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Abstract: RING-finger-type ubiquitin E3 ligase Constitutively Photomorphogenic 1 (COP1) and floral
integrators such as FLOWERING LOCUS T (FT), TWIN SISTER OF FT (TSF) and SUPPRESSOR
OF OVEREXPRESSION OF CONSTANS1 (SOC1) have been identified as regulators of stomatal
movement. However, little is known about their roles and relationship in dark-induced stomatal
closure. Here, we demonstrated that COP1 is required for dark-induced stomatal closure using cop1
mutant. The cop1 mutant closed stomata in response to exogenous nitric oxide (NO) but not hydrogen
peroxide (H2O2), and H2O2 but not NO accumulated in cop1 in darkness, further indicating that
COP1 acts downstream of H2O2 and upstream of NO in dark-induced stomatal closure. Expression
of FT, TSF and SOC1 in wild-type (WT) plants decreased significantly with dark duration time, but
this process was blocked in cop1. Furthermore, ft, tsf, and soc1 mutants accumulated NO and closed
stomata faster than WT plants in response to darkness. Altogether, our results indicate that COP1
transduces H2O2 signaling, promotes NO accumulation in guard cells by suppressing FT, TSF and
SOC1 expression, and consequently leads to stomatal closure in darkness. These findings add new
insights into the mechanisms of dark-induced stomatal closure.

Keywords: Arabidopsis thaliana ; COP1; darkness; FT; guard cell signaling; hydrogen peroxide; nitric
oxide; SOC1; TSF

1. Introduction

Plant guard cells open and close stomata to regulate CO2 uptake for photosynthesis
and control water loss from the plant. They are sensitive to multiple internal and exter-
nal signals to set the appropriate stomatal aperture for the prevailing environments [1].
Light/dark is one of the most essential and well-studied environmental signals regulating
stomatal movement [2–4]. Stomata open in response to light and close in the dark. Various
components in light/dark-regulated stomatal movement, especially in light signaling, have
been demonstrated, such as photoreceptors, plasma membrane H+-ATPase, ion channels,
Constitutively Photomorphogenic 1 (COP1), CONSTANS (CO), hydrogen peroxide (H2O2)
and nitric oxide (NO) [2,5–7].

COP1, an E3 ubiquitin ligase, has been extensively studied as a major negative reg-
ulator of photomorphogenesis [8]. Mao et al. [6] found that blue light-induced stomatal
opening by cryptochromes (CRY) was mediated by negatively regulating COP1, first defin-
ing a new role of COP1 in guard cell signaling. After that, increasing evidence demonstrates
that COP1 plays an essential role in modulating stomatal movement. Wang et al. [2] showed
that COP1 acted downstream of Phytochrome B (PHYB) in regulating red light-induced
stomatal opening. Several researchers further demonstrated that COP1 is not only involved
in the light-induced stomatal opening but also plays a fundamental role in abscisic acid
(ABA)- [9–11], dehydration- [12], and ultraviolet-B (UV-B)-induced stomatal closure [13].
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These reports confirm the importance of COP1 in guard cell signaling. However, the
underlying mechanisms are still largely unknown. In addition, although COP1 has been
indicated to repress stomatal opening in darkness [2,6], its role in dark-induced stomatal
closure and the components in COP1-mediated guard cell signaling in darkness has yet to
be further elucidated.

COP1 represses plant photomorphogenesis by promoting the ubiquitin-mediated
protein degradation of positive regulators, including light-signaling transcription factor
long hypocotyl 5 (HY5) and CO [8]. Ge et al. [13] found that HY5 was required for COP1
signaling in UV-B-induced stomatal closure. Therefore, we wonder whether COP1 function
in dark-induced stomatal closure is also through the HY5 route. FLOWERING LOCUS T
(FT), TWIN SISTER OF FT (TSF), the closest homolog of FT, and SUPPRESSOR OF OVER-
EXPRESSION OF CONSTANS1 (SOC1) are well-known major regulators of flowering
response downstream of the transcriptional regulator CO [8,14,15]. Additionally, these
floral integrators have also been identified as general growth regulators in diverse other de-
velopmental processes, including fruit set, vegetative growth and stomatal control [5,14,15].
Kinoshita et al. [16] demonstrated that FT played a role in regulating blue-light-induced
stomatal opening by activating the plasma membrane H+-ATPase. Later, TSF and SOC1
were also proved to express in guard cells and exert positive effects on stomatal open-
ing [5,17]. These studies defined a novel function for these floral integrators in stomatal
opening. However, it is still unknown whether FT, TSF and SOC1 are involved in COP1-
mediated darkness guard cell signaling, and the components regulated by these genes have
yet to be identified.

NO and H2O2 are famous signaling molecules in plants, mediating various important
physiological processes, including stomatal movement [7,18–23]. They have been reported
to contribute to ABA-, salicylic acid-, dark-, UV-B-, and other elicitor-induced stomatal
closure [13,19–21]. Usually, H2O2 accumulation acts upstream of NO production in guard
cells during stomatal closing [13,19–21]. COP1, H2O2 and NO are all signaling components
in guard cells, but little information is available on the relationship of COP1 with H2O2
and NO during stomatal closing.

In this study, we focused on the role of COP1 in dark-induced stomatal closure and
its underlying mechanisms. Through analysis of stomatal phenotypes in cop1 and hy5
mutants, we showed that COP1 mediates dark-induced stomatal closure in Arabidopsis,
and this process is independent of the transcription factor HY5. Stomatal responses of cop1
to exogenous H2O2 or NO, together with the confocal images of endogenous H2O2 or NO
levels in guard cells, further demonstrated that COP1 functions downstream of H2O2 and
upstream of NO during dark-induced stomatal closing. Interestingly, expression of the
floral integrator genes FT, TSF and SOC1 decreased with dark duration time, and COP1 was
required for this regulation. Roles of FT, TSF and SOC1 in dark-induced stomatal closure
were further proved by analyzing phenotypes of their corresponding loss-of-function
mutants. Finally, the relationship of floral integrators with H2O2 and NO in darkness were
investigated, and the scientific importance of downregulation of FT, TSF and SOC1 by
COP1 to close stomata normally in the dark was discussed. Our findings provide new
insights into the underlying mechanisms of dark-induced stomatal closure.

2. Results
2.1. COP1 Is Required for Dark-Induced Stomatal Closure

Previous studies have demonstrated that stomata of the cop1-4 mutant are constitu-
tively open in darkness [6], indicating an important role of COP1 in dark-induced stomatal
closure. To confirm the function of COP1, we compared the stomatal responses of cop1
mutants with that of the wild-type (WT) plants to continuous darkness for 4 h. Results
showed that the stomatal aperture of WT plants decreased with the time of dark treat-
ment. A significant decrease was observed at 2 h, and the minimum stomatal aperture
appeared at 3 h of dark treatment. Two independent cop1 mutants showed a constitutive
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open-stomata phenotype in darkness (Figure 1A), proving the essential role of COP1 in
mediating dark-induced stomatal closure.
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Figure 1. Constitutively Photomorphogenic 1 (COP1) is required for dark-induced stomatal closure
in a way independent of long hypocotyl 5 (HY5). (A) Stomata of cop1 mutants were constitutively
open in darkness. (B,C) Mutation of HY5 does not affect dark-induced stomatal closure. Leaves of
WT Col-0, Ler and Ws, and the cop1-4, cop1-6, hy5-1, hy5-ks50 and hy5hyh mutants were incubated in
MES buffer under darkness for 3–4 h. The stomatal apertures of epidermal peels taken from the leaf
abaxial surfaces were examined at the indicated time. Data are means ± standard error (SE, n = 3).
Different small letters indicate significant differences (p < 0.01).

We previously reported that COP1 mediated UV-B-induced stomatal closure through
an HY5-dependent pathway [13]. To determine whether HY5 is also involved in COP1-
mediated dark-induced stomatal closure, we compared stomatal responses to the darkness
of hy5 single mutants (hy5-1 in Ler background and hy5-ks50 in Ws background) and
hy5hyh double mutant with that of the corresponding WT plants. Results showed that
mutants for HY5 had the same stomatal responses to darkness as WT (Figure 1B,C). These
results, combined with the facts that HY5 is degraded by COP1 in darkness [8] and that
overexpression of HY5 results in constitutive closing of stomata under either light or
darkness [13], indicate that HY5 is not involved in dark-induced stomatal closure. Therefore,
COP1 mediates dark-induced stomatal closure in a way independent of HY5.

2.2. COP1 Acts Downstream of H2O2 in Dark-Induced Stomatal Closure

H2O2 is a common signal for dark-, ABA- and UV-B-induced stomatal closure [7,13,22].
To explore the signaling pathway in dark-induced stomatal closure, we first investigated the
stomatal responses of cop1 mutant to exogenous H2O2 treatment. The cop1 mutant showed
a similar stomatal aperture to WT plants under a light. Exogenous H2O2 significantly
closed the stomata of WT but not that of the cop1 mutant. When transferred to the dark
for 3 h, the stomata of the cop1 mutant are still kept open and exogenous H2O2 cannot
affect this constitutive open-stomata phenotype (Figure 2A). These results indicate that
COP1 may function downstream of H2O2 during dark-induced stomatal closure. To further
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confirm this, we detected the H2O2 content in guard cells of cop1 mutant using a fluorescent
dye 2′,7′-dichlorofluorescin diacetate (H2DCFDA). The result showed that H2O2 contents
in guard cells of both WT plants and cop1 mutant were very low under light and increased
by several folds in response to 3 h of dark treatment (Figure 2B,C). Clearly, mutation of
COP1 did not affect dark-induced H2O2 accumulation; however, in contrast to WT plants,
the H2O2 accumulation in the cop1 mutant did not lead to stomatal closure. This result
further confirms that both H2O2 and COP1 are involved in dark signaling in guard cells,
and COP1 is required for transducing the H2O2 signal.
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Figure 2. COP1 functions downstream of hydrogen peroxide (H2O2) in dark-induced stomatal closure.
Leaves of WT Col-0 and cop1-4 mutant were incubated in MES buffer alone or with 100 µmol/L
H2O2 under light or dark for 3 h. (A) Exogenous H2O2 induced stomatal closure in WT Arabidopsis
under light but showed no effect on stomatal apertures of cop1 mutant under light or darkness.
(B,C) Guard cell H2O2 accumulation in cop1-4 mutant is similar to that in WT under both light and
dark. Images (B) of guard cells preloaded with H2DCFDA were taken, and fluorescent intensities
(C) were measured based on the images. Scale bar: 10 µm. Data are means ± standard error (SE,
n = 3). Different small letters in (A) or (C) indicate significant differences (p < 0.01).

2.3. COP1 Acts Upstream of NO in Dark-Induced Stomatal Closure

NO is another important signal molecule, and NO generation in guard cells during
stomatal closure is usually mediated by H2O2 [19,20,23]. Therefore, both NO and COP1
function downstream of H2O2. To further define the relationship between NO and COP1
in dark-induced stomatal closure, we investigated the effect of exogenous NO, applied
in the form of the NO donor sodium nitroprusside (SNP), on stomatal apertures of cop1
mutant. SNP treatment significantly reduced the stomatal aperture of WT plants under
light conditions and further decreased it under dark treatment (Figure 3A). Meanwhile,
SNP treatment not only induced stomatal closure of the cop1 mutant under light conditions
but also significantly rescued the defect of dark-induced stomatal closure in the cop1 mutant
(Figure 3A). These results suggest that COP1 may induce stomatal closure upstream of
NO in darkness. Using NO-specific fluorescent dye 4,5-diaminofluorescein diacetate (DAF-
2DA), we found that both dark and exogenous H2O2 treatment significantly enhanced
NO accumulation in WT guard cells but did not do that in cop1 guard cells (Figure 3B,C).
This result indicates that dark- and H2O2-induced NO accumulation are blocked in cop1
mutant, further confirming that NO accumulation is downstream of COP1 in the dark.
However, the stomatal aperture in the cop1 mutant was significantly larger than that in WT
plants under SNP treatment (Figure 3A), indicating that COP1 also mediates dark-induced
stomatal closure through alternative pathways.
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Figure 3. COP1 functions upstream of nitric oxide (NO) in dark-induced stomatal closure. Leaves
of WT Col-0 and cop1-4 mutant were incubated in MES buffer alone or with 50 µmol/L sodium
nitroprusside (SNP) under light, dark or 100 µmol/L H2O2 treatment for 3 h. (A) SNP-induced
stomatal closure under light and rescued the defect of dark-induced stomatal closure in the cop1-4
mutant. (B,C) Dark- and H2O2-induced NO accumulation in WT were abolished in the cop1-4 mutant.
Images (B) of guard cells preloaded with DAF-2DA were taken, and fluorescent intensities (C) were
measured based on the images. Scale bar: 10 µm. Data are means ± standard error (SE, n = 3).
Different small letters in (A) or (C) indicate significant differences (p < 0.01).

2.4. Expression of FT, TSF and SOC1 Is Downregulated by Darkness via the COP1-Dependent Manner

The floral integrators FT, TSF and SOC1, have been shown to express in guard cells
and positively regulate light-induced stomatal opening [5,16,17]. We performed both
RT-PCR and qRT-PCR analysis, and they consistently showed that gene expression of
FT, TSF and SOC1 in epidermal peels of WT Arabidopsis leaves was downregulated in
darkness, and the longer the dark duration time, the lower transcription of these genes was
observed during the whole experiment period (Figure 4A,B). Changes in their expression
were in agreement with the stomatal responses of WT plants to dark treatment, suggesting
a positive correlation between dark-induced stomatal closure and the decreased gene
expression of these floral integrators.
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Figure 4. Expression of floral integrator genes in WT and cop1 mutant in response to dark.
(A,B) Gene expression of FLOWERING LOCUS T (FT), TWIN SISTER OF FT (TSF) and SUPPRESSOR
OF OVEREXPRESSION OF CONSTANS1 (SOC1) in epidermal peels of WT was downregulated in
darkness. Leaves of WT Col-0 were incubated in dark for 0–3 h. (C,D) Dark-induced downregulation
of FT, TSF and SOC1 was inhibited by mutation of COP1. Leaves of WT Col-0 and cop1-4 mutant
were incubated in MES buffer under light (L) or dark (D) for 3 h. Total RNA of epidermal peels were
extracted. RT-PCR (A,C) and qRT-PCR (B,D) analysis were performed using TUBLIN BETA CHAIN2
(TUB2) as a control. Different small letters indicate significant differences (p < 0.01).
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To test whether COP1 functions in downregulating the expression of FT, TSF and
SOC1 in guard cells in darkness, we investigated the effects of COP1 mutation on the
expression of FT, TSF and SOC1 in epidermal peels. Results showed that mutation of
COP1 totally inhibited dark-triggered downregulation of these floral integrator genes
(Figure 4C,D). These results indicate that the decrease in FT, TSF and SOC1 expression
are mainly dependent on COP1, and they, in turn, transduce COP1-mediated guard cell
signaling in darkness.

2.5. FT, TSF and SOC1 Participate in Dark-Induced Stomatal Closure

To confirm the role of FT, TSF and SOC1 in dark-induced stomatal closure, we observed
the stomatal responses of ft, tsf and soc1 mutants to dark treatment. Under light condition
(0 h), stomatal apertures of ft-1, ft-2, tsf-1, tsf-2, soc1-11 and soc1-12 mutants were all
significantly smaller than that of WT controls (Figure 5), confirming light-induced stomatal
opening is suppressed in these mutants [5,16,17]. Under darkness for 1 h, the stomatal
aperture in WT plants showed a slight but not significant decrease, while it significantly
decreased in ft, tsf and soc1 mutants. Under darkness for 2 h, both WT and mutants
closed their stomata further. However, by comparing stomatal apertures, we found that
ft, tsf and soc1 mutants maximumly closed their stomata at 2 h (Figure 5), while WT
did it at 3 h (Figures 1 and 5). These results demonstrate the hypersensitive stomatal
responses of ft, tsf and soc1 mutants to darkness, indicating that FT, TSF and SOC1 not
only positively regulate light-induced stomatal opening but also negatively modulate
dark-induced stomatal closing.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 12 
 

 

extracted. RT-PCR (A,C) and qRT-PCR (B,D) analysis were performed using TUBLIN BETA 

CHAIN2 (TUB2) as a control. 

To test whether COP1 functions in downregulating the expression of FT, TSF and 

SOC1 in guard cells in darkness, we investigated the effects of COP1 mutation on the ex-

pression of FT, TSF and SOC1 in epidermal peels. Results showed that mutation of COP1 

totally inhibited dark-triggered downregulation of these floral integrator genes (Figure 

4C,D). These results indicate that the decrease in FT, TSF and SOC1 expression are mainly 

dependent on COP1, and they, in turn, transduce COP1-mediated guard cell signaling in 

darkness. 

2.5. FT, TSF and SOC1 Participate in Dark-Induced Stomatal Closure 

To confirm the role of FT, TSF and SOC1 in dark-induced stomatal closure, we ob-

served the stomatal responses of ft, tsf and soc1 mutants to dark treatment. Under light 

condition (0 h), stomatal apertures of ft-1, ft-2, tsf-1, tsf-2, soc1-11 and soc1-12 mutants were 

all significantly smaller than that of WT controls (Figure 5), confirming light-induced sto-

matal opening is suppressed in these mutants [5,16,17]. Under darkness for 1 h, the sto-

matal aperture in WT plants showed a slight but not significant decrease, while it signifi-

cantly decreased in ft, tsf and soc1 mutants. Under darkness for 2 h, both WT and mutants 

closed their stomata further. However, by comparing stomatal apertures, we found that 

ft, tsf and soc1 mutants maximumly closed their stomata at 2 h (Figure 5), while WT did it 

at 3 h (Figures 1 and 5). These results demonstrate the hypersensitive stomatal responses 

of ft, tsf and soc1 mutants to darkness, indicating that FT, TSF and SOC1 not only positively 

regulate light-induced stomatal opening but also negatively modulate dark-induced sto-

matal closing. 

 

Figure 5. Stomatal responses of ft, soc1 and tsf mutants to dark treatment. Leaves of WT Col-0 and 

Ler, and the ft (ft-1, (A) and ft-2, (B)), soc1 (soc1-11 and soc1-12, (C)) and tsf (tsf-1 and tsf-2, (D)) mu-

tants were incubated in MES buffer in darkness for 0–3 h. The stomata apertures in epidermal peels 

were examined at 1-h intervals. Data are means ± standard error (SE, n = 3). Different small letters 

indicate significant differences (p < 0.01). 

  

Figure 5. Stomatal responses of ft, soc1 and tsf mutants to dark treatment. Leaves of WT Col-0 and Ler,
and the ft (ft-1, (A) and ft-2, (B)), soc1 (soc1-11 and soc1-12, (C)) and tsf (tsf-1 and tsf-2, (D)) mutants
were incubated in MES buffer in darkness for 0–3 h. The stomata apertures in epidermal peels were
examined at 1-h intervals. Data are means ± standard error (SE, n = 3). Different small letters indicate
significant differences (p < 0.01).

2.6. Mutation of FT, TSF and SOC1 Accelerates Dark-Induced NO but Not H2O2 Accumulation
in Guard Cells

Given that FT, TSF and SOC1, as well as H2O2 and NO, all participate in dark-induced
stomatal closure, we further clarified the relationship of H2O2 or NO with the floral
integrators FT, TSF and SOC1 by monitoring H2O2 and NO levels in guard cells of ft, tsf
and soc1 mutants. We found that ft, tsf and soc1 mutants showed the same level of H2O2 as
the WT plants under light or during the dark treatment for 1–3 h (Figure 6), indicating that
mutation of FT, TSF and SOC1 do not affect dark-induced H2O2 accumulation.
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Figure 6. Mutation of FT, TSF or SOC1 does not affect dark-induced H2O2 accumulation in guard
cells. Leaves of WT Col-0 as well as ft-2, tsf-1 and soc1-11 mutants, were incubated in MES buffer
under darkness for the indicated time. Then the images (A) and fluorescence intensities (B) of
guard cells preloaded with H2DCFDA were recorded. For (A), scale bar = 10 µm. For (B), data are
means ± standard error (SE, n = 3). Means with different letters are significantly different at p < 0.01.

In contrast, the NO level in the guard cells of these mutants was significantly higher
than that of WT plants under light conditions and increased faster than that of WT in
response to dark treatment (Figure 7). These results indicate that mutation of FT, TSF and
SOC1 accelerates guard cell NO accumulation under either light or darkness. Obviously,
changes in NO level have a significantly negative correlation with the stomatal apertures
in these mutants under light and dark treatment (r = −0.849, p = 0.008 for ft-2; r = −0.891,
p = 0.003 for tsf-1; and r = −0.890, p = 0.003 for soc1-11), suggesting that downregulation of
FT, TSF and SOC1 expression by darkness facilitates NO accumulation in guard cells and
therefore contributes to dark-induced stomatal closure.
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Figure 7. Mutation of FT, TSF or SOC1 facilitates dark-induced NO accumulation in guard cells.
Leaves of WT Col-0 and ft-2, tsf-1 and soc1-11 mutants were incubated in an MES buffer un-
der darkness for the indicated time. Then the images (A) and fluorescence intensities (B) of
guard cells preloaded with DAF-2DA were recorded. For (A), scale bar = 10 µm. For (B), data
are means ± standard error (SE, n = 3). Means with different letters are significantly different
at p < 0.01.

3. Discussion
3.1. COP1 Mediates Dark-Induced Stomatal Closure through Promotion of NO Accumulation

The E3 ubiquitin ligase COP1 has been well-documented as a central, negative determi-
nant for plant photomorphogenesis [8]. It directs the degradation of diverse light-regulated
transcription factors by the 26S proteasome [8,24]. Additionally, it also acts as a negative
regulator of stomatal development [25]. Recently, increasing evidence also suggests a crucial
role of COP1 in regulating stomatal movement [2,9–13]. These studies demonstrate that COP1
participates in both light-induced stomatal opening and ABA- and UV-B-induced stomatal
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closure. In addition, COP1 has also been indicated to play a role in dark-induced stomatal
closing [6]. Here, the constitutive open-stomata phenotype of both cop1-4 and cop1-6 mutants
provides further evidence that COP1 is required for dark-induced stomatal closure.

HY5 is one of the most studied signaling transcription factors, which sometimes
acts redundantly with its closely related homolog HYH (HY5 HOMOLOG) [20,26]. The
interaction between HY5 and COP1 is involved in many developmental processes [26].
In photomorphogenesis, COP1 acts as a negative factor to promote the degradation of
HY5 [26]. However, it has been reported that, in UV-B signaling, COP1 positively regulates
HY5, and HY5 then mediates UV-B-induced stomatal closure [13,20]. In the present study,
neither hy5 single mutants nor hy5hyh double mutants affected stomatal responses to dark
treatment (Figure 1), indicating HY5 is not involved in the dark-signaling of guard cells.
Our result indicates that, in contrast to UV-B signaling, COP1 acts in a way independent of
HY5 during dark-induced stomatal closure.

H2O2 and NO are famous signaling molecules mediating various physiological pro-
cesses in plants, including stomatal movement [7,18–23,27]. Zhang et al. [21] provided
convincing evidence that H2O2 and NO participate in dark-induced stomatal closure, in
which H2O2 acts upstream of NO. Here, after confirming the essential role of COP1, we
further revealed the relationships among COP1, H2O2 and NO in dark-induced stomatal
closure. Pharmacological and confocal studies strongly support that COP1 functions down-
stream of H2O2 and upstream of NO in dark-induced stomatal closure (Figures 2 and 3).
Similar relationships have also been reported for COP1, H2O2 and NO in UV-B-induced
stomatal closure [13]. Further studies are needed to uncover how COP1 is regulated by
H2O2 and then mediates NO production in UV-B- and dark-induced stomatal closure.
Except for COP1, the MEK1-MPK6 cascade also functions in dark-induced stomatal closure
by mediating H2O2-induced NO accumulation [21]. Whether and how COP1 has crosstalk
with MEK1-MPK6 cascade is worth to be further studied. AtMYB61, an R2R3-MYB tran-
scription factor specifically expressed in guard cells, plays a major role in dark-induced
stomatal closure [28]. Moazzam-Jazi et al. [12] reported that COP1 expression in darkness
is required for the expression of AtMYB61. A study on the relationship between AtMYB61
and NO will also provide a better understanding of COP1 signaling in darkness.

3.2. Floral Integrators FT, TSF and SOC1 Negatively Regulate Dark-Induced Stomatal Closure

Although FT, TSF and SOC1 were originally identified and further well-studied as
crucial flowering regulators, their roles in other physiological processes, such as fruit set and
vegetative growth, have also received a lot of attention [14,15]. These researches suggest
that they are general growth regulators in plants. In the past 11 years, a novel function of
these proteins as regulators of stomatal movement was defined successively [5,16,17,29].
However, these studies focused on light-induced stomatal opening, in which FT, TSF and
SOC1 expressed highly and functioned as positive regulators. Here, we not only revealed
that expressions of FT, TSF and SOC1 all decreased with dark duration time (Figure 4)
but also provided genetic evidence that these floral integrators are negative regulators
in dark-induced stomatal closure (Figure 5). These findings add new information on
the role of FT, TSF and SOC1 as stomatal movement regulators. However, the partially
closed phenotypes of ft, tsf and soc1 mutants under light suggest that alternative signaling
pathway(s) independent of FT, TSF and SOC1 also exist in dark-induced stomatal closure,
which should be further studied.

3.3. COP1 Promotes NO Accumulation by Suppressing FT, TSF and SOC1 Expression

The decreased expression levels of FT, TSF and SOC1, were positively correlated with
the gradually reduced stomatal aperture during dark treatment (Figure 4A). This result
is consistent with previous results that stomatal opening was accompanied by the up-
regulation of FT, TSF and SOC1 expression [5,16,17]. Together, these results demonstrate
that the regulation of dark-induced stomatal closure by FT, TSF and SOC1 is due to the
downregulation of their expressions. Moreover, COP1 mutation not only blocked the
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downregulation of FT, TSF and SOC1 expression in darkness (Figure 4B) but also impaired
dark-induced stomatal closure (Figure 1). These results indicate that COP1 mediates dark-
induced stomatal closure by suppressing FT, TSF and SOC1 expression. CO, a major
regulator of photoperiodic flowering response, is also involved in stomatal opening [5]. It
is well-known that FT and TSF are targets of CO protein, and SOC1 expression is mediated
by FT [5,29]. Besides, we also know that COP1 targets CO for proteasome-mediated
degradation in the dark [8,24]. Therefore, COP1 mediates the down-regulation of FT, TSF
and SOC1 expression in darkness by promoting the degradation of CO, the upstream
regulator of FT, TSF and SOC1. Further studies are needed to test this hypothesis.

To date, little information is available on the relationship of signaling molecules H2O2
and NO with floral integrators FT, TSF and SOC1, especially in guard cells. In the present
study, we showed that H2O2 accumulation in guard cells of ft, tsf and soc1 mutants is
similar to that of WT plants (Figure 6), while NO in guard cells of ft, tsf and soc1 mutants
accumulated faster and higher than that of WT plants under dark treatment (Figure 7). This
result, together with the stomatal phenotypes, indicates that decreased expression of FT,
TSF and SOC1 does not affect H2O2 but promotes NO accumulation in guard cells and
consequently facilitates dark-induced stomatal closure. Our findings enrich mechanisms of
guard cell signaling in darkness and also pose an interesting challenge in elucidating the
molecular mechanisms underlying FT-, TSF-, and SOC1-mediated stomatal movement.

It has been recognized that an appropriately functioning circadian system confers
an adaptive advantage to plants [30]. Wang et al. [31] demonstrated that manipulating
H+-ATPase in guard cells to make stomata open wider in the daytime and still close at night
enhanced plant growth while making the stomata constantly open, even in the dark, did not.
As major regulatory components were mediating the onset of flowering, expression of the
floral integrators (FT, TSF and SOC1) will be activated prior to flowering time [15]. These
photoperiodic flowering components positively affect light-regulated stomatal opening,
probably resulting in the acceleration of photosynthesis to prepare for flowering [5]. The
improved growth may be offset by increased water loss if stomata are still open in the
dark [30]. Therefore, our finding that downregulation of FT, TSF and SOC1 by COP1 to
allow stomata to close normally in the dark may be an important mechanism facilitating
plant growth, especially in the period prior to the flowering time when the floral integrators
are highly expressed.

In summary, the data presented herein demonstrate that COP1 acts downstream of
H2O2 to mediate dark-induced NO accumulation in guard cells and subsequent stom-
atal closure by suppressing expressions of the floral integrator genes FT, TSF and SOC1.
Based on our findings, we put forward a possible model by which COP1 mediates dark-
induced stomatal closure (Figure 8). The novel role of FT, TSF and SOC1 as negative
regulators of dark-induced stomatal closure and the interrelationships among H2O2, COP1,
FT/TSF/SOC1, and NO would no doubt provide clues directing a further study on guard
cell signal transduction.
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4. Materials and Methods
4.1. Plant Materials and Growth Conditions

The following Arabidopsis (Arabidopsis thaliana) lines were used in this study: Col-0,
Ler, Ws, the COP1 mutants cop1-4 and cop1-6 [13], HY5 mutants hy5-1 and hy5-ks50 [13],
hy5hyh double mutant [20], FT mutants ft-1 and ft-2 [16], TSF mutants tsf-1 [5] and tsf-2
(SALK_064104), and the SOC1 mutants soc1-11 (SALK_006054) and soc1-12 (SALK_138131).
hy5-1 and ft-1 were derived from Ler background, hy5-ks50 and hy5hyh from Ws back-
ground, and all other mutants from Col-0 background. cop1-4 and hy5hyh mutants were
kindly provided by Dr. G.I. Jenkins (University of Glasgow, UK) and Dr. X.W. Deng
(Yale University, New Haven, CT, USA), respectively. Other seeds were purchased from
the Nottingham Arabidopsis Stock Center (NASC, Nottingham, UK). All mutants were
confirmed by PCR analysis.

Seeds of wild types and mutants were surface sterilized with bleaching power (20%,
w/v) for 10 min, washed with sterilized water three times, then germinated and grown on
vermiculite. Seedlings were cultured as previously described [21]. Fully expanded leaves
of four–five-week-old healthy plants were harvested and immediately used for different
treatments.

4.2. Stomatal Bioassay

The stomatal bioassays were performed according to Zhang et al. [21] using the rosette
leaves of four–five-week-old WT plants or tested mutants with slight modifications. Freshly
detached leaves were incubated in MES-KCl buffer (50 mmol/L KCl, 10 mmol/L MES-
KOH, pH 6.15) under white light (PPFD 0.1 mmol/m2/s) for 2 h to open the stomata, and
then incubated in the buffer alone or with 100 µmol/L H2O2 or 50 µmol/L SNP under
the same white light or darkness for 1–4 h. After treatments, abaxial epidermal strips
were peeled from the leaves, and stomatal apertures were measured with a calibrated light
microscope. Stomatal bioassays were always started at the same time of the day to avoid the
potential rhythmic effects on stomatal aperture. Data are displayed as means ± standard
errors (SE) of three biological replicates, each with 40 stomata.

4.3. Measurement of Endogenous H2O2 and NO in Guard Cells

Endogenous H2O2 and NO in guard cells were measured according to a previous
study [21] with fluorescent dye H2DCFDA and DAF-2DA, respectively. After being in-
cubated with the fluorescent dye and removing the excess dye in the dark, fluorescence
of the epidermal strips was immediately observed using a confocal laser scanning mi-
croscopy (Leica TCS-SP8 Lasertechnik GmbH, Wien, Austria, excitation 488 nm, emission
515 ± 15 nm, frame 1024 × 1024). Images were then processed with Photoshop software,
and the whole stomata areas were analyzed with Leica Image software to quantify the fluo-
rescence intensity. All presented images represented similar results from three independent
experiments, and the data of fluorescence intensity are presented as means ± SE of three
independent experiments, each with 20 stomata.

4.4. Gene Expression Analysis

Total RNAs were extracted from the epidermal peels with E.Z.N.A.™ Plant RNA Kit
(OMEGA, La Chaux-de-Fonds, Switzerland), and first-strand cDNAs were synthesized
using the PrimeScript™ RT Master Mix (TAKARA, Shiga, Japan) following the manufac-
turer’s instructions. TUBELIN BETA CHAIN2 (TUB2) was used as the control. Twenty-five
cycles of PCR were performed for FT, TSF, SOC1 and TUB2 in RT-PCR. Primer sequences
for RT-PCR analysis of these genes were reported previously [17]. Quantitative gene
expression was analyzed by qRT-PCR with SYBR Green PCR Master Mix as previously
described [32]. The primers that have been successfully used for FT, SOC1, TUB2 [29] and
TSF [33] were used in this study for qRT-PCR analysis.
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4.5. Statistical Analysis

All experiments were repeated three times with similar results. Statistical analysis was
performed using a one-way ANOVA to discriminate significant differences followed by
least significant difference test (LSD).
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