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Abstract: Melatonin is a new plant hormone involved in multiple physiological functions in plants
such as germination, photosynthesis, plant growth, flowering, fruiting, and senescence, among others.
Its protective role in different stress situations, both biotic and abiotic, has been widely demonstrated.
Melatonin regulates several routes in primary and secondary plant metabolism through the up/down-
regulation of many enzyme/factor genes. Many of the steps of nitrogen metabolism in plants are
also regulated by melatonin and are presented in this review. In addition, the ability of melatonin to
enhance nitrogen uptake under nitrogen-excess or nitrogen-low conditions is analyzed. A model that
summarizes the distribution of nitrogen compounds, and the osmoregulation and redox network
responses mediated by melatonin, are presented. The possibilities of using melatonin in crops for
more efficient uptake, the assimilation and metabolization of nitrogen from soil, and the implications
for Nitrogen Use Efficiency strategies to improve crop yield are also discussed.

Keywords: low nitrogen use; melatonin; nitrogen uptake; nitrogen metabolism; NUE; plant growth;
plant nutrition; plant stress

1. Introduction

Nitrogen is the main element that limits plant productivity in crops, with nitrate
being the main nitrogen form for plants. The massive use of nitrates and other nitrogen
compounds, such as ammonium, has led to serious problems in agricultural soils, such as
the high salinity and contamination of aquifers with nitrogen [1–4]. Excess nitrogen in soil
usually has negative consequences on plant physiology, such as a lower photosynthetic
rate, osmotic stress, nitrogen metabolism disorders, and the excessive appearance of ROS
(reactive oxygen species) and RNS (reactive nitrogen species). Furthermore, alterations in
the assimilation of other elements such as Ca and Mg cause a lower response in defense
against pathogens [5]. Either directly or indirectly, excess nitrates increase ammonium lev-
els in the soil, affecting the overall growth of the plant, both in aerial and root systems [6–9].
Therefore, overuse of nitrogen can result in decreased crop productivity. Therefore, pro-
ducing more whilst using less nitrogen, the so-called Nitrogen Use Efficiency (NUE), is
a recommended practice [10–12]. Currently, the use of “smart fertilizers”, such as coated
fertilizers, and the application of plant-growth-promoting rhizobacteria (PGPR) to the soil
has ostensibly improved the nutrition of nitrogen in plants [13–15]. On the other hand,
the deficit of nitrogen in soils usually entails great limitations in plant growth and serious
nitrogen and carbon metabolic dysfunctions, reducing the photosynthesis and biosynthesis
of amino acids and proteins [16,17].

Melatonin (N-acetyl-5-methoxytryptamine) is a biogenic amine discovered in 1958
in the pineal gland of cow [18], and later in humans [19,20]. Its properties as a hormone
which regulates light/dark cycles and other endogenous rhythms in mammals have been
extensively studied. Remarkably, melatonin was identified in plants in 1995 simultaneously
by three groups of researchers [21–23]. Although initially there were many doubts about
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the presence of melatonin in plant tissues, today it is one of the most prolific and exciting
areas of study within plant physiology [24]. In plants, melatonin has a multi-regulatory role,
behaving as a “plant master regulator”, stimulating processes such as seed germination,
photosynthesis, growth, and rooting, whilst inhibiting leaf senescence, and regulating
fruit ripening and senescence. In addition, melatonin considerably increases tolerance to
biotic (bacteria, fungi, and viruses) agents and to abiotic stressors, such as water deficit,
extreme temperatures, salinity, contaminants, etc. These aspects are of great interest in its
application in crops [25–31].

In plant metabolism, melatonin regulates many primary metabolism pathways, mainly
in carbohydrates (starch and sucrose) [32], lipids, and nitrogen compound routes, and also
in secondary metabolism pathways (phenolics, flavonoids, and terpenoids) [24]. The broad
functions and regulatory capacities of melatonin in plant and animal cells have been studied
and their analogies and differences have been compared [33,34].

In this paper, a review of the role of melatonin in nitrogen metabolism in plants is
presented. Its regulatory role in the different metabolic stages was analyzed, as well as
its general action in situations of excess and the deficiency of nitrogen. In addition, the
possibilities of using melatonin in crops for more efficient uptake, the assimilation and
metabolization of nitrogen from soil, and the implications for Nitrogen Use Efficiency
(NUE) strategies to improve crop yield were also discussed, i.e., a proposal to increase crop
yields with suboptimal levels of nitrogen.

2. Methodology

In this study, a systematic literature review is conducted on the role of melatonin in
the nitrogen metabolism of plants. The bibliometric analysis was conducted in three stages:
(i) defining the keywords; (ii) selecting the database, and (iii) searching relevant articles
and analyzing data. Peer-reviewed publications were searched covering the period 1995,
the year melatonin was first identified in plants, and 2022. The search was performed in
the title and keywords of the publications, selecting English and other languages, and other
articles in journals and book chapters, both experimental and review types, which were
related to melatonin and nitrogen metabolism in plants. A systematic database search of
peer-reviewed articles was conducted using the Science Citation Index Expanded (SCI-
Expanded) database of the Web of Science from Thomson Reuters. Additionally, Scopus,
Google Scholar, and PubMed databases were used. Our Plant Hormones and Development
research group from the University of Murcia has ample experience in melatonin and for
25 years has been generating a database integrated by some 4000 references that include all
the works related to melatonin in plants. The results indicated that only 75 references were
registered, of which 62 are from the last five years.

3. Melatonin Biosynthesis

In plants, melatonin is synthetized from chorismic acid, which is generated from
shikimic acid (a condensation product of phosphoenolpyruvate from glycolysis and ery-
throse 4-phosphate from the pentose phosphate pathway (Figure 1)). Chorismic acid, a
precursor to aromatic amino acids (phenylalanine, tyrosine, and tryptophan), is trans-
formed through the anthranilate/indole pathway to tryptophan [35]. Tryptophan is the
origin of the melatonin biosynthesis pathway in both animal and plant cells [33,36,37]. In
animals, tryptophan is converted to 5-hydroxytryptophan by TPH, an enzyme that appar-
ently has not been identified in plants. Tryptophan is mainly transformed into tryptamine
by TDC present in cytoplasm of plant cells, and then up to serotonin (5-hydroxytryptamine)
by T5H (in endoplasmic reticulum) (Figure 1). The transformation of serotonin into mela-
tonin is produced in the chloroplast or cytoplasm depending on the enzyme involved.
Thus, serotonin can first be acetylated by SNAT to N-acetylserotonin (in the chloroplast)
and subsequently hydroxylated to melatonin (in the cytoplasm) by ASMT/COMT. Under
conditions of stress or excess serotonin, 5-methoxytryptamine is formed preferentially
by the action of ASMT/COMT [38], and finally melatonin is generated by SNAT (in the
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chloroplast) [39–41]. Melatonin is usually hydroxylated at different positions on the indole
ring, with 2-hydroxymelatonin being the major catabolite in plants, showing interesting
regulatory properties [42–44].
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4. Role of Melatonin in Nitrogen Metabolism

The role of melatonin on nitrogen metabolism has been studied under conditions of
nitrogen excess and deficiency. Table 1 summarizes several representative examples of
the effect of melatonin on nitrogen metabolism in different plant species and conditions.
Under nitrogen-excess conditions, melatonin treatments induced a decrease in endogenous
nitrogen levels in the form of nitrate and ammonium. In cucumber plants grown with
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excess nitrate, 100 µM melatonin increased nitrogen tolerance and growth, reorganizing
NPK balance and lowering nitrogen damage by reducing nitrate and ammonium levels in
seedlings. Furthermore, cucumber melatonin-treated seedlings increased enzyme activities,
and nitrate reductase (NR), glutamine synthase (GS), glutamate synthase (GOGAT), and
glutamate dehydrogenase (GDH) gene expression, reducing the negative effect of excess
nitrate [45]. Also in nitrate excess, melatonin, in co-action with nitric oxide (NO), reversed
the excess nitrogen inhibition of root growth, and also up/down-regulated several genes
of IAA and ABA metabolism, including melatonin biosynthesis genes [46]. Previously
Zhao et al. (2012), also investigating cucumber, demonstrated for the first time, that
melatonin increased high-temperature tolerance, regulating nitrate and ammonium levels
and nitrogen-related enzymes [47]. The role that melatonin plays in increasing nitrogen-
excess tolerance was also studied in alfalfa plants (Table 1). In this case, melatonin increased
nitrogen-excess tolerance through the up-regulation of NR, GS, GOGAT, and GDH enzymes.
Furthermore, it reduced the total nitrogen levels (nitrate and ammonium content) and
increased the biomass, length, width of leaves, and energy levels (P and ATP) and decreased
the Na, K, and Ca mineral contents [48]. Similar results were obtained in soybean plants
treated with melatonin in nitrogen-excess [49].

Table 1. Effects on nitrogen metabolism by melatonin in different species.

Plant Species Nitrogen Nutri-
tion/Stress

Melatonin Treatment
(µM) Observed Effects Reference

Cucumber
Normal

High
temperature

100 ↑ temperature tolerance, NR, GS, GOGAT, GDH, nitrate,
ammonium restrained [47]

Nitrate:
N-excess 100 ↑ tolerance, growth, NPK balance, Ca, NR, GS, GOGAT, GDH

↓ damage, nitrate, ammonium [45]

Nitrate:
N-excess

2 ↑ tolerance N excess, co-action with NO, lateral roots, root length,
Ca, Mg, Fe, melatonin, NO, IAA, ABA, transcription levels of

several genes of N metabolism, IAA, ABA and melatonin

[46]

Apple Normal (urea)
Drought stress 100

↑ drought tolerance, growth, photosynthesis, stomatal open, chls,
RWC, NR, NiR, GS, GOGAT, N uptake genes (AMTs, NRTs), N, P, K,

Ca, Mg, Cu, Zn, and B levels
[50]

Alfalfa Nitrate:
N-excess 100

↑ tolerance N excess, shoot height, leaves (length, width, area), P,
ATP, biomass, amino acids, energy charge, upregulates NR, GS,

GOGAT, GDH
↓ total N, nitrate, ammonium, Na, K, Ca

[48]

Wheat
Nitrate and
ammonium:

N-low
1 ↑ N and nitrate, N absorption, N metabolism, NR, GS, growth, yield,

in shoots and roots [51]

Maize Normal 100 ↑ nitrite, nitrate, NR, NiR, GS, GOGAT, GDH
↓ ammonium [52]

Soybean
Normal

Salt/drought
stress

50–100 ↑ stress tolerance, growth, seed yield and fatty acid; up-regulates cell
division, photosynthesis, carbohydrate, fatty acid, and ASC genes [53]

Normal 100 ↑ number and size of nodules, fresh shoot biomass in 3 varieties [54]
Nitrate and
ammonium:

N-excess,
N-normal and

N-low

100
↑ tolerance N-excess, N content in N-low, stem diameter, leaf area,
nodule number, ATP, biomass in three-N conditions, antioxidant

enzymes at N-excess, N-related genes
[49]

Nitrate and
ammonium:

N-low
100

↑ nodule number, total N fixed, tolerance to N deficiency,
upregulating genes: NR2, NiR, GS1β, GOGAT, AAP6a, promoting
enzyme activity: NR, GS, GOGAT, GDH, amino acids, protein, total

N, chls, seed yield

[55]

Normal
Drought stress 100 ↑ N, NR, NiR, NRT, GS, GOGAT, GDH, protein, proline, ureides, N

transport, growth, biomass [56]

Normal
Drought stress 100 ↑ stress tolerance, growth, seed yield, amino acids, photosynthesis,

antioxidants, regulates C/N ratio, and plant hormone levels [57]

↑ Increased content or action; ↓ Decreased content or action.
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In nitrogen-normal conditions, melatonin-treated maize seedlings were found to
increase nitrogen content (nitrate and nitrite) and decrease ammonium content with respect
to the control plants. Furthermore, NR, NiR GS, GOGAT, and GDH activities and gene
expression were up-regulated in melatonin treatments [52]. Unexpectedly, melatonin is
also able to favorably regulate nitrogen levels under deficit conditions. Winter wheat
grown in a nitrogen-deficit medium was capable of increasing nitrogen uptake and nitrate
contents in melatonin-treated seedlings, increasing shoot and root growth, as well as
yield, and possibly improving nitrogen metabolism [51]. Also in soybean plants, the role
of melatonin in nitrogen-low conditions has been studied. In nitrate and ammonium
deficiency, melatonin improved plant tolerance, increasing the total number of nodules and
fixed nitrogen, and up-regulating several nitrogen-related gene expressions (see Table 1),
with the result of an increase in the levels of amino acids, proteins, chlorophyll, and also an
increase in seed yield [49,55].

Moreover, in different stress conditions, such as drought stress, melatonin improved
stress tolerance and nitrogen uptake. It also improved the contents of amino acid, protein,
proline, and ureides, whilst up-regulating NR, NiR, NRT, GS, GOGAT, and GDH gene
expression, consequently improving the growth and total biomass of soybean plants [56].
The authors suggested that melatonin regulated the assimilation, metabolism and transport
of nitrogen, thereby maintaining the carbon/nitrogen balance [48,50,58,59].

5. Melatonin in Osmoregulation and Redox Network

Many data point to the regulatory roles of melatonin in plants under stress. Figure 2
shows a diagram with several of the enzymes and other factors in pathways regulated by
melatonin. Melatonin increases the contents of several metabolites involved in cellular
osmoregulation. Sugar-alcohols (polyols) such as sorbitol, mannitol, glycerol, and inositol,
and nitrogen-compounds such as proline and glycine-betaine, among others, are clearly
increased with melatonin treatments in several stress situations, and the expression of some
related enzymes regulated by melatonin has been demonstrated [24,32]. In addition, the
role of melatonin as a main redox homeostasis regulator has been demonstrated. A redox
network involving several ROS and RNS, as well as related enzymes such as nitric oxide
synthase (NOS-like), NR, respiratory burst oxidase (RBOH), ASA-GSH cycle enzymes, and
antioxidant enzymes (superoxide dismutases-SOD, catalases, peroxidases, peroxiredoxins)
was controlled direct or indirectly by melatonin [24,28,58,60,61].

Ion homeostasis is also regulated by melatonin. Under saline or alkaline growth condi-
tions, ion homeostasis is re-established in melatonin-treated plants through the regulation
of many ion transporters, mainly transporters of Na+, K+, and Cl−, and also phosphate, and
sulfur [24,27,62,63]. Under saline stress conditions, melatonin improved the K/Na ratio,
increasing K uptake and decreasing Na contents in pepper leaves [64]. Similar results have
been observed in rice [65] and tomato [66]. In apple trees, melatonin also improved the
contents of N, P, K, Ca, Mg, Cu, Zn, and B in melatonin-treated plants compared with those
not treated under drought conditions [50]. Thus, melatonin reestablished ion homeostasis
under stress conditions, and influenced global mineral nutrition. The role of melatonin
in sulfur metabolism is notable. Melatonin was able to revert sulfur deficiency in plants
through the up-regulation of genes involved in sulfur transport and metabolism, including
several sulfur transporters such as ATP sulphurylase, 5′-adenylylsulfate reductase, sulphite
reductase, and O-acetylserin-thiol-lyase, thereby improving sulfur uptake and content,
which improved redox homeostasis [67]. This effect of melatonin on sulfur metabolism has
been demonstrated mainly under stress conditions [68,69].
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Figure 2. Regulation of nitrogen metabolism and related-pathways by melatonin. Melatonin up-
regulates several enzymes and other factors related to the biosynthesis of amino acids in TCA cycles
and nitrogen-related reactions, also in an ASC-GSH cycle and osmoregulatory-compound biosynthe-
sis. The different up-regulated genes by melatonin are in the yellow boxes (see Abbreviation Section).

6. Melatonin, Nitrogen, and Implications in Crops

Figure 2 shows the melatonin-regulated points related to nitrogen metabolism. Several
nitrogen uptake genes were up-regulated by melatonin, including NRT1-1, and several
NRT2 as nitrate transporters, as well as AMT1-2/5/6 and AMT2-1 as ammonium trans-
porters (Table 1, Figure 2). In general, melatonin enhanced mineral uptake, specifically
N, P, and S uptake, increasing stress tolerance and also heavy metal tolerance, which has
been applied in phytoremediation studies [62]. NR and NiR genes were up-regulated
by melatonin under different experimental conditions and in different plant species, re-
sulting in an increase in nitrate and/or ammonium levels, in nitrogen-normal or under
nitrogen-low conditions (Table 1). In nitrogen-excess, melatonin regulates the metabolism
of nitrogen through metabolic genes such as GS, NADP-GOGAT, Fd-GOGAT, and GDH,
mainly resulting in a decrease in nitrate and ammonium contents (Figure 2). The effect
of melatonin on nitrogen uptake and metabolism results in increased contents of nitroge-
nous compounds such as amino acids, ureides, and proline, along with higher levels of
proteins. This consequently improves the plants’ growth and tolerance to stresses (Table 1,
Figure 2). Melatonin behaves as an excellent plant master regulator [58] and not only acts
on nitrogen metabolism, but also improves important pathways such as photosynthesis
(light and Calvin reactions), water economy, carbohydrate and lipid metabolism, the Krebs
cycle, osmoregulation, the redox network including the ASC-GSH cycle, plant hormone
homeostasis, and many more aspects of the primary metabolism of the plant cells, as
recently reviewed [24]. In crops, melatonin enhanced growth and stress tolerance resulting
in improved biomass and seed/fruit yield. Some examples can be seen in Table 2.
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Table 2. Effect of melatonin on enhanced yield in different species.

Plant Species Melatonin Treatment (µM) Reference

Rice 50–200 [70]
Wheat 10–500 [71]

1000 [72]
50–500 [73]

Moringa 100 [74]
Pomegranate 100 [75]

Maize 10–1000 [52]
Broccoli 20–80 [76]

Kiwifruit 50–200 [77]
Sweet cherry 50–500 [78]

Banana 40–80 [79]
Pepper 100 [64]

Pear tree 100 [80]
Radish 50–300 [81]

Rapeseed 500 [82]
Tomato 100 [83]
Soybean 50–100 [53,55]

Liu et al., (2020) noted that low-nitrogen-tolerant wild soybeans were capable of
reducing their energy consumption by decreasing the biosynthesis of amino acids. Concur-
rently, they enhanced the biosynthesis of proline and secondary metabolites to withstand
low-nitrogen stress. According to the authors, enhancing the metabolism of shikimic acid
was a unique mechanism involved in the low-nitrogen tolerance of low-nitrogen-tolerant
wild soybeans [17]. Under low-nitrogen conditions, the presence of melatonin simulated
low-nitrogen-tolerant varieties, reordering amino acid biosynthesis and reinforcing redox
network and osmoregulatory responses (Table 1, Figure 2). Moreover, melatonin has a
great ability to regulate secondary metabolism, especially polyphenol, isoprenoid, and
glucosinolate pathways [24,31].

In legume crops such as soybean, melatonin promoted the development of symbi-
otic root nodules, increasing their number and size, enhancing nitrogen, and biomass
accumulation [54]. For example, in soybean, under nitrogen-low, nitrogen-normal, and
nitrogen-excess conditions, biomass accumulation increased by 9.8%, 14%, and 11.4%,
respectively [49]. Melatonin treatments in soybean at the V3 stage (nodule development)
were more determinant in the establishment and increase of the number of nodules than
at R5 stage (grain filled), indicating that melatonin plays a relevant role in root nodule
development. In this line, the activity of N2 fixing-bacteria such as nitrogenase in root
nodules was promoted by melatonin at the V3 stage, especially under nitrogen-low con-
ditions [55]. Regarding this, some data have been published on the possible beneficial
effects of melatonin in rhizosphere microbial community structure [84–89], and also on
the effect of the simultaneous application of melatonin and Rhizobium in plant growth and
stress [90–92].

7. Conclusions and Perspectives

In relation to nitrogen nutrition, melatonin improves growth, survival rates, and stress
tolerance. In nitrogen-excess situations, melatonin increased nitrogen-stress tolerance,
whilst reducing nitrate/ammonium uptake and up-regulating nitrogen-related genes. This
resulted in a rebalancing of nitrogenous compounds and a redirecting of amino acid,
proline, and ureide levels. Under nitrogen-low conditions, an improvement in the levels of
nitrogen compounds was observed, with a greater absorption of nitrogen and an increase
in levels of amino acids, proteins, and chlorophylls. In some cases of abiotic stress, such
as drought or high temperatures, melatonin regulated nitrogen-related genes, optimizing
osmoregulation response, mineral uptake, and total nitrogen levels in the tissues. In most
of the cases studied, melatonin increased growth and plant biomass. In soybean cultivation,
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melatonin improves yields, possibly due to the stimulation of the number and size of
root nodules.

The effect of melatonin on nitrogen metabolism has been presented as an excellent
tool to improve yield in crops with a low nitrogen supply, since melatonin optimizes
both mineral uptake and the biosynthesis and redistribution of nitrogen compounds,
especially under stress conditions. Nitrogen loss caused by leaching into the environment
is a serious problem for the agricultural sector due to the undesirable effects of it as a
relevant contaminant agent, such as terrestrial and coastal eutrophication, nitrous oxide
emissions, freshwater pollution, and biodiversity loss. Improvement in NUE is associated
with several agronomic practices, such as improved irrigation methods, improved fertilizer
application considering the 4Rs for nutrient delivery (right product, right rate, right time,
and right place), and using hybrid plants with greater productivity and lower nitrogen
need. Additionally, nitrogen inhibitors, the split application of nitrogen, irrigation time,
and the correct placement method of fertilizer which takes into consideration soil and crop
type could improve NUE [93–96]. Therefore, melatonin must be studied more widely in the
agronomic field in order to be considered a possible input into the NUE strategy [12,16,97],
including the effects of enhancement by melatonin in the assimilation and metabolization
of nitrogen, especially in symbiotic plants [54,55]. It is also important to study the effect of
melatonin on rhizosphere and its microbiome, on which there are already some promising
data [87–89,98,99].
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Abbreviations

Aas amino acids
AAP6a amino acid permease 6a-like protein
ABA abscisic acid
ACLA-A/B citrate synthase
δ-ALAD δ-aminolevulinic acid dehydratase
Anthranile PR transferase anthranilate phosphoribosyl ltransferase
AMT ammonium transporters
APX ascorbate peroxidase
ASC ascorbic acid
ASMT acetylserotonin methyltransferase
BCAT branched-chain-amino-acid amino transferase
CAO chlorophyllide a oxygenase
CAT catalase
Chl chlorophyll
CHLG chlorophyll synthase
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COMT caffeic-O-methyltransferase
COX cytochrome c oxidase
CYSC bifunctional L-3-cyanoalanine synthase/

cysteine synthase
cytb6/f cytochrome b6/f
FUM fumarate hydratase
GDH glutamate dehydrogenase
Gln glutamine
Glu glutamate
GOGAT glutamate synthase
(NADP/Fd dependent)
GPX glutathione peroxidase
GR glutathione reductase
GS glutamine synthase
GSH glutathione (reduced)
GSSH glutathione (oxidized)
IAA indole-3-acetic acid (auxin)
IDH isocitrate dehydrogenase
IGP indole-3-glycerol phosphate
MDH malate dehydrogenase
(M)DHA monodehydroascorbate
(M)DHAR monodehydroascorbate reductase
MEL melatonin
NO nitric oxide
NOS-like nitric oxide synthase
NiR nitrite reductase
NPK nitrogen/phosphorous/potassium
NR nitrate reductase
NRT nitrate transporter
NUE nitrogen use efficiency
2OG 2-oxoglutarate (α-ketoglutarate)
P5CS2 pyrroline-5-carboxylate synthetase
PDH pyruvate dehydrogenase
PGPR plant-growth-promoting rhizobacteria
POR protochlorophyllide oxidoreductase
PPi inorganic pyrophosphate
PSI photosystem I
PSII photosystem II
PSY phytoene synthase
PRA phosphoribosyl anthranilate isomerase
PROD proline dehydrogenase
PRPP phosphoribosyl pyrophosphate
RBOH respiratory burst oxidase
RNS reactive nitrogen species
ROS reactive oxygen species
RWC relative water content
SAH S-adenosylhomocysteine
SAM S-adenosylmethionine
SDH succinate dehydrogenase
SHMT serine hydroxymethyltransferase
SNAT serotonin N-acetyltransferase
SOD superoxide dismutase
T5H tryptamine 5-hydroxylase
TCA tricarboxylic acid cycle (Krebs cycle)
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TDC tryptophan decarboxylase
TPH tryptophan hydroxylase
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