. Activation of the Selenot
gene was seen during neuroendocrine cell differentiation in the adrenal medulla [250].
After the binding of pituitary adenylate cyclase-activating peptide (PACAP) to its receptor,
this triggered the pathways involved in neurogenesis and Selenot transcription using the
NRF-1 transcription factor and PPAR-γ coactivator 1α (PGC-1α). This led to production of
SELENOT to combat oxidative stress during cell differentiation that would otherwise hinder
the development of the neuroendocrine system [250]. Conversely, GCs were shown to have
an ability to alter selenoprotein expression in various tissues, including the hypothalamus.
Gene expression of both Selenop and Selenos were affected by GCs in human embryonic
kidney (HEK-293) cells and differentiated human adipocyte-like cells, respectively [251,252].
Using a model of GC-induced metabolic impairment, in which mice were administered
CORT via drinking water for 4 weeks, Wray et al. discovered an effect on several genes in
the hypothalamus [253]. RNA-seq analysis of ARC samples from obese CORT-administered
mice revealed a downregulation of Scly, and an upregulation of both Selenop and Dio2.
Targeted deletion of Dio2 in the mediobasal hypothalamus did not prevent the metabolic
effects of CORT, which included over-eating, excess weight gain, and glucose intolerance.
The effects on Scly may warrant further investigation, however, as the metabolic deficits
induced by chronic GC consumption bear similarities to the impairments observed in mice
with constitutive Scly KO [27,142].

Clinical research provides further hints at interactions between selenium and GCs in
humans. A study by Marano et al. found that serum selenium levels increased in patients
treated with CORT [254]. These results suggested that selenium might be retained in the
body, or, perhaps, become more mobilized, in response to long-term HPA axis activation.
In another clinical study, supplementation with selenium increased adrenocortical function
in patients taking GCs for treatment of various diseases [255]. These findings implied
the possibility that the optimal amount of selenium intake may be higher for patients
undergoing long-term GC therapy, or for individuals experiencing chronic stress. Although
this is purely hypothetical, continued investigation of both animal models and humans
could elucidate whether dietary selenium requirements might change during conditions of
HPA axis dysfunction.

4.3. Hypothalamic–Pituitary–Gonadal Axis

The endocrine target tissues of the hypothalamic–pituitary–gonadal (HPG) axis are
the gonads; the testes in males and ovaries in females. The biochemical cascade is initiated
by hypothalamic release of gonadotropin-releasing hormone (GnRH) which stimulates
the secretion of gonadotropins, namely, luteinizing hormone (LH) and follicle-stimulating
hormone (FSH), from pituitary gonadotrophs, which then go on to trigger the release of sex
hormones from the gonads [256]. Testosterone is the main hormone released by the testes,
which are also capable of secreting activin, inhibin, and insulin-like-growth factor 3 (IGF-3),
as well as anti-Müllerian hormone and estradiol, albeit to a lesser extent compared to the



Int. J. Mol. Sci. 2022, 23, 15445 17 of 38

ovaries. Estrogens, progesterone, and inhibin are released by the ovaries, as well as small
amounts of testosterone [256]. These hormones are able to act on the hypothalamus to
inhibit the release of GnRH [256,257], completing the negative feedback loop. The HPG axis
is largely involved in regulating reproduction and development, but also affects immunity,
neurological function, and cardiovascular health, and helps shape the sexual dimorphism
of the brain [258–262].

There are currently no reported data describing a direct effect of selenium on GnRH;
however, there is potentially an interaction with LH. Selenium administration was shown,
by Kheradmand et al., to reverse the ability of the synthetic glucocorticoid dexamethasone
to lower serum LH levels [263]. Although this could result from selenium antagonizing
the cellular effects of dexamethasone by reducing ROS, selenium treatment alone caused
an upward trend in serum LH suggesting the possibility that selenium may promote LH
production or release its own. In support of this hypothesis, other researchers proposed
that selenium can upregulate GnRH receptor (GnRHR) activity in the anterior pituitary to
increase LH synthesis [264].

Most of the available evidence on the potential for selenium to support the HPG axis
exists on the level of sex hormone production. While inverse correlations were found be-
tween plasma selenium and testosterone levels in cohorts of male endurance runners [265]
and women with polycystic ovary syndrome (PCOS) [266], randomized control studies
reported no significant effects of selenium supplementation on testosterone levels [267,268].
A study utilizing rats, however, found that selenium depletion lowered testosterone lev-
els while decreasing testicular mass and adversely affecting testicular morphology [269].
Although the mass of the testes of the first generation of selenium-deficient rats was not
significantly changed, each successive generation showed increasingly worsening symp-
toms. Interestingly, the administration of either GnRH or LH induced a smaller amount
of testosterone secretion in selenium deficient rats, implying that testosterone production
might be impaired or, perhaps, there is a disruption of the receptors or signaling pathways
for GnRH and LH, and the testicular phenotype cannot be explained solely by a decrease
in GnRH or LH secretion. Indeed, selenium was shown to support testosterone synthesis
by activating the extracellular signal-regulated kinase (ERK) signaling pathway in sheep
Leydig cells [270].

The importance of selenium to male fertility is well-documented and is largely due
to the role of selenoproteins in antioxidant defense, and the vulnerability of the testes,
and subsequently, sperm fertility, to oxidative insult [271]. In fact, the testes require a
large amount of selenium and are in competition with other organs when selenium supply
is low [272]. However, the benefits of selenium supplementation on fertility may vary
depending on baseline selenium status. A study following a cohort of Iranian men pre-
senting with infertility, due to oligospermia, asthenospermia, or teratospermia, found that
selenium supplementation (200 ug/day) improved sperm characteristics and modulated
serum hormone levels [273]. Specifically, selenium supplementation increased total sperm
count, sperm concentration, sperm motility, ejaculate volume, and strict morphology in
this cohort [273]. Contrastingly, a study following a cohort of North American men with
no known fertility issues reported no change to sperm quality following 300 ug/day of
selenium supplementation [274].

Animal studies have revealed the numerous ways selenium supports reproduction
through male fertility. Perhaps most notably, an enzymatically inert GPX4 isoform acts
as a structural component of spermatozoa and is indispensable for sperm motility [275].
Additionally, selenium plays a largely protective role through redox regulation and has
been shown to attenuate reproductive impairment in males of various species following
exposure to many different injurious compounds, including DEHP [276], di-n-butyl ph-
thalate (DBP) [277], diclofenac [278], lead [279], ciprofloxacin [280], mercury [281], and
dexamethasone [263]. In the cases of DEHP, DBP, diclofenac, and lead exposure in rats,
selenium similarly mitigated testicular injury by maintaining testosterone, LH, and FSH lev-
els. Selenium treatment also protected expression of IGF-3 following DBP exposure [277],
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and lowered blood and testicular lead levels following lead exposure [279]. In laying
hens, selenium attenuated the effects of mercury exposure by elevating LH, FSH, proges-
terone, and estradiol levels closer to those of controls [281]. Ciprofloxacin treatment is
associated with elevated ROS levels [282], which can induce reproductive dysfunction
in males [280,282]. These deleterious effects include reductions in serum hormone lev-
els, poor sperm quality, testicular impairment, depletion of GSH, inhibition of catalase,
SOD, glutathione-S-transferase, and GPX, as well as elevation in nitric oxide levels and
myeloperoxidase activity; all of which were observed to be ameliorated by selenium co-
treatment [280]. Selenium treatment was also shown to protect against the deleterious
effects of dexamethasone on male fertility and sperm parameters in mice [263]. Specifically,
selenium treatment was associated with elevated expression of Catsper-1 and Catsper-2,
genes involved in sperm motility [263]. This might implicate transcriptional regulation as
part of the protective mechanism of selenium.

In a study on ungulates, ewes and goats with estrogen-dominant reproductive dis-
orders were found to have high serum selenium, while levels were low in those with
progesterone-dominant reproductive disorders or ovarian inactivity [283]. Selenium sup-
plementation was also found to affect progesterone levels of cows and sheep across differ-
ent phases of estrus [284,285] and gestation [286,287]. Further investigation into relevant
mRNA transcript levels in the corpus luteum uncovered no change in transcripts involved
in progesterone synthesis, but yielded an increase in transcripts (Ldlr and Hsl) involved in
the regulation of cholesterol availability [288]. This might suggest that selenium-induced
effects on progesterone production in the corpus luteum are consequences of changes
in cholesterol availability, rather than directly influencing progesterone synthesis. One
interesting clue lies in the fact that LRP8, the receptor that binds SELENOP for selenium
delivery, also plays an important role in cholesterol homeostasis [245,289].

Exposure to selenium containing compounds was also shown to affect the HPG axes
of fish. In female zebrafish, exposure to environmentally relevant levels of selenium, in
the form of sodium selenite, resulted in transcriptional downregulation of the genes for
the receptors for LH, lhr, and upregulation of the FSH receptor, fshr, in the ovaries, pre-
sumably affecting gonadal responsiveness to the pituitary gonadotropins [290]. In female
rainbow trout, selenium exposure, in the form of dietary SeMet, stimulated vitellogenesis
and increased levels of sex steroid hormones, as well as steroidogenic proteins and their
transcripts [291]. Specifically, SeMet exposure resulted in higher levels of androstene-
dione, estrone, estradiol, and testosterone. Implicated steroidogenic protein transcripts
included pbr, P45scc, and 3β-hsd [291]. Therefore, SeMet, which is a highly abundant form
of selenium in foods, may promote vitellogenesis via direct stimulation of ovarian tissue
steroidogenesis [292].

The SECISBP2 protein is integral to the incorporation of selenocysteine residues into se-
lenoproteins [293]. In an in vitro study using a human trophoblast cell line, knocking down
SECISBP2 impaired the proliferative, migratory, and invasive abilities of the cells [294].
The cells also showed a reduction in β-HCG at both transcript and protein levels, as well
as inhibited progesterone production [294]. PI3K/Akt and ERK signaling pathways were
implicated via an associated downregulation in transcript levels [294]. In another in vitro
study utilizing a buffalo oocyte cell line, cells treated with selenium had a significantly
faster rate of nuclear maturation, and decreased germinal vesicle stage [295]. While se-
lenium treatment was not associated with differences in cell development at any other
meiotic stage, several genes involved in oocyte gene expression were affected. Differential
expression was noted in the downregulation of Casp3 and Amh, and the upregulation of
Gpx4 and Sod [295]. Selenium treatment of buffalo oocytes was also associated with a reduc-
tion in Pla2g3 transcript levels [295], a phospholipase involved in lipid metabolism [296]. A
study conducted on primary luteinized granulosa cells cultured from the ovarian follicles
of goats found that selenium treatment stimulated cell proliferation and increased markers
related to estradiol production (3β-HSD, p-Akt, cAMP, and steroidogenic acute regulatory
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protein) [297]. Thus, selenium may primarily regulate the HPG axis by controlling sex
hormone production through its influences on redox balance and lipid metabolism.

4.4. Hypothalamic–Pituitary–Prolactin Axis

The hypothalamic–pituitaryprolactin/mammary (HPP) axis regulates the release of
prolactin from the anterior pituitary, after which the pleiotropic hormone acts widely
throughout the body to stimulate a range of effects, including lactation [298]. Unlike other
hypothalamic–pituitary axes, the HPP axis does not have a target endocrine tissue to
provide negative feedback regulation of its release. Hypothalamic inhibition of prolactin
release is instead regulated by dopamine, a catecholamine neurotransmitter, the release
of which is stimulated by prolactin [298]. Due to its involvement in reproduction, studies
conducted during estrus, gestation, or parturition typically report on prolactin, alongside
other reproductive hormones, such as LH, FSH, and estradiol.

Selenium supplementation was shown to attenuate the reduction in reproductive
hormones, including prolactin, associated with gestational lead exposure [299] and dia-
betes [300] in rats. Similarly, in beef steers, selenium supplementation, and specifically
with organic, or a 1:1 mix of organic and inorganic, selenium, was shown to mitigate the
decrease in serum prolactin that is characteristic of fescue toxicosis [301,302]. The authors
suggested that this effect might involve dopamine regulation, as a reduction in dopamine
type two receptor (D2r) mRNA was detected [302]. Additionally, while prolactin mRNA
levels were higher in the pituitary cells of organic and mixed selenium treated steers, no
change was detected in the abundance of pituitary transcription factor, Pit-1 [302]. Since
PIT-1 is responsible for stimulating expression of prolactin mRNA [303], a lack of change in
regulatory protein abundance might suggest the involvement of epigenetic mechanisms in
increasing prolactin expression. It is worth noting that selenium deficiency was shown to in-
crease dopamine turnover in various brain regions and, thus, could affect the dopaminergic
pathways responsible for regulating prolactin release [304–307].

While the molecular mechanisms of selenophosphate synthetase 1 (SEPHS1) have yet
to be determined, it is thought to be involved in selenium metabolism and
recycling [59,308,309] and is known to be vital for cell survival and proliferation [310].
Studies on Sephs1 KO mice suggested an influence on prolactin dynamics. Although
SEPHS2 is a selenoprotein, SEPHS1 does not contain a Sec residue in eukaryotes; how-
ever, it is nonetheless involved in redox homeostasis [311]. Knocking out Sephs1 in mice
was embryonically lethal by E9.5, due, in part, to heavily impaired organogenesis [310].
Transcriptomic analysis of Sephs1 KO embryos saw upregulation of the genes involved in
prolactin and IGF signaling pathways [310], suggesting that impaired selenium metabolism
during development might disrupt prolactin signaling in ways that impair organogene-
sis. This result also implicated the hypothalamic–pituitary–somatotropic axis, which is
discussed in the next section.

Selenium supply was demonstrated to affect hormonal profiles of female animals
across various species. In rats, selenium supplementation increased plasma LH, FSH, estra-
diol, and progesterone in female adults during estrus [312]. Selenium supplementation
was also found to affect systemic progesterone and prolactin in beef cows; increasing pro-
gesterone throughout gestation, as well as the early luteal phase of estrus, and decreasing
prolactin in late lactation [285]. The maternal hormone profiles of ewes were suscepti-
ble to alterations in selenium supply during parturition, but not gestation [313]. In this
study [313], ewes supplemented with high selenium (77 µg/kg body weight) had greater
concentrations of estradiol-17β during parturition, compared to those receiving adequate
selenium (11.5 µg/kg BW). It is not clear from these studies whether selenium exerts these
effects by acting upon the HPP, as pituitary-derived prolactin can be stimulated by signals
from other areas of the body, and prolactin can also be produced in other tissues, such as
the placenta during pregnancy, but the correlations discussed here are a potential starting
point for future studies involving selenium [314,315].
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4.5. Hypothalamic–Pituitary–Somatotropic Axis

The hypothalamic–pituitary–somatotropic (HPS) axis involves the release of soma-
tocrinin and somatostatin to either stimulate or inhibit, respectively, the release of growth
hormone (GH) from the pituitary gland. There is some evidence that selenium can impact
GH and IGF-1 signaling pathways in certain species of fowl and fish. The results are
somewhat contradictory, however. In chickens, dietary selenium supplementation was
found to upregulate growth-related genes, including genes for growth hormone recep-
tor (Ghr) and Igf-1) [316]. In ducks, supplementation was associated with a reduction of
serum IGF-1 [317]. In both studies, supplementation resulted in increased body weight
gain [316,317]. Selenium containing compounds were found to have similar effects in fish,
either increasing [318,319], or decreasing [320] Ghr and Igf-1 transcript levels, depending
on the species. While selenium supplementation was found to increase growth in some
species of fish [318], it also impaired growth in others [319]. Notably, in rainbow trout,
dietary selenium was associated with impaired growth, as well as an upregulation of genes
involved in the GHR and IGF-1 signaling pathways [319]. This suggested a compensatory
nature to these molecular changes, perhaps as a response to growth impairment.

Limited associations have been found between serum selenium and IGF-1 in humans.
In a population of Italian participants aged 65 years or older, serum selenium and IGF-1
levels were found to be positively associated [321]. This association was also found in a
study following North American women between the ages of 18 and 22 [322]. A review of
the literature did yield any publications on the relationship between selenium status and
GH protein or transcript levels in humans.

4.6. Oxytocin and Vasopressin

The hypothalamus synthesizes oxytocin and vasopressin, neurohormones that are
heavily involved in the circuitry of social behavior [323]. Both are released from neu-
rosecretory cells of the hypothalamus into the bloodstream via the capillary beds of the
posterior pituitary gland. The most widely recognized functions of oxytocin are its effects
on reproduction and social bonding, but it can also act as an anti-inflammatory, affect-
ing the immune system [324]. Vasopressin is vital to regulating blood volume and salt
concentrations in the body, by acting as an anti-diuretic [325].

While limited research has been conducted on the influence of selenium on oxytocin
and vasopressin synthesis and signaling, there is some evidence of a relationship. In a recent
case study, selenium deficiency was reported to have caused weak uterine contractions in
a parturient mare [326]. Uterine contractions were typically stimulated by oxytocin [327];
however, in this case, oxytocin treatment failed to illicit a uterine response in the selenium
deficient mare [326]. This might suggest that selenium is essential to oxytocin signaling
downstream of oxytocin binding its receptor or, perhaps, to the expression or functionality
of the oxytocin receptor itself. These possibilities are purely hypothetical, however, and the
effects of selenium on oxytocin remain largely uncharacterized.

Long-term treatment of synthetic vasopressin has been associated with a significant
decrease in renal clearance of selenium in ewes [328]. Following one week of vasopressin
treatment, ewes showed a decrease in urinary output and no change to glomerular filtration
rate or selenium concentration in urine, thereby indicating selenium retention. The authors
of this report suggested that this reduction in renal clearance might be due to an increase in
selenium solvent drag, caused by vasopressin treatment. They concluded that vasopressin
(via renal function) might play a role in selenium maintenance in sheep. A study on
the renal function of selenium-deficient mice reported no changes in the expression of
vasopressin receptor in the kidneys, but no other aspects of vasopressin physiology were
probed [329].

5. Signals from Body to Brain

The third aspect of homeostatic communication discussed in this review is the gen-
eration of signals in peripheral tissues that transmit information to the brain by acting
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on the hypothalamus. Much of the current knowledge of the role of selenium involves
the production and secretion of hormones. Many past studies with selenium have fo-
cused on the intracellular signaling and physiological output in tissues targeted by these
hormones, including the hypothalamus, and evidence of an effect on their production
and release is limited. Still, there is potential for redox balance to impact the secretion of
these hormones, leading to insufficient communication about homeostatic conditions to
the hypothalamus [330–333]. This review mainly focuses on the hormones and nutrients
that are relevant to energy homeostasis.

Insulin is the most heavily investigated homeostatic signal produced in the periph-
ery in relation to selenium biology. Produced by β-cells in the pancreas, insulin is se-
creted during food consumption and provides an anorexigenic signal to the hypothala-
mus to suppress feeding and promote lipogenesis and the uptake of glucose by mus-
cle. There are strong associations between selenium status, selenoprotein action, and
type 2 diabetes (T2D), which have been thoroughly described in several recent review
articles [24,43,190,334,335]. The nature of these interactions is complicated, as both low and
high levels of selenium have been correlated with heightened T2D risk, and some results
have shown a strong sexual dimorphism. Most of what is known about the relationship
between selenium and insulin pertains to the development of systemic insulin resistance.

There is some evidence, however, that selenium can also affect insulin secretion
through its influence on pancreatic physiology. For example, the synthesis and secretion of
insulin by pancreatic β-cells requires constant disulfide bond formation and is, therefore,
vulnerable to fluctuations in redox status [336]. Pancreatic β-cells also have high levels of
SELENOP expression, which decreases under high glucose conditions and is upregulated
by the β-cell toxin streptozotocin (STZ) [337]. It was proposed by one research group
that SELENOP, acting as a hepatokine, could promote vulnerability to insulin resistance
through a mechanism involving reductive stress [31,43,338]. In a study by Mita el al., excess
SELENOP administration in mice decreased insulin levels in the pancreas and reduced
the insulin response to glucose challenge, while causing a structural disarrangement of
cells within pancreatic islets [339]. One potential underlying mechanism proposed by the
authors for the abnormal islet morphology observed is a trans-differentiation of β-cells
to α-cells. Conversely, treatment with a SELENOP-neutralizing antibody improved the
metabolic phenotype of T2D model mice by upregulating insulin secretion. In a separate
study from the same group, however, SELENOP was found to be essential to the health of
MIN6 murine pancreatic cells through the prevention of ferroptotic cell death [164].

A study from Ueno et al. found that, although treatment with SeMet improved
systemic glucose tolerance and alleviated oxidative stress in pancreatic islets of STZ-injected
diabetes model mice, there was no observed effect on insulin storage and secretion [340]. It
is important to note that the mice in this study were fed a selenium deficient diet and SeMet
was orally administered only after the injection of STZ and, therefore, may not have had
enough time to be properly metabolized and utilized by the pancreas. Nevertheless, the
collective findings described here provide a strong argument for a direct effect of selenium
on the ability of the pancreas to effectively use insulin to communicate with the brain.

The WAT-derived hormone leptin is a major regulator of energy balance that acts on
neurons in the hypothalamus to suppress feeding behavior [5]. It was also discovered to
be a thermokine that regulates sympathetic innervation of BAT thermogenesis and WAT
lipolysis, through a hypothalamic circuit involving AGRP and POMC neurons [140]. The
development of central leptin resistance is a hallmark symptom and agitator of obesity [341].
The most direct evidence of an ability of selenium to regulate leptin production involves
PPAR-γ. Chemical agonism of PPAR-γ reduced leptin promoter activity and leptin pro-
duction in mature cultured adipocytes and in in vivo diet-induced obese rats by inhibiting
the CEBPα transcription factor [342–345]. Multiple groups reported that selenium supple-
mentation upregulated PPAR-γ, while others put forth contrasting evidence that selenium
repressed PPAR-γ [346–348]. These studies on the interactions between selenium and PPAR-
γ utilized different tissue types, however, and none involved adipocytes. The only study
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done on adipocytes reported that sodium selenate application suppressed C3H10T1/2 cell
differentiation into adipocytes by inhibiting Ppar-γ and leptin gene expression [349]. These
results were recapitulated in 3T3-L1 preadipocytes, including the decrease in leptin gene
expression caused by selenate, and an upregulation of SELENOS leading to reduced ER
stress was pinpointed as the underlying mechanism [350].

There are several possible connections through which selenium could regulate leptin
production through its influence on adipose tissue physiology [351]. Insulin stimulates lep-
tin synthesis by promoting the eukaryotic initiation factor 4E (eIF-4E)-mediated translation
of leptin mRNA [352]. Selenium could support this pathway by protecting against oxida-
tive stress or through its insulin-like capabilities [353–355]. Another interesting connection
lies in the finding that the statin medication atorvastatin inhibits leptin expression in cul-
tured human smooth muscle cells through a mechanism involving ROS generation [356].
Moreover, the process of leptin synthesis itself was shown to produce ROS in rat portal
vein organ cultures [357]. These correlations between altered redox states and changes
in the regulation of leptin synthesis remain to be tested for an interaction with selenium
and selenoproteins.

Beyond the research conducted on insulin and leptin, there are some reports demon-
strating an influence of selenium on other homeostatic hormones. The adipose tissue
hormone adiponectin, unlike leptin, correlates inversely with obesity and its secretion is
stimulated by fat loss [358,359]. Adiponectin acts to improve insulin sensitivity by upregu-
lating glucose and lipid metabolism and its function is, therefore, tied to T2D and other
diseases affected by insulin sensitivity. When WAT deposits shrink, adiponectin inhibits
lipolysis and constitutive KO of adiponectin allows for excessive lipolysis [360]. By binding
its receptor in the hypothalamus, adiponectin is able to promote feeding behavior, as well
as suppress GnRH secretion [361]. Studies in humans revealed that selenium supplemen-
tation (200 µg daily for 6 weeks) downregulated adiponectin receptor 1 (Adipor1) gene
expression [362]. This change in mRNA levels was measured in white blood cells, however,
and it remains to be seen whether that same regulation occurs within white adipocytes,
which would indicate a potential pro-lipolytic mechanism. Interestingly, the insertion
of a selenium atom into synthetic adenosine mimetics increased adiponectin secretion
during lipogenesis in human mesenchymal stem cells, by improving the binding affinity
for PPAR-γ [363]. Although this does not demonstrate an effect of naturally processed
dietary selenium or selenoprotein action per se, the previously demonstrated ability of
selenium to activate PPAR-γ in other tissues suggests that a similar mechanism in WAT
cells could affect adiponectin secretion.

Animal studies provide further insight on the interactions between selenium and
adiponectin. Two weeks of supplementation with sodium selenite in Otsuka Long-Evans
Tokushima Fatty (OLETF) rats with spontaneous obesity decreased adipocyte size and
adiponectin production, providing further evidence that selenium may directly inhibit
adipocyte hypertrophy [364]. Supplementing STZ-induced diabetic mice with SeMet
reduced adiponectin levels in adipocytes to improve glucose homeostasis, without affecting
pancreatic insulin storage or secretion [340]. Yet another recent study on HFD-induced
obese rats noted that sodium selenate delivered via drinking water upregulated adiponectin
gene expression in epididymal fat [365]. Experiments with isolated adipocytes should be
useful in determining whether these effects of selenium on adiponectin are the result of
direct regulatory mechanisms within adipose tissue or are merely by-products of changes
in whole-body energy homeostasis.

The orexigenic hormone ghrelin is produced by the gut during the “hunger” state
to promote feeding [366]. Interestingly, ghrelin appears to have antioxidant and anti-
inflammatory effects in various tissues, including in neurons [367,368]. To date, there is no
report of a direct interaction with selenium and either ghrelin production or secretion. The
addition of the antioxidant compounds resveratrol and curcumin to mouse gastric mucosal
cell primary cultures, however, stimulated ghrelin secretion and blocked the inhibitory
effect of glucose on ghrelin secretion [369]. Additionally, the inclusion of different NRF2
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activators increased ghrelin secretion. Might the antioxidant activity of selenoproteins
support ghrelin secretion through NRF2-mediated mechanisms?

There are many correlations between selenium status and the release of homeostatic
signals from peripheral tissues seen in animal and clinical studies. Further mechanistic
studies are necessary, however, to determine whether these correlations are the result
of direct interactions or are adaptations to overall changes in metabolic composition.
Direct effects seem likely, as there are already well-characterized influences of selenium
on the physiology of adipose tissue, the pancreas, and the gut [338,351,370]. Moreover,
the synthesis and secretion of these hormones appear to be susceptible to redox-mediated
changes. This specific intersection between selenium and energy homeostasis is surprisingly
under-investigated, but future work will shed light on the contributions of selenium to the
ability of the body to generate homeostatic signals to the brain. The current knowledge on
this subject is depicted in Figure 3.
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hypothalamus. Although some studies report an insulin-like capability of selenium, the most direct
evidence of an influence on pancreatic insulin (INS) secretion is the reported antagonism of insulin
synthesis by the hepatokine selenoprotein P (SELENOP). In contrast, selenium plays a supportive
role in the production and secretion of the hunger-suppressing adipokine leptin (LEP). Adiponectin,
another adipose tissue-derived hormone, seems to be supported by selenium through a mechanism
involving peroxisome proliferator-activated receptor-γ (PPAR-γ). Finally, selenium also seems to
support ghrelin (GHR) secretion from the gut by countering the suppressive effect of excess glucose.
ROS: reactive oxygen species, WAT: white adipose tissue. Effects of selenium are shown in red.

6. Concluding Remarks

The role of selenium in energy homeostasis is complex and the literature is full of
somewhat contrasting data [189,371,372]. Conflicting reports could be the result of many
variables, such as selenium status and confounding health conditions in the case of clin-
ical studies, where patients were supplemented with selenium, as well as the specific
form of selenium and the route of delivery used in animal studies. Based on the insights
provided in this review, the mechanisms through which selenium can influence homeo-
static communication are diverse, tissue-specific, and, sometimes, counter-effective. For
example, disrupting the intracellular selenium recycling process broadly in the mouse
hypothalamus is obesogenic, but the result of an AGRP neuron-specific disruption is a lean
phenotype [27,34,142]. Thus, tissue-specific deficiency and mis-utilization of selenium can
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underlie a whole-body state of metabolic disorder. Such conditions cannot be ruled out
simply because markers of selenium status and intake are thought to indicate ‘sufficiency’.

Selenium is metabolized, distributed, and utilized throughout the body by a unique
system of enzymes, factors, and receptors. Local impairments of the molecular machinery
involved could result in tissue-specific deficiencies. Indeed, selenium dyshomeostasis,
as opposed to an overall deficiency or over-consumption, has been proposed as a major
contributor to human disease pathology, particularly neurodegeneration [373–375]. The
dyshomeostasis hypothesis helps reconcile previous conflicting reports on the correlations
between selenium status and disease severity, as it takes into consideration tissue-specific
effects. Fully elucidating the interactions between selenium and homeostatic communica-
tion outlined in this review is necessary for a better understanding of the multifactorial
nature of metabolic disease. Such a course of investigation seems ever more relevant as
the field increasingly focuses on precision nutrition [376,377]. If the transport of selenium
across the blood–brain barrier becomes impaired in the hypothalamus, resulting in a local
deficiency and greater susceptibility to leptin resistance, will selenium supplementation
help counteract the problem? Will it instead promote SELENOP-mediated insulin resis-
tance [378]? Questions such as these implicate the need for targeted approaches in the
development of selenium-based therapy. Addressing these perplexities should remain a
top priority for researchers in the field.
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