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Abstract: Many basic Helix-Loop-Helix (bHLH) transcription factors precisely regulate the expres-
sion of Fe uptake and translocation genes to control iron (Fe) homeostasis, as both Fe deficiency
and toxicity impair plant growth and development. In rice, three clade IVc bHLH transcription
factors have been characterised as positively regulating Fe-deficiency response genes. However, the
function of OsbHLH057, another clade IVc bHLH transcription factor, in regulating Fe homeostasis
is unknown. Here, we report that OsbHLH057 is involved in regulating Fe homeostasis in rice.
OsbHLH057 was highly expressed in the leaf blades and lowly expressed in the roots; it was mainly
expressed in the stele and highly expressed in the lateral roots. In addition, OsbHLH057 was slightly
induced by Fe deficiency in the shoots on the first day but was not affected by Fe availability in
the roots. OsbHLH057 localised in the nucleus exhibited transcriptional activation activity. Under
Fe-sufficient conditions, OsbHLH057 knockout or overexpression lines increased or decreased the
shoot Fe concentration and the expression of several Fe homeostasis-related genes, respectively.
Under Fe-deficient conditions, plants with an OsbHLH057 mutation showed susceptibility to Fe
deficiency and accumulated lower Fe concentrations in the shoot compared with the wild type.
Unexpectedly, the OsbHLH057-overexpressing lines had reduced tolerance to Fe deficiency. These
results indicate that OsbHLH057 plays a positive role in regulating Fe homeostasis, at least under
Fe-sufficient conditions.

Keywords: rice; bHLH transcription factor; osbhlh057 mutants; Fe deficiency; OE lines; gene expression

1. Introduction

Iron (Fe) is an essential mineral nutrient for plant growth and development as it is
responsible for numerous redox and electron transfer reactions, including chlorophyll
synthesis and photosynthesis. Although abundant in the earth’s crust, Fe precipitates as
insoluble Fe(III) oxides and hydroxides in aerobic or alkaline soils, making Fe unavailable
to plants [1,2]. Fe deficiency stress results in leaf chlorosis and growth reduction and
hence becomes a limiting factor for crop production and quality [3]. Excess Fe in plant
cells, instead, could generate hydroxyl radicals which are toxic to cells via the Fenton
reaction, leading to retarded growth [4,5]. Meanwhile, one billion people suffer from Fe
deficiency anemia, particularly those who rely on plants for dietary Fe [6]. Thus, discovering
sophisticated mechanisms by which plants control Fe homeostasis may profoundly impact
crop yield and human nutrition.

Plants use two distinct Fe-uptake strategies, namely the reduction strategy (Strat-
egy I) and the chelation strategy (Strategy II), which are employed by non-graminaceous
species and graminaceous species, respectively [7]. In Strategy I plants, such as Arabidopsis
(Arabidopsis thaliana), the solubility and mobility of insoluble Fe3+ in the rhizosphere are
firstly improved by H+-ATPase AHA2 pumping protons to lower the pH of rhizosphere and
PLEIOTROPIC DRUG RESISTANCE 9/ATP-BINDING CASSETTE G37 (PDR9/ABCG37)
secreting coumarins. Then, FERRIC REDUCTASE OXIDASE 2 (FRO2) reduces the Fe3+

Int. J. Mol. Sci. 2022, 23, 14869. https://doi.org/10.3390/ijms232314869 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms232314869
https://doi.org/10.3390/ijms232314869
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-1206-4119
https://orcid.org/0000-0002-1641-8933
https://orcid.org/0000-0003-2711-780X
https://doi.org/10.3390/ijms232314869
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms232314869?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 14869 2 of 15

at the root cell surface to Fe2+, which finally is absorbed by IRON REGULATED TRANS-
PORTER 1 (IRT1) [8–11]. In Strategy II plants, such as rice (Oryza sativa L.), TRANS-
PORTER OF MUGINEIC ACID FAMILY PHYTOSIDEROPHORES 1 (TOM1) secretes
2′-deoxymugineic acid (DMA) to chelate Fe3+, thus enhancing the solubility of Fe3+ [12].
Then, the Fe3+-DMA complex is taken up by YELLOW STRIPE 1-LIKE 15 (OsYSL15) [13].
Rice (Oryza sativa L.) can also directly acquire Fe2+ via OsIRT1 [14,15].

For the adaptive fluctuation of Fe availability, plants have evolved a sophisticated
regulatory mechanism of Fe homeostasis in which conserved basic Helix-Loop-Helix
(bHLH) transcription factors (TFs) play a predominant role [16,17]. Studies in the
model plants rice and Arabidopsis have revealed that the Ib, IIIa, IVb, and IVc clades
of bHLH TFs form a precise regulatory network that contains two interconnected reg-
ulatory modules [17]. The first module acts upstream of the Fe uptake and transport
genes. Clade Ib bHLH, bHLH38, bHLH39, bHLH100, and bHLH101 form heterodimers
with clade IIIa bHLH TF FIT/bHLH29 to directly control the uptake of Fe [18–21].
OsIRO2, an Ib TF, can also interact with a clade IIIa bHLH TF Oryza sativa FER-LIKE
FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (OsFIT)/OsbHLH156. The
complex of OsFIT/OsbHLH156 and OsIRO2 directly controls the expression of Strategy
II Fe uptake-related genes [22–24]. Unlike the above bHLH TFs, which act as posi-
tive regulators, rice OsIRO3 and Arabidopsis PYE, belonging to the IVb clade bHLH,
act as negative regulators of some Fe homeostasis-related genes [25–29]. The second
module, composed of the IVb and IVc clade bHLH TFs, acts upstream of the first
module. It has been demonstrated that three rice clades, IVc bHLH TFs [POSITIVE
REGULATOR OF IRON HOMEOSTASIS 1 (OsPRI1)/OsbHLH060, OsPRI2/bHLH058,
OsPRI3/OsbHLH059] and Arabidopsis IVc clade bHLH TFs [IRON DEFICIENCY TOL-
ERANT 1 (IDT1)/bHLH034, IAA-LEUCINE RESISTANT 3(ILR3)/bHLH105,/bHLH104,
and bHLH115], play a positive role in the regulation of Fe deficiency responses by
directly regulating Ib gene expression [30–36]. Previous studies have suggested that
clade IVc bHLH TF activities are regulated by post-transcriptional regulation. HEMERY-
THRIN MOTIF-CONTAINING REALLY INTERESTING NEW GENE (RING)- AND
ZINC-FINGER PROTEIN 1 (OsHRZ1) in rice and their ortholog BRUTUS (BTS) in
Arabidopsis, which are the putative rice Fe sensors, can degrade OsPRI1/OsbHLH060,
OsPRI2/bHLH058, and OsPRI3/OsbHLH059 and (ILR3)/bHLH105 and bHLH115, re-
spectively [30,32,37,38]. OsbHLH061, another member of clade IVb bHLH, has been
proven to be a negative regulator of Fe homeostasis by interacting with OsPRI1 and
recruiting TOPLESS/TOPLESS-RELATED (TPL/TPR) repressors [39]. OsIRO3 can also
inhibit the transcriptional activity of OsPRI1 by recruiting OsTPL/TPRs [29]. In Ara-
bidopsis, clade IVb bHLH TF bHLH011 also negatively regulates Fe homeostasis by
recruiting TPL/TPRs to inhibit clade IVc bHLH TFs [40]. Another clade IVb bHLH TF,
bHLH121, forms a complex with clade IVc bHLH TFs to positively regulate Fe home-
ostasis [41–43]. Thus, the regulatory framework of Fe homeostasis in plants has been
proposed to comprise HRZ/BTS → IVc/IVb bHLHs → Ib/IVb bHLHs → Fe uptake
and transport-related genes. OsbHLH057 is the fourth member of the rice clade IVc
bHLH TFs [25]. Recently, functional analysis of OsbHLH057 suggested that it positively
regulates disease resistance and drought tolerance [44]. However, to date, there is still
a lack of information on the role of OsbHLH057 in the regulation of Fe homeostasis.
Therefore, the aim of the present study was to determine whether and how OsbHLH057
is involved in regulating Fe homeostasis.

Here, using a reverse genetic method, we demonstrate that OsbHLH057 is a criti-
cal factor that helps maintain Fe homeostasis. We showed that OsbHLH057′s transcript
abundance is not changed by Fe deficiency in the roots but is induced in the shoots early
in Fe deficiency. OsbHLH057 is a transcription activator localised in the nucleus. The
knockout of OsbHLH057 decreased Fe deficiency tolerance, shoot Fe concentration, and
some Fe homeostasis-related gene expression. Furthermore, overexpression of OsbHLH057
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increased the shoot Fe concentration and the expression of several Fe homeostasis-related
genes under Fe-sufficient conditions.

2. Results
2.1. Expression Pattern of OsbHLH057

Sequence analysis revealed that the genomic DNA of OsbHLH057 was composed of 3126
base pairs (bp), containing five exons and four introns (Figure S1A). The protein encoded by
OsbHLH057 with 256 amino acids has a typical bHLH-ZIP domain and one OsHRZ-interacting
domain identified by Peng et al. (2022) [45] in the C-terminal (Figure S1B). Therefore, we exam-
ined whether OsbHLH057 binds to OsHRZ1 and OsHRZ2 by use of a yeast-two-hybrid assay.
The results of this assay showed that OsbHLH057 interacts with the C-terminal segments of
OsHRZ1 and OsHRZ2 (Figure S2A), which is consistent with previous studies [45]. Moreover,
a split luciferase complementation imaging assay showed that OsbHLH057 interacts with
OsHRZ1 and OsHRZ2 but not with the negative control (Figure S2B), suggesting that the
interaction between OsbHLH057 and OsHRZ1 or OsHRZ2 takes place in planta.

OsbHLH057 expression was investigated in different tissues at different growth stages.
The results of reverse transcription quantitative PCR (RT-qPCR) showed that OsbHLH057
was ubiquitously expressed and primarily expressed in the leaf blades and leaf sheaths at all
growth stages (Figure 1A). To further investigate whether the expression of OsbHLH057 was
affected by Fe availability, we exposed rice plants to Fe deficiency over 7 d and subsequently
resupplied them with Fe for 3 d. The expression of OsbHLH057 was unaffected by Fe
deficiency in the roots (Figure 1B) and was only slightly induced in the shoots by Fe
deficiency at 1 d (Figure 1C).
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Figure 1. Expression profiling of OsbHLH057 in rice. (A) Reverse transcription quantitative PCR (RT-
qPCR) analysis of the expression levels of OsbHLH057 in various rice tissues of different growth stage.
(B,C) RT-qPCR analysis of the expression levels of OsbHLH057 in the root (B) and shoot (C) under
different Fe supply conditions. (D) GUS staining of various tissues in ProOsbHLH057::GUS transgenic
plants, including root tips (RT), basal mature zone of root (BMZ), lateral roots (LR), transverse section
of BMZ (TBMZ), transverse section of TR (TLR), leaf (L), leaf sheaths (LS), ligule and auricle (LA),
basal node (BN), transverse section of BN (TBN), and transverse section of L (TL). Red line in BN
indicates the place of section. Scale bars = 50 µM in TBMZ, TLR, and TL; Scale bars = 1 mm in
other pictures.

To further investigate the expression pattern of OsbHLH057 in different tissues, a
2175-bp promoter of OsbHLH057 was used to drive beta-glucuronidase (GUS) expression
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in rice plants. GUS staining results suggested that OsbHLH057 was mainly expressed
in the meristematic zone of root tips and the stele of the basal mature zone of the root
and was highly expressed in the lateral roots (Figure 1D). In the shoot, OsbHLH057 was
highly expressed in leaf blades and sheaths but had no expression in leaf ligule and auricle
(Figure 1D). In the leaf blades, OsbHLH057 was highly expressed in vascular tissues and
mesophyll cells (Figure 1D). Furthermore, the transverse section of the basal node showed
that the vascular bundles had strong OsbHLH057 expression (Figure 1D).

2.2. OsbHLH057 Is a Nucleus-Localised Transcription Activator

To explore the subcellular localisation of OsbHLH057, the 35S::OsbHLH057-GFP vector
was transiently co-transformed into rice mesophyll protoplasts with the 35S::NLS-mCherry
vector. The GFP signal of the OsbHLH057-GFP fusion protein was detected only in the
nucleus and overlapped with the mCherry signal of the NLS-mCherry protein, a nuclear
marker (Figure 2A). This observation suggests that OsbHLH057 is a nucleus-localised
protein, which agrees with the predicted function of OsbHLH057 as a TF. To further examine
the transcription activity of OsbHLH057, a dual luciferase reporter assay was performed.
In this system, the firefly luciferase (LUC) under the control of five repeats of the GAL4
binding cis-element with mini 35S was used as the reporter construct, in which Renilla
luciferase (REN) driven by a constitutive cauliflower mosaic virus (CaMV) 35S promoter
was used as an internal control. An effector plasmid was constructed by fusing OsbHLH057
to the GAL4 DNA binding domain (BD), which was driven by the CaMV 35S promoter,
and the blank vector 35S::BD was used as the control effector (Figure 2B). As expected, the
fusion protein BD-OsbHLH057-transfected tobacco leaves had a much higher value of LUC
to REN than the control effector, indicating that OsbHLH057 had transcription activation
activity. These results suggest that OsbHLH057 is a nucleus-localised transcription activator.
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Figure 2. Subcellular localization and transcriptional activity of OsbHLH057. (A) Subcellular localiza-
tion of OsbHLH057 in rice protoplasts. OsbHLH057 was fused with GFP to obtain the OsbHLH057-
GFP fusion protein. Nucleus localization signal (NLS) fused with mCherry was used as a nuclear
marker. The upper row indicates the fluorescent signal from co-expressing OsbHLH057-GFP and
NLS-mCherry. As a negative control, the bottom row shows the fluorescent signal from co-expressing
GFP and NLS-mCherry. Scale bars, 8 µm. (B) Diagram of vectors of the OsbHLH057 transcriptional
activity assay. Five repeats of GAL4 binding cis-element with mini 35S were fused with firefly
luciferase (LUC) as the reporter vector in which 35S driven Renilla luciferase (REN) as an internal con-
trol. The full-length coding sequence of OsbHLH057 was fused with the GAL4 DNA binding domain
(BD) to create 35S::BD-OsbHLH057 effector vector. The empty vector 35S::BD was used as a control.
(C) OsbHLH057 has transcription activation activity. The reporter plasmid was co-transformed with
35S::BD or 35S::BD-OsbHLH057 into tobacco leaves using Agrobacterium-mediated transformation.
The relative LUC:Ren ratio under BD was set to 1. Values are means ± SD of six technical replicates.
Asterisks indicate significant differences between BD and OsbHLH057 based on two-tailed Student’s
t-test (**** p < 0.0001).

2.3. Loss-of-Function Mutation of OsbHLH057 Results in Decreased Fe Accumulation in the Shoot

To assess the function of OsbHLH057 in the regulation of Fe homeostasis in rice,
two independent OsbHLH057 mutants were obtained using CRISPR-Cas9 technology.
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Two OsbHLH057 gene sequences in the first and second exons were selected as mutation
sites (Figure S1A). The two homozygous osbhlh057 mutants (osbhlh057-1 and osbhlh057-2)
were identified by sequencing. osbhlh057-1 and osbhlh057-2 had a deletion of ‘C’ and an
insertion of ‘A’, respectively (Figure S3A), both of which resulted in the appearance of a
frameshift mutation and a premature stop codon (Figure S3B). Then, we compared the
growth performance of wild type (WT) and osbhlh057 mutants under both Fe-sufficient
and -deficient conditions. Regardless of Fe availability, the growth performance of the
osbhlh057 mutants was apparently poorer than that of the WT, which was consistent with
the lower biomass of roots and shoots in the osbhlh057 mutants compared with the WT
(Figure 3A,D,E). After one week of Fe deficiency treatment, the new leaves from plants
under Fe-deficient conditions showed chlorosis, a typical phenotype of Fe deficiency. The
new leaves of the osbhlh057 mutants had more chlorosis than the WT (Figure 3B). Consistent
with this observation, the leaf soil and plant analyser development (SPAD) values of
the osbhlh057-1 and osbhlh057-2 mutants were significantly lower than those of the WT
(Figure 3C).
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Figure 3. Phenotypes of OsbHLH057 loss-off-function mutants. 12-day-old seedlings of WT, osbhlh057-1,
and osbhlh057-2 were shifted in nutrient solution with or without Fe for 7 d. (A) Pictures of 19-d-old
seedlings. Scar bars, 5 cm. (B) New leaves from seedlings under Fe-deficient condition. Magnification
of part leaves in the dotted line in (A) with 5 times. (C) The SPAD of the third leaves. (D,E) Root and
shoot biomass. Root (D) and shoot (E) dry weight. (F,G) Fe concentration in the WT, osbhlh057-1, and
osbhlh057-2. Root (F) and shoot (G) Fe concentration. Data in (C–E) and (F,G) represent the means
± standard deviation (SD) of six and three biological replicates, respectively. Means with different
letters are statistically significant differences as determined by one-way ANOVA followed by Duncan’s
multiple-range test (p < 0.05).

Furthermore, we measured the Fe concentration in the osbhlh057 mutants. Under both
Fe-sufficient and -deficient conditions, the root Fe concentrations of the osbhlh057 mutants
were similar to that of the WT (Figure 3F). The shoot Fe concentrations in the osbhlh057
mutants were significantly lower than that in the WT control, regardless of external Fe
availability (Figure 3G).

2.4. Overexpressing OsbHLH057 Enhances Fe Accumulation in the Shoot under
Fe-Sufficient Conditions

To further clarify the functions of OsbHLH057 in the regulation of Fe homeostasis, we
generated OsbHLH057 overexpression transgenic plants containing the full-length coding
sequence of OsbHLH057 driven by a CaMV 35S promoter. RT-qPCR analysis indicated
that the transcript abundance of OsbHLH057 was significantly higher in the two inde-
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pendent overexpression plants (OsbHLH057-OE-2 and OsbHLH057-OE-4) than in the WT
control (Figure S4). Compared with the WT plants, both OsbHLH057 overexpressing lines
displayed shorter roots and shoots with less biomass under Fe-sufficient and -deficient
conditions (Figure 4A,D,E). Under Fe-sufficient conditions, the Fe concentration in the
shoots of OsbHLH057-OE-2 and OsbHLH057-OE-4 was higher than that of the WT, as
expected (Figure 4G). Additionally, the root Fe concentration was significantly lower in
OsbHLH057-OE-2 than in the WT and decreased in OsbHLH05-OE-4 compared to the WT,
but there was no statistical difference (p-value = 0.0739) (Figure 4F). Under Fe-deficient
conditions, the new leaves of OsbHLH057-OE-2 and OsbHLH057-OE-4 plants showed more
chlorosis, and lower SPAD values than the WT. The shoot Fe concentrations of the Os-
bHLH057-OE-2 and OsbHLH057-OE-4 plants were lower than that of the WT, but there was
no statistical difference between the WT and OsbHLH057-OE-4 plants, except for those
that were unaccepted (Figure 3A–C,G). In addition, there was no substantial alteration in
the root Fe concentration between the WT and OsbHLH057-overexpressing lines under
Fe-deficient conditions (Figure 4G). These observations indicate that OsbHLH057 overex-
pression results in Fe overaccumulation in the shoot under Fe-sufficient conditions but
causes hypersensitivity to Fe deficiency.
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Figure 4. Phenotypes of OsbHLH057 overexpression lines. (A) Images of wild-type (WT) and
OsbHLH057 overexpression lines. Bar, 5 cm. (B) New leaves of WT and OsbHLH057 overexpression
lines. Bar, 5 cm. (C) Soil and plant analyzer development (SPAD) values of new leaves of WT
and OsbHLH057 overexpression lines. Data represent the means ± SD of six biological replicates.
(D,E) Root length (D) and shoot height (E) of WT and OsbHLH057 overexpression lines. Data
represent the means ± SD of six biological replicates. (F,G) Fe concentrations in the root (F) and
shoot (G) of WT and OsbHLH057 overexpression lines. Data represent the means SD of four
biological replicates. Here, 12-d-old rice seedlings of WT and OsbHLH057 overexpression lines
were transferred to a solution containing 0 (Fe) or 2 µM (+Fe) FeSO4 and grown for 8 d. Means with
different letters indicate statistically significant differences as determined by one-way ANOVA
followed by Duncan’s multiple-range test (p < 0.05).

2.5. Expression of Fe Homeostasis-Related Genes in the WT and OsbHLH057 Knockout Mutant or
Overexpression Lines

Based on these results, OsbHLH057, as a transcription factor, was expected to main-
tain Fe homeostasis by controlling the expression of many Fe homeostasis-related genes.
Therefore, we examined gene expression changes in the WT and osbhlh057 mutant plants.
In rice, OsNAS1, OsNAS2, TOM1, OsYSL15, and OsNATT1 are representative Fe-deficiency
response genes involved in Fe uptake and transport. In our RT-qPCR assay, the expression
of these genes was strongly induced by Fe deficiency, as expected, and showed similar
expression levels in Fe-deficient roots of WT and osbhlh057 mutant plants under Fe-deficient
conditions (Figure 5). However, the transcript abundances of OsNAS1, OsNAS2, TOM1,
OsYSL15, and OsNATT1 in the osbhlh057 mutant were significantly repressed compared
with the WT under Fe-sufficient conditions (Figure 5). The rice bHLH protein OsIRO2 is a
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vital regulator of Fe homeostasis that controls the expression of OsNAS1, OsNAS2, TOM1,
OsYSL15, and OsNATT1. Therefore, we quantified the expression level of OsIRO2 in the WT
and osbhlh057-1. Similar to OsNAS1, OsNAS2, TOM1, OsYSL15, and OsNATT1, the OsIRO2
expression level in osbhlh057-1 was lower than in the WT under Fe-sufficient conditions but
identical to the WT under Fe-deficient conditions (Figure 5).
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Figure 5. Expression of Fe homeostasis-related genes in the WT and osbhlh057-1 mutant. 12-day-old
seedlings of the WT and osbhlh057-1 mutant were transferred to 1/2 Kimura B solution containing
2 µM FeSO4 or 0 µM FeSO4 for 4 days. The roots were sampled for gene expression analysis. OsActin1
was used as an internal control. Data are means ± SD of three biological replicates. Asterisks indicate
significant differences between WT and osbhlh057-1 based on two-tailed Student’s t-test (* p < 0.05).

We further investigated the gene expression changes of OsNAS1, OsNAS2, TOM1,
OsYSL15, OsNATT1, and OsIRO2 in OsbHLH057-overexpressing transgenic plants. Com-
pared to the WT, the expression levels of these genes were strongly upregulated in the roots
of the OsbHLH057-overexpressing lines under Fe-sufficient conditions (Figure 6). Under
Fe-deficient conditions, whereas the expression levels of OsNAS2 and OsYSL15 were signifi-
cantly downregulated in the OsbHLH057-overexpressing lines compared with the WT, the
expression levels of TOM1, OsYSL15, OsNATT1, and OsIRO2 were no different between the
WT and OsbHLH057-overexpressing lines, except that OsTOM1 expression was lower in the
OsbHLH057-OE-4 than in the WT (Figure 6).
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Figure 6. Expression of Fe homeostasis-related genes in the WT and OsbHLH057 overexpression lines.
12-day-old the WT and OsbHLH057 overexpression seedlings were transferred to nutrient solution
with 2 µM FeSO4 or without FeSO4 for 7 days. The expression of OsNAS1 (A), OsNAS2 (B), OsTOM1
(C), OsYSL15 (D), OsNAAT1 (E), and OsIRO2 (F) in the roots were analyzed. OsActin1 was used as
an internal control. Data are means ± SD of three biological replicates. Means with different letters
indicate statistically significant differences as determined by one-way ANOVA followed by Duncan’s
multiple-range test (p < 0.05).
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These results indicate that OsbHLH057 positively regulates the expression of many Fe
homeostasis-related genes, at least under Fe-sufficient conditions.

3. Discussion

Plants could precisely sense and transmit Fe signals to TFs to properly regulate
the expression of Fe homeostasis-related genes [30–32]. In rice, three clade IVc bHLH
TFs, OsPRI1/OsbHLH060, OsPRI2/bHLH058, and OsPRI3/OsbHLH059, facilitate Fe
homeostasis by positively regulating the expression of Fe uptake and transport-related
genes. As one of the clades IVc bHLH TFs, whether OsbHLH057 is involved in regulating
Fe homeostasis in rice is unknown. Determining how OsbHLH057 maintains iron
homeostasis benefits a comprehensive understanding of the rice Fe homeostasis network
and breeding of Fe-fortified rice. In the present study, we show that OsbHLH057 is an
essential regulator in controlling Fe homeostasis.

Through RT-qPCR analysis, we found that OsbHLH057 expression was unaffected
by external Fe availability in the roots but was slightly induced by Fe deficiency and was
highly expressed in the leaves (Figure 1B,C). Previous studies showed that OsbHLH057
expression was somewhat influenced by Fe shortage in both roots and leaves [31] and
was elevated in the leaves compared to the roots. The slight difference in the results of
OsbHLH057 expression in the roots under Fe-deficient conditions may be attributed to
different growth conditions. For other IVc bHLH genes, Zhang et al. (2017, 2020) reported
that the gene expression of OsbHLH058/059/060 was unaffected by deficiency [30,32].
Kobayashi et al. (2019) found that OsbHLH060 expression was slightly induced by Fe
deficiency. OsbHLH059 expression was unaffected by Fe deficiency, and OsbHLH058 was
repressed by Fe deficiency [31]. These results suggest that IVc bHLH genes are not easily
changed by Fe deficiency at the transcript level.

Studying osbhlh057 loss-of-function mutants revealed that OsbHLH057 is essential
for the response to Fe deficiency and for maintaining Fe homeostasis (Figure 3). Com-
pared with the WT, OsbHLH057 knockout resulted in more chlorosis in new leaves under
Fe-deficient conditions and decreased the Fe concentration in the shoots under both
Fe-sufficient and -deficient conditions (Figure 3). In addition, the Fe concentration in the
OsbHLH057-overexpressing lines further supports the idea that OsbHLH057 acts as a pos-
itive regulator of Fe homeostasis. The shoot Fe concentration in the plants overexpressing
OsbHLH057 was increased by 33.8–46.8% compared with the WT when grown under
Fe-sufficient conditions (Figure 4G). Furthermore, we explored the mechanism by which
OsbHLH057 positively regulates Fe homeostasis. OsNAS1, OsNAS2, OsTOM1, OsYSL15,
OsNAAT1, and OsIRO2 were representative of Fe uptake- and transport-related genes
and Fe deficiency-induced genes. In our assay, the expression levels of OsNAS1, OsNAS2,
OsTOM1, OsYSL15, OsNAAT1, and OsIRO2 were strongly induced by Fe deficiency,
but this process was unaffected by the osbhlh057 mutants. However, the expression of
these genes was repressed in the osbhlh057 mutants but enhanced in the OsbHLH057-
overexpressing lines under Fe-sufficient conditions (Figures 5 and 6). Consistent with
this finding, we demonstrated that OsbHLH057 exhibited transcriptional activation
activity (Figure 2B,C). Moreover, OsIRO2 expression was regulated by OsbHLH057, indi-
cating that OsbHLH057 acts upstream of OsIRO2. Recently, OsbHLH057 was found to
interact with OsHRZ1 and OsHRZ2 in a yeast-two-hybrid assay. We demonstrated that
OsbHLH057 physically interacted with OsHRZ1 and OsHRZ2, which are situated up-
stream of the Fe homeostasis network, in plants and yeast (Figure S2). These data suggest
that OsbHLH057 acts upstream of the Fe homeostasis network. Therefore, OsbHLH057
is crucial for Fe uptake and transport-related gene expression and hence facilitates Fe
homeostasis under Fe-sufficient conditions.
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To our surprise, the OsbHLH057-overexpressing lines displayed chlorotic leaves
and decreased Fe concentration in the shoots when grown in low-Fe conditions; no
statistical difference was observed between the WT and OsbHLH057-OE-4 (Figure 4). This
unexpected result may be attributed to the secondary effect of OsbHLH057 driven by the
CaMV 35S promoter. First, the ubiquitous expression of the 35S promoter changes the
tissue-specified expression of OsbHLH057, which may be critical for OsbHLH057 function
under Fe-deficient conditions. Secondly, bHLH34/104/105/115, Arabidopsis IVc bHLH
TFs, can form homo-or heterodimers, affecting their regulation activity [34–36]. Therefore,
rice IVc bHLH TFs may also form homo- or heterodimers, and the high expression level
of OsbHLH057 may disorder the balance of the dimerization process, especially under
Fe-deficient conditions where OsbHLH057 is likely not easily degraded by OsHRZ1/2.
Another explanation for the susceptibility to Fe deficiency in OsbHLH057-overexpressing
lines may be attributed to possessing some targets that differ from their paralogs. In
Arabidopsis, the overexpression of bHLH105 (ILR3) also showed chlorotic leaves, which
may contribute to the downregulation of genes encoding chloroplast proteins, and At-
NEET, which functions as a Fe-S/Fe donor in chloroplasts [46]. Thus, OsbHLH057 may
indirectly downregulate some genes encoding chloroplast-related proteins to influence
Fe uptake and transport under Fe-deficient conditions.

Our data indicate that the effects of OsbHLH057 on regulating Fe uptake and trans-
port are not entirely similar to their paralogs. Previous studies have shown that all
mutants of OsPRI1/OsbHLH060, OsPRI2/bHLH058, and OsPRI3/OsbHLH059 accumulate
higher levels of Fe in the roots but lower levels in the shoots, suggesting that Fe translo-
cation from root to shoot is impaired [30,32]. For the osbhlh057 mutants, although the
Fe concentration in the roots was not significantly different, the Fe concentration in
the shoots was considerably lower than in the WT (Figure 3F,G). This result supports
that the translocation of Fe from root to shoot is disrupted in the osbhlh057 mutants,
which is further supported by the higher Fe concentration in the shoots but lower Fe
concentration in the roots of the OsbHLH057-overexpressing lines under Fe-sufficient
conditions (Figure 4F,G). Although there was no significant difference (p-value = 0.0739)
based on statistical analysis, the root Fe concentration in OsbHLH057-OE-4 decreased
17% compared to the WT. The expression of OsbHLH057 in the roots was mainly ex-
pressed in the stele (Figure 1D), which is also related to the function of OsbHLH057
in regulating the translocation of Fe to the shoot. Unlike the lower Fe concentrations
in the roots of the OsbHLH057-overexpressing lines, the OsPRI2/bHLH058- and Os-
PRI3/OsbHLH059-overexpressing transgenic plants contained higher Fe concentrations
in both the roots and shoots [32]. The differences among the lines overexpressing
OsbHLH057, OsPRI2/bHLH058, and OsPRI3/OsbHLH059 suggests that their effects on
regulating Fe uptake and transport have some nuance. A slight difference also appeared
in the regulation of Fe homeostasis-related genes compared with the WT; the expression
of Fe homeostasis-related genes was repressed in the osbhlh057 mutants only under
Fe-sufficient conditions (Figure 5) but repressed in the mutants of OsPRI1/OsbHLH060,
OsPRI2/bHLH058, and OsPRI3/OsbHLH059 under both conditions [30,32].

In conclusion, we developed a schematic function model for OsbHLH057 (Figure 7).
Under Fe-sufficient conditions, loss-of-function or overexpression of OsbHLH057 did
not affect the SPAD value but decreased or increased the shoot Fe concentration and
the expression of Fe homeostasis-related genes; overexpression of OsbHLH057 led to a
slight decrease in the root Fe concentration. Under Fe-deficient conditions, both loss-
of-function and overexpression of OsbHLH057 resulted in a decreased SPAD value and
shoot Fe concentration but no change in root Fe concentration and gene expression
compared with the WT.
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arrows, SPAD value; pink, Fe concentration; white, gene expression.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Using a CRISPR-Cas9 genome editing system [47], we generated OsbHLH057-knockout
mutants (osbhlh057-1 and osbhlh057-2) in the Oryza sativa cv. Nipponbare background. Guide
RNA (gRNA1) and gRNA2 sequences were selected and ligated into the SK-gRNA vector,
and then the SK-gRNA1 and SK-gRNA2 vectors were cut with Kpn I and Bgl II. Finally,
the segments containing gRNA1 and gRNA2 were ligated into the pC1300-Cas9 vector
cut with Kpn I and BamH I, respectively. To test the role of OsbHLH057, we created two
OsbHLH057-overexpressing lines in the Nipponbare background in which two independent
lines (OsbHLH057-OE-2 and OsbHLH057-OE-4) were used for the subsequent analysis.
For the construction of the OsbHLH057-overexpressing vector, the full-length CDS of Os-
bHLH057 was cloned from the cDNA of Nipponbare and first inserted into the vector
pDONR221 and finally recombined into the vector pGWB2 [48]. To construct the ProOs-
bHLH057::GUS vector, a 2175-bp genomic DNA was amplified by 2×Hieff Canace® Plus
PCR Master Mix (Yeasen, Shanghai, China) and recombined into the vector pCAMBIA1300-
GUS using ClonExpress® II One Step Cloning Kit (Vazyme, Nanjing, China). The above
resultant plasmids were transferred to Agrobacterium tumefaciens EHA105. Transformations
to the callus of Nipponbare were carried out as described previously [49]. All primers used
for the construction of vectors are listed in Supplemental Table S1.

After germination in water for two days at 37 ◦C, the seeds were transferred to a net
floating on 0.5 mM CaCl2 solution and kept dark for three days. At the fourth day, CaCl2
solution was replaced by one-half-strength Kimura B solution which containing 0.18 mM
(NH4)2SO4, 0.27 mM MgSO4, 0.09 mM KNO3, 0.18 mM CaNO3, 0.09 mM KH2PO4, 0.50 µM
MnCl2, 3.00 µM H3BO3, 1.00 µM (NH4)6Mo7O2, 0.40 µM ZnSO4, 0.20 CuSO4, and 2.00 µM
FeSO4. The solution pH was adjusted to 5.5 and renewed every two days. Seedlings were
grown in a greenhouse with 14 h 30 ◦C: 10 h 25 ◦C, light: dark cycles. For Fe deficiency
treatments, the FeSO4 was removed from the solution.

4.2. RNA Isolation and RT-qPCR

To examine the tissue-specific expression of OsbHLH057 in different growth stages,
different tissues, including root, basal node, leaf blade, leaf sheath, node I, panicle, and seed,
from rice plants at vegetative growth, flowering, or grain filling were sampled, as described
previously [50]. To investigate the Fe deficiency response of OsbHLH057, two-week-old
seedlings were treated without Fe for seven days (7 d) and then resupplied with 2 µM
FeSO4 for 3 d. The roots and shoots were collected at 1, 3, 5, and 7 d in Fe deficiency
treatment and 1 and 3 d in the Fe resupply stage. For examining the relative expression
of OsbHLH057 in the OsbHLH057-overexpressing lines, roots of the wild type (WT) and
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OsbHLH057-overexpressing lines cultivating in the solution with 2 µM FeSO4 was collected
and stored at −80 ◦C

For analyzing gene expression influenced by OsbHLH057, wild type, OsbHLH057-
knockout mutants, and OsbHLH057-overexpressing lines were planted in solution with or
without Fe for one week, and the roots were collected for RNA extraction.

Total RNA was extracted using TaKaRa Universal RNA Extraction Kit (TaKaRa,
Dalian, China) and then synthesized to cDNA using TaKaRaPrimeScript™ 1st Strand
cDNA Synthesis Kit (TaKaRa, Dalian, China). The subsequent cDNA was used for
real-time quantitative PCR (RT-qPCR) using ChamQ™ SYBR® Color qPCR Master Mix
(Vazyme, Nanjing, China) on a Mastercycler® ep realplex real-time PCR system (Eppen-
dorf, Hamburg, Germany). OsActin1 was amplified as an internal control. The relative
gene expression level was calculated by the Equation 2−44Ct. All primers used for
RT-qPCR are listed in Supplemental Table S1.

4.3. Subcellular Localization Analysis

For subcellular localization, the coding sequence (CDS) without stop codon of
OsbHLH057 was cloned into the N terminus of GFP in the pYL322-d1-eGFP vector
using ClonExpress® II One Step Cloning Kit (Vazyme, Nanjing, China) to generate
35S::OsbHLH057-GFP vector. The 35S::NLS-mCherry vector was used as a nuclear marker.
The co-transformed 35S::OsbHLH057-GFP and 335S::NLS-mCherry vectors were tran-
siently expressed in rice protoplasts, as described previously [51]. As a negative control,
35S::GFP and 335S::NLS-mCherry vectors were also co-transformed. The fluorescence
signals were observed using a laser confocal microscope (UltraVIEW VOX, PerkinElmer,
Waltham, MA, USA). Primers used for subcellular localization are listed in Supplemental
Table S1.

4.4. Transcription Activity Analysis

For the GAL4-dependent chimeric transactivation assay, transient dual-luciferase
expression assays were performed. The full-length CDS of OsbHLH057 was amplified and
fused into the effector vector pCAMBIA1300-BD, creating 35S::BD-OsbHLH057. The reporter
plasmid 5×GAL4-mini35S::firefly luciferase (LUC) containing 35S::renilla firefly luciferase (REN)
internal control was used before [39]. Combinations of these effector vectors (35S::BD-
OsbHLH057 and 35S::BD) and reporter vectors were transformed into tobacco leaves using
Agrobacterium-mediated transformation, as described previously [39]. In Agrobacterium-
mediated transformation, the bacteria expressing the corresponding vector were cultured,
harvested, and re-suspended in Murashige and Skoog-MES medium containing 10 mM
MES, 0.2 mM acetosyringone, and 10 mM MgCl2 (pH = 5.6) to the highest concentration
of OD600 = 0.5. Then, the Agrobacterium were mixed and infiltrated into N. benthamiana
leaves. The infiltrated leaves were sampled for measuring LUC and REN activities using
a Dual-Luciferase Reporter Assay Kit (Yeasen, Shanghai, China). The activity of LUC to
REN under BD control was set to 1. The primers used for transcription activation assays
are given in Supplemental Table S1.

4.5. Yeast-Two-Hybrid Assay

For the yeast-two-hybrid-assay, the full-length CDS of OsbHLH057 was cloned and
fused into the vector pGADT7 (AD) to generate AD-OsbHLH057. The C terminus of OsHRZ1
and OsHRZ2 were inserted into the vector pGBKT7 (BD) to form BD- OsHRZ1C and BD-
OsHRZ2C, respectively. These AD and BD vectors were transformed into AH109 cells.
After culturing on the synthetic dropout nutrient medium lacking tryptophan and leucine
and the synthetic dropout nutrient medium lacking tryptophan, leucine, histidine, and
adenine plates at 30 ◦C for 2 d. The yeast cells could grow on both selective mediums, which
indicated protein–protein interactions. The primers used for the yeast-two-hybrid-assay
are listed in Supplemental Table S1.



Int. J. Mol. Sci. 2022, 23, 14869 12 of 15

4.6. Split-LUC Complementation Assay

The C terminus of OsHRZ1 or OsHRZ2 without a stop codon was amplified from rice
cDNA and inserted into pCAMBIA1300-nLUC [52] vector, and the full-length coding se-
quence of OsbHLH057 was amplified and fused with cLUC in the vector of pCAMBIA1300-
cLUC [52] through homologous recombination using the ClonExpress II One Step Cloning
Kit (Vazyme, Nanjing, China). Combination proteins, OsHRZ1C-nLUC or OsHRZ1C-nLUC
and cLUC-OsbHLH057, cLUC-OsbHLH057 and nLUC, OsHRZ1C-nLUC or OsHRZ1C-
nLUC and nLUC, and cLUC and nLUC were transformed into tobacco leaves via Agrobac-
terium-mediated transformation, as described above transcription activity assay. The
transinfected leaves were sampled for LUC signal detection using a Tanon 5200 Multi
automatic chemiluminescence/fluorescence image analyzer (Tanon, Shanghai, China). The
reconstruction of the LUC signal indicated the occurrence of interaction between proteins.
The primers used for the construction of vectors are listed in Table S1.

4.7. Measurement of SPAD Values and Fe Concentrations

12-day-old seedlings of the WT and OsbHLH057-knockout and -overexpressing were
transferred in nutrient solution containing 2 or 0 µM FeSO4 and grown for 7 d. The portable
chlorophyll meter (SPAD-502; Konica Minolta Sensing, Osaka, Japan) was used to measure
the SPAD values of the new fully expanded leaves. The roots and shoots were collected for
Fe concentration analysis. The method used to digest the roots and shoots was according
to Dong et al., 2018 [53]. The Fe concentration was examined using inductively coupled
plasma mass spectrometry (ICP-MS; NexION 300X; Perkin-Elmer, Waltham, MA, USA).

4.8. Histochemical GUS Staining

Histochemical GUS staining was performed in the ProOsbHLH057::GUS transgenic
rice plants. Various organs of seedlings grown in nutrient solution containing 2 µM FeSO4
were harvested and subjected to GUS staining as described previously [24]. After vacuum
treatment for 30 min, the samples were incubated at 37 ◦C overnight and decolorized with
95% ethanol. Photographs were taken with a stereo microscope (Nikon, Tokyo, Japan).
Sections of 20 µm thickness were cut and photographed using a vibratome (VT1200S, Leica,
Nussloch, Germany) and a microscope (DM500, Leica, Nussloch, Germany), respectively.

4.9. Statistical Analysis

Data analysis was performed using SPSS v.20.0 (IBM Corp, Armonk, NY, USA). Data
were shown as means ± SD. Differences in the means between two groups were compared
using a two-tailed Student’s t-test and among three or more groups using one-way ANOVA
followed by Duncan’s multiple-range test.

4.10. Accession Numbers

Sequence data from this article can be found in the Rice Genome Annotation Project
database under the following accession number: OsbHLH057 (LOC_Os07g35870), Os-
PRI1 (LOC_Os08g04390), OsPRI2 (LOC_Os05g38140), OsPRI3 (LOC_Os02g02480), OsIRO2
(LOC_Os01g72370), OsNAS1 (LOC_Os03g19427), OsNAS2 (LOC_Os03g19420), OsNAAT1
(LOC_Os02g20360), OsTOM1 (LOC_Os11g04020).

Supplementary Materials: The following supporting information can be downloaded at: https:
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