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Anna Dziekońska 1,* , Magdalena Koziorowska-Gilun 1 , Władysław Kordan 1, Nicoletta M. Neuman 1 ,
Angelika M. Kotlarczyk 2 and Anna J. Korzekwa 2

1 Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn,
Oczapowskiego 5, 10-719 Olsztyn, Poland

2 Department of Biodiversity Protection, Institute of Animal, Reproduction and Food Research of the Polish
Academy of Sciences (IAR & FR PAS), Tuwima 10 Str., 10-748 Olsztyn, Poland

* Correspondence: a.dziekonska@uwm.edu.pl

Abstract: The aim of this study was to assess the quality and fertilizing potential of red deer epididymal
spermatozoa stored in a liquid state for up to 11 days (D11). In Experiment 1, sperm quality was
determined. In Experiment 2, the efficiency of in vitro fertilization (IVF) and artificial insemination
(AI) of stored sperm were evaluated. An analysis of sperm quality on D5 of storage revealed a decrease
(p < 0.05) in motility and morphology, and a higher proportion of apoptotic spermatozoa. On D1, D7
and D10, the total motility of sperm for IVF and AI was determined to be 82.6%, 71.0% and 64.8%,
respectively. The results of IVF and AI demonstrated that the fertilizing potential of spermatozoa
differs between days of storage. The percentage of blastocysts was higher when oocytes were fertilized
on D1 (17.4 %) compared to D7 (8.5%) and D10 sperm (10.5%). Differences were noted in the pregnancy
rates of inseminated hinds. The insemination with D1, D7 and D10 sperm led to live births (33%
from D7 and D10). The results indicate that the quality of red deer epididymal spermatozoa remains
satisfactory during ten days of storage in a liquid state, and that these spermatozoa maintain their
fertility potential.
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1. Introduction

Postmortem harvesting of spermatozoa and oocytes for reproductive purposes creates
new opportunities for assisted reproductive technology (ART) and contributes to progress
in animal breeding [1]. The preservation of epididymal spermatozoa can be the ultimate
possibility for farm animals of high genetic value or for endangered species when the
collection of ejaculated sperm is not possible [2,3].

Freshly ejaculated sperm, as well as sperm preserved in a liquid or frozen state, is
most widely used for reproductive purposes in animals. However, sperm is not always
easy to acquire, in particular in free-living animals and in many farmed species, including
cervids. Ejaculated sperm is difficult or even impossible to collect due to the behavioral
responses of these animals. For this reason, epididymal spermatozoa constitute a valuable
and, in many cases, the only source of genetic material for reproductive purposes [1].

Previous studies have shown that despite certain differences in the characteristics of
epididymal spermatozoa and freshly ejaculated sperm, the former can be effectively used
for in vitro fertilization (IVF) and artificial insemination (AI) of farm animals, including
pigs [4], bulls [5] and stallions [6].

The suitability of preserved sperm harvested postmortem from free-living and farmed
animals, including red deer, for IVF and AI has been rarely investigated in the literature [7–9].
Both fresh sperm and cryopreserved sperm were analyzed in the cited studies. Cryopreser-
vation enables long-term storage of viable sperm cells. However, this procedure is costly and
time-consuming, and it decreases the fertilizing potential of the sperm [10]. This method is
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not always recommended because sperm collected from some individuals do not survive
well after freezing [11]. These problems can be overcome in liquid storage which is a simpler
and cheaper method than cryopreservation. However, the quality and fertilizing potential
of the sperm have to be maintained during transport to breeding centers to guarantee
successful fertilization and widespread use of this method.

Research has demonstrated that red deer epididymal spermatozoa stored in a liquid
state remain functional for a relatively long time. The sperm of Iberian red deer can be stored
for up to several days [12,13], and the sperm of European red deer for up to 25 days [14].
The suitability of preserved sperm for reproductive purposes has to be assessed, and such
evaluations can be performed during in vitro and in vivo fertilization procedures.

The present study was conducted on the assumption that red deer sperm can be
preserved for a long time (up to 10–11 days) in a liquid state without compromising their
quality and fertilizing potential. Therefore, the aim of this study was to assess the quality of
red deer epididymal spermatozoa and their suitability for in vitro and in vivo fertilization.
The study involved two experiments. In the first experiment, the quality of sperm stored
in a liquid state was evaluated by analyzing sperm motility (CASA system), morphology,
plasma membrane and acrosome integrity (fluorescent staining), mitochondrial membrane
potential, DNA fragmentation and apoptotic changes. In the second experiment, sperm
harvested from five stags and stored in a liquid state for one, seven and ten days were used
in IVF and AI procedures.

2. Results
2.1. Experiment 1: The Effect of Storage Time (Days) on the Quality Parameters of Red Deer
Epididymal Spermatozoa Stored in a Liquid State

The motility analysis demonstrated that more than 60% of red deer epididymal sper-
matozoa remained motile up to the tenth day of storage in a liquid state at a temperature of
5 ◦C (Figure 1A). A significant decrease (p < 0.05) in TMOT, PMOT, VAP and VSL values was
observed on D5, and a subsequent decrease was noted on D11 (Figure 1A–D, respectively).
A significant decrease in VCL, STR and LIN values was observed only on D11 (Figure 1E,H,I,
respectively). No significant changes (p > 0.05) in ALH and BCF were noted throughout the
entire storage period (Figure 1F,G, respectively).
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Figure 1. The effect of storage time (days) on motility variables of red deer epididymal sperm (mean 
± SEM) stored in a liquid state at 5 °C. (A) TMOT, total motility. (B) PMOT, progressive motility. (C) 
VAP, velocity average path. (D) VSL, velocity straight line. (E) VCL, curvilinear velocity. (F) ALH, 
mean amplitude of lateral head displacement. (G) BCF, beat cross frequency. (H) STR, straightness. 
(I) LIN, linearity. Bars with different letters denote differences (p < 0.05) between days of storage. 

The results of the microscopic analysis of various cellular structures are presented in 
Table 1. The evaluation of acrosome integrity by Giemsa staining and fluorescent staining 
with FITC/PNA labeling and the viability analysis revealed a significant decrease (p < 0.05) 
in the studied parameters on D10. Significant changes in the percentage of sperm cells 
with normal morphology and an increase (p < 0.05) in the percentage of sperm cells with 
abnormal tails were noted on D5. The percentage of sperm with morphological defects of 
the head and the midpiece increased significantly on D11. The percentage of sperm with 
active mitochondria decreased significantly (p < 0.05) on D5. DNA integrity did not differ 
significantly on different days of storage. A significant increase (p < 0.05) in the percentage 
of apoptotic sperm was noted on D5. The percentage of viable sperm without apoptotic 
changes decreased significantly (p < 0.05) on D5, and on D10, it was 20% lower than on 
D1. 
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Figure 1. The effect of storage time (days) on motility variables of red deer epididymal sperm
(mean ± SEM) stored in a liquid state at 5 ◦C. (A) TMOT, total motility. (B) PMOT, progressive
motility. (C) VAP, velocity average path. (D) VSL, velocity straight line. (E) VCL, curvilinear velocity.
(F) ALH, mean amplitude of lateral head displacement. (G) BCF, beat cross frequency. (H) STR,
straightness. (I) LIN, linearity. Bars with different letters denote differences (p < 0.05) between days
of storage.

The results of the microscopic analysis of various cellular structures are presented in
Table 1. The evaluation of acrosome integrity by Giemsa staining and fluorescent staining
with FITC/PNA labeling and the viability analysis revealed a significant decrease (p < 0.05)
in the studied parameters on D10. Significant changes in the percentage of sperm cells
with normal morphology and an increase (p < 0.05) in the percentage of sperm cells with
abnormal tails were noted on D5. The percentage of sperm with morphological defects of
the head and the midpiece increased significantly on D11. The percentage of sperm with
active mitochondria decreased significantly (p < 0.05) on D5. DNA integrity did not differ
significantly on different days of storage. A significant increase (p < 0.05) in the percentage
of apoptotic sperm was noted on D5. The percentage of viable sperm without apoptotic
changes decreased significantly (p < 0.05) on D5, and on D10, it was 20% lower than on D1.

Table 1. The effect of storage time (days) on the quality parameters of red deer epididymal spermatozoa
(n = 11) stored in a liquid state at 5 ◦C.

Sperm
Quality

Parameters

Storage Time (Days)

Day 1 Day 5 Day 7 Day 10 Day 11

MOR (%) 75.6 ± 2.6 a 67.6 ± 2.8 b 66.8 ± 2.6 b 63.5 ± 3.1 bc 56.3 ± 3.8 c

NAR (%) 89.0 ± 1.4 a 85.8 ± 1.4 ab 84.8 ± 1.4 ab 81.2 ± 1.6 b 79.8 ± 2.3 b

HD (%) 5.5 ± 1.6 a 6.2 ± 1.7 a 7.5 ± 0.9 a 7.1 ± 2.1 a 20.9 ± 2.8 b

MD (%) 1.7 ± 0.8 a 1.3 ± 0.4 a 1.2 ± 2.9 a 1.1 ± 0.3 a 9.2 ± 2.7 b

TD (%) 7.0 ± 1.0 a 14.8 ± 2.9 b 17.8 ± 0.1 b 17.1 ± 2.1 b 21.2 ± 7.2 b

PNA−/PI− (%) 79.8 ± 3.8 a 79.1 ± 1.8 a 77.0 ± 4.1 a 70.9 ± 3.4 b 60.7 ± 5.4 b

SYBR+/PI− (%) 87.9 ± 1.8 a 85.8 ± 1.4 a 86.9 ± 2.2 a 81.2 ± 1.6 b 79.8 ± 2.3 b

MMP (%) 88.6 ± 1.7 a 83.1 ± 1.4 b 86.0 ± 2.6 ab 78.4 ± 2.3 b 77.9 ± 5.5 b

AO (%) 95.3 ± 0.9 91.8 ± 2.4 93.8 ± 1.3 92.0 ± 1.8 90.2 ± 1.3
YOPRO−/PI− (%) 86.6 ± 2.1 a 70.5 ± 3.7 b 71.4 ± 4.3 b 66.6 ± 3.5 bc 58.6 ± 4.0 c

YOPRO+/PI− (%) 3.2 ± 1.0 a 12.4 ± 5.4 b 12.1 ± 5.6 b 10.5 ± 5.1 b 16.3 ± 5.4 b

MOR, normal sperm. NAR, normal apical ridge acrosomes. HD, head defects. MD, midpiece defects. TD, tail
defects. PNA−/PI−, acrosomal status. SYBR+/PI−, viability. MMP, mitochondrial membrane potential. AO, DNA
integrity. YOPRO−/PI−, viable, non-apoptotic sperm. YOPRO+/PI−, apoptotic sperm. Values are expressed as
means ± SEM. Differences between means were determined by Student–Newman–Keuls post hoc test. a–c Values
within a row with different superscripts differ significantly at p < 0.05.

2.2. Experiment 2: Fertilizing Potential of Red Deer Epididymal Spermatozoa Stored in a Liquid State

Fertilizing potential of red deer epididymal spermatozoa stored in a liquid state is
presented in Table 2. We collected 115, 83 and 44 oocytes predicted for IVF with sperm stored
from D1, D7 and D10, respectively. The maturation process was successful for all oocytes
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and it ranged from 90 to 94% between the groups (p > 0.05). The oocyte fertilization rates
varied between the groups, but no significant differences were found. Cleavage patterns
(development from the zygote to the morula) were observed in 56.5% of the oocytes fertilized
with D1 sperm, 27.1% with D7 and 13.2% with D10. Significant differences were noted
between oocytes fertilized with D1 sperm and D7 and D10 sperm (p < 0.05). Blastocysts rate
ranged from 8.5 to 17.4% between groups and it did not differ significantly (p > 0.05).

Table 2. Percentage of motile sperm, in vitro success rates after fertilization oocytes, and artificial
insemination rates in hinds inseminated (n = 18) with liquid-stored epididymal sperm of red deer.

Fertilization Potential

Sperm Stored
One Day (Group 1)

Sperm Stored
Seven Days (Group 2)

Sperm Stored
Ten Days (Group 3)

TMOT (%) 82.6 ± 1.7 a 71.0 ± 4.1 b 64.8 ± 3.7 b

PMOT (%) 42.8 ± 3.3 a 34.8 ± 4.2 b 21.6 ± 4.5 b

Total oocytes 115 83 44

Immature oocytes 7 8 4

Mature oocytes 108/115 (93.9%) 75/83 (90.4%) 40/44 (90.9%)

Fertilized oocytes 69/108 (63.9%) 59/83 (71.1%) 38/44 (86.4%)

Cleaved embryos 39/69 (56.5%) a 16/59 (27.1%) b 5/38 (13.2%) b

Blastocysts 12/39 (17.4%) 5/16 (8.5%) 4/38 (10.5%)

Pregnancy rate 3/6 (50%) 2/6 (33%) 6/6 (100%)

Birth rate 1/6 (17%) 2/6 (33%) 2/6 (33%)
TMOT, total motility. PMOT, progressive motility. Mature oocytes, number of matured oocytes from total
oocytes (%). Fertilized oocytes, number of fertilized of oocytes from the total number of matured oocytes (%).
Cleaved patterns, number of morula stage embryos obtained from fertilized oocytes (%). Blastocyst stage,
number of blastocyst obtained from embryos that had reached the morula stage (%). Pregnancy rate, number
of pregnancies obtained from inseminated hinds (%). Birth rate, number of calves born alive obtained from
inseminated hinds (%). Values for TMOT and PMOT are expressed as means ± SEM (n = 5). Differences between
means were determined by Student–Newman–Keuls post hoc test. Differences between groups for mature oocytes,
fertilized oocytes, cleaved embryos and blastocysts were determined by Fisher’s exact test. a,b Values within a row
with different superscripts differ significantly at p < 0.05.

In all hinds, sperm was successfully deposited in the cervix during the insemination and
repeat insemination. Pregnancy rates in artificially inseminated hinds varied considerably
at 50% with D1 sperm, 33% with D7 sperm and 100% in hinds with D10 sperm. Intracervical
insemination of six females with sperm stored for one day (group 1) resulted in three
pregnancies that were confirmed by progesterone levels, and two pregnancies by the PAGs
test. In turn, the insemination of six females with D7 sperm (group 2) and D10 sperm
(group 3) resulted in two and six pregnancies, respectively, that were confirmed by both
tests. However, the birth rates for D1 and D10 were lower than the pregnancy rates.

3. Discussion

The use of red deer epididymal spermatozoa for IVF and AI remains insufficiently
investigated in the literature [8,9,15], and most studies examined freshly ejaculated and
cryopreserved sperm. The suitability of long liquid-stored epididymal spermatozoa for
both procedures has never been studied. Therefore, this is the first study to evaluate
the applicability of liquid-stored sperm for reproductive purposes. This is an important
consideration since in farm-raised animals, ejaculated sperm is difficult to obtain and
cryopreserve, which is why the liquid storage of epididymal spermatozoa can resolve many
technical and financial problems.

The results of the analyses assessing the quality of red deer epididymal spermato-
zoa (including motility and plasma membrane integrity) stored in Bovidyl extender at
a temperature of 5 ◦C for 11 days confirmed our previous observations of red deer sperm
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stored in Salomon’s extender [14]. The above extenders have a similar composition and
offer similar conditions for sperm storage. Before Bovidyl was used in this study, red
deer sperm stored in Bovidyl and Salomon’s extenders had been checked for significant
differences in motility and viability, and no such differences had been found.

Sperm motility decreased gradually on successive days of storage, and the earliest
significant changes were observed in motility parameters (TMOT, PMOT, VAP, VSL). Sperm
kinetic parameters such as VAP, VCL and VSL are particularly important in assessing the
fertility of red deer stags [16,17]. In the current study, VCL values remained high until D10,
whereas VAP values decreased gradually, which could suggest that the fertilizing potential
of spermatozoa can be fully preserved during storage. Ramon et al. [18] demonstrated
that VCL and VAP values of red deer sperm with high fertilizing potential remained high
throughout storage. In this study, VAP and VSL values decreased, while insignificant
changes in VCL values up to D10 of storage indicated sperm circulation, which may signal
sperm dysfunction and suitability for fertilization.

In this study, the percentage of sperm with normal apical ridge acrosomes (NAR)
and normal plasma membranes decreased very slowly, which could indicate that these
structures are quite resilient to various storage conditions. Similar findings were reported
by other authors [19,20]. However, differences in acrosome integrity were observed be-
tween the applied analytical methods, where fluorescent staining was more sensitive than
Giemsa staining.

The morphological analysis revealed a significant decrease in the percentage of sperm
with normal morphology on the fifth day of storage, which resulted mainly from consid-
erable tail damage. The morphological analysis did not account for cytoplastic droplets
which are commonly observed in epididymal spermatozoa [21]. The changes in sperm
morphology could indicate that the tails of epididymal spermatozoa are more sensitive to
cooling than the heads. Similar observations were made by Ros-Santaella et al. [16] in red
deer sperm subjected to freezing and thawing.

The energy for sperm motility is generated by glycolysis and oxidative phosphoryla-
tion, and motility characteristics can be affected by disruptions in these processes [17,22].
Oxidative phosphorylation generates the highest amount of energy for sperm motility, and
this process can be disrupted by a decrease in MMP. Therefore, a significant decrease in
MMP on the fifth day of storage considerably decreased sperm motility. Despite the above,
more than 70% of sperm had active mitochondria throughout the entire storage period
(up to 11 days), which enabled effective energy production and motility. Similar results
were noted in a previous study [14]. A decrease in MMP is generally accompanied by an
increase in the percentage of sperm with apoptotic changes [23]. Apoptotic changes are
intensified during storage, which was also noted in the present study. On D5 of storage,
the percentage of apoptotic sperm increased relative to D1, whereas significant differences
were not observed in the viability analysis. These results indicate that apoptosis occurs
much earlier than changes in sperm plasma membrane, which corroborates the findings of
Martínez-Pastor et al. [23].

The integrity of nuclear DNA, which is largely influenced by chromatin integrity, is
a key determinant of the fertilizing potential of sperm. DNA damage is regarded as one of the
factors that decrease sperm’s ability to bind to ovarian surface epithelium [24], compromise
embryonic development [25] and contribute to embryonic and fetal mortality [26]. Therefore,
DNA integrity plays an important role in assessments of sperm’s fertilizing potential. In the
current study, a significant decrease in DNA integrity was not observed during the entire
period of sperm storage in a liquid state, which suggests that DNA remained relatively
stable. Similar observations were made in ejaculated boar sperm stored in a liquid state [27]
and in the epididymal spermatozoa of mice [28] and Iberian red deer [13].

In this study, a comprehensive analysis of epididymal spermatozoa revealed that
sperm viability and functionality are preserved for a long time during liquid storage.
Nonetheless, the sperm’s ability to fertilize an egg cell in vitro and, particularly, in vivo is
the only reliable measure of their biological value.
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In the second experiment, the fertilizing potential of liquid-stored epididymal sperma-
tozoa for IVF and AI treatments was assessed in sperm samples collected from five of the
eleven analyzed stags. These spermatozoa were characterized by the highest initial motility
(approx. 80%) and satisfactory motility on D7, D10 and D11 (over 60%). An analysis of
the quality of stored sperm that were used for IVF and AI revealed a similar relationship
to the above analysis (see Tables S1 and S2). Sperm samples for IVF and AI were free of
microbiological contamination that could compromise the fertilizing potential of stored
sperm and embryo development.

The results of the IVF procedure demonstrated that both sperm stored for one day
and sperm stored for seven and ten days were able to fertilize mature oocytes in vitro, and
that their fertilizing potential was maintained. However, differences between experimental
groups of hinds were noted in the number of harvested and cultured mature oocytes that
were suitable for IVF, which may be due to individual differences among female deer.
Nevertheless, maturation of the oocytes was very effective regardless of the experimental
group (90–94%). In cows, about 92% [29] of oocytes matured after 24 h, whereas in deer this
was 69.4 % [30]. Our result proves that the conditions of culture were optimally adjusted.
However, a decrease was observed in cleaved embryos and blastocyst rates compared to
the number of fertilized oocytes in our study. Our earlier study showed blastocyst rates
ranging between 12.3% and 21.8% dependent on the reproductive stage of the hind which
was the oocytes’ donor [31]. There is no doubt that the pharmacological method of the
estrus cycle synchronization affects both the number of oocytes retrieved and the embryo
development. These differences could be also attributed to a decrease in the fertilizing
potential of sperm caused by storage and aging, as mentioned above. Previous studies
demonstrated that apoptotic changes can decrease the fertilizing potential of bull sperm [32].
Apoptotic sperm can be also responsible for the loss of human embryos in the early stages
of development [33]. Therefore, the highest number of cleaved embryos and blastocysts
we measured was in the group fertilized with sperm stored for one day, and the results
were lower than those reported by other authors who conducted IVF with cryopreserved
sperm [34,35]. Thus, storage-induced changes in sperm, embryonic development affected
by oocyte quality, in vitro culture conditions such as temperature, and the applied culture
media [36,37] are all aspects demanding further study.

In this study, considerable differences were found in the success rates of AI involving
the same sperm samples. Interestingly, AI was more effective in group 3 (all hinds were
pregnant) than in groups 1 and 2 (3 and 2 out of 6 hinds were pregnant, respectively). Similar
to IVF, these differences could be attributed to variations in the analyzed hinds’ responses
to estrus synchronization and irregular ovulation in groups 1 and 2. The time between eCG
injection, estrus and insemination must also be accurately defined for successful estrus
synchronization [11,31]. Artificial insemination success rates, including pregnancy rates,
were satisfying in this study, which indicates that the fertilizing potential of epididymal
spermatozoa is fully preserved during ten–eleven days of storage. This was evidenced
by the fact that hinds inseminated with stored sperm gave birth to live calves. However,
the number of live born calves was far lower than might be expected based on the noted
pregnancy rates. The causes of fetal mortality in this study are not clear, but one reason
could be a gradual deterioration in the quality of epididymal sperm during storage. Besides
sperm and oocyte quality, the effectiveness of fertilization is influenced by factors such as
the performance of the AI procedure, including the maintenance of appropriate hygienic
conditions and the stress associated with manipulation. Pathogen infections may have
influenced embryo development and fetal mortality [38–40]. In hinds, especially in group 3,
the presence of Trueperella pyogenes bacteria was detected in vaginal discharge, which could
have contributed to the significant fetal mortality [41]. Despite the above, birth rates were
similar to hinds inseminated with stored epididymal sperm (33%) and to hinds inseminated
with fresh and cryopreserved sperm (<40%) presented in other reports [2,11]. However,
the obtained results relate to small-sized experimental groups and therefore this study can
only be considered as preliminary and will be continued.
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4. Materials and Methods

The diagram of the experiments carried out in this study is presented in Figure 2.
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4.1. Animals

The present study was conducted on red deer (hybrids of various subspecies with
a predominance of European deer), and it involved mature males (n = 11; 4–5 years;
weighing about 145 kg) and mature females (n = 36; 3–4 years; weighing about 95 kg) kept
in a deer farm in Rudzie near Gołdap (north-eastern Poland). In spring and fall, the animals
were fed only a pasture-based diet, and in winter, their diet was supplemented with silage
and cereal grain (10 kg of silage/day/animal + 1 kg of cereal grain).

4.2. Collection and Initial Evaluation of Epididymal Spermatozoa

Spermatozoa were obtained from the epididymides of 11 stags that were legally culled
during the rutting season (September). Sperm samples were collected directly (up to 0.5–1 h
postmortem) from the cauda epididymis into Eppendorf tubes, according to the method
described earlier by Dziekońska et al. [14]. The samples were assessed for motility and
concentration. Sperm motility was determined subjectively. Samples with sperm motility
higher than 70% were used in further analyses. The concentration of spermatozoa was de-
termined in a Bürker counting chamber (Equimed-Medical Instruments, Kraków, Poland).

4.3. Liquid Storage of Sperm

Sperm samples were diluted with Bovidyl extender (Bovidyl®, Minitub GmbH, Tiefen-
bach, Germany) containing TRIS, BSA, citric acid, sugars, buffers, proprietary components,
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antibiotics, double distilled water and 10% clarified egg yolk at room temperature. The
samples (100 × 106 spermatozoa/mL) were placed in 50 mL plastic tubes, immediately
transferred to a portable refrigerator (5 ◦C) and transported to the laboratory of the Depart-
ment of Animal Biochemistry and Biotechnology of the University of Warmia and Mazury
in Olsztyn. Sperm samples were stored at a temperature of 5 ◦C throughout the experiment
(11 days).

4.4. Experiment 1: Sperm Quality Analysis

Sperm quality was analyzed on the day the samples were transported to the laboratory
(D1) and then on days 5 (D5), 7 (D7), 10 (D10) and 11 (D11).

4.4.1. Analysis of Sperm Motility Parameters

Sperm motility parameters were assessed using the computer-assisted sperm analysis
(CASA) system (Hamilton-Thorne Research, HTR, IVOS version 12.3; Beverley, MA, USA).
The IVOS settings were applied according to the Hamilton Thorne technical guide v. 12.3
for gazelle/deer [14]. Sperm samples (100 × 106 spermatozoa/mL) were diluted 1:4 with
phosphate buffered saline (PBS) and incubated at 37 ◦C for 20 min. Then, the samples
(5 µL) were placed in a pre-warmed Makler counting chamber (Sefi-Medical Instruments
Ltd., Haifa, Israel) and examined at 37 ◦C. A minimum of five fields per sample were
assessed, with approximately 200 spermatozoa per field. The CASA-determined sperm
motility parameters included total motility (TMOT, %), progressive motility (PMOT, %),
curvilinear line velocity (VCL, µm/s), straight line velocity (VSL, µm/s), average velocity
(VAP, µm/s), amplitude of lateral head displacement (ALH, µm), beat cross frequency
(BCF, Hz), linearity coefficient (LIN, %) and straightness (STR, %). The spermatozoa
were considered motile with VAP > 21.9 and VSL > 6.0 µm/s, and progressive with
VAP > 75.0 µm/s and STR > 80%.

4.4.2. Sperm Morphology Assay

Smears were prepared from sperm samples diluted with PBS (1:4). The smears were
air-dried and stained by the Giemsa staining method according to Watson [42]. The morpho-
logical features of 200 sperm cells from each sample were evaluated under a phase-contrast
microscope (1000× magnification). The percentage of sperm with normal morphology
(%, MOR), the percentage of sperm with normal apical ridge acrosomes (%, NAR) and
the percentage of sperm with morphological defects of the head, midpiece and tail (%)
were determined.

4.4.3. Fluorescence Assays

The acrosomal status of spermatozoa was assessed by the fluorescence method using FITC-
labeled peanut agglutinin (FITC-PNA; Sigma, Saint Luis, MO, USA), as described in a previous
study [14] with some modifications. Sperm samples (20 µL, 100 × 106 spermatozoa/mL) were
extended in 180 µL of PBS solution and incubated with 2 µL of FITC-PNA solution (2 mg
FITC-PNA in 1 mL PBS) at 37 ◦C for 5 min. Then, 2 µL of propidium iodide solution
(PI, 2.4 µM in Tyrode’s salt solution) was added to the samples and incubated at 37 ◦C
for 5 min. Finally, 10 µL of 10% formalin solution was added to the stained cells. The
samples were evaluated under a fluorescence microscope (Olympus BX 41, Tokyo, Japan)
at 600× magnification. A minimum of 200 cells per slide were examined in each aliquot.
The results were expressed as the percentage of viable sperm cells with intact acrosomes
(non-stained spermatozoa in the head region; FITC-PNA−/PI−).

The plasma membrane integrity of sperm was assessed using dual fluorescent probes,
SYBR-14 and propidium iodide, PI (Live/Dead Sperm Viability Kit; Molecular Probes,
Eugene, OR, USA), according to the method described previously by Garner and John-
son [43] with some modifications. Sperm samples (20 µL, 100 × 106 spermatozoa/mL)
were extended in 180 µL of PBS solution. Subsequently, the samples were incubated with
2 µL 1 mM SYBR-14 solution in HEPES-BSA solution (pH 7.4) and 2 µL PI (2.4 µM in Ty-
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rode’s salt solution) at 37 ◦C for 10 min. Aliquots of the stained sperm cells were examined
using a fluorescence microscope (Olympus BX 41, Tokyo, Japan) at 600× magnification.
A minimum of 200 spermatozoa were counted per slide. The results were expressed as the
percentage of viable sperm cells (sperm with bright green fluorescence; SYBR+/PI−).

The mitochondrial membrane potential of sperm was assessed using JC-1 (Molecular
Probes, Eugene, OR, USA)/PI dual fluorescent probes, according to a previously described
method [14] with some modifications. Briefly, sperm samples (20 µL, 100 × 106 spermato-
zoa/mL) were extended in 180 µL of PBS solution and incubated with 1 µL of JC-1 solution
(1 mg JC-1/mL anhydrous dimethyl sulfoxide, DMSO) for 15 min at 37 ◦C. Then, sperm
samples were stained with 2 µL PI for 5 min at 37 ◦C. Sperm cells displaying orange–red
fluorescence in the mid-piece region were considered as viable spermatozoa with high
MMP, whereas sperm cells displaying red fluorescence in the head and green fluorescence
in the mid-piece region were classified non-viable spermatozoa with low MMP. A minimum
of 200 cells per slide were evaluated using a fluorescence microscope (Olympus BX 41,
Tokyo, Japan) at 600× magnification. The results were expressed as the percentage of viable
sperm cells with high MMP.

Apoptotic changes in sperm were assessed with the Vybrant Apoptosis Assay Kit #4
(Molecular Probes Inc., Eugene, OR, USA), according to the method described by Trzcińska
and Bryła [44] with some modifications. A 200 µL sperm sample (10 × 106 sperm/mL)
was first combined with 2 µL JC-1 (100 µM) to facilitate the identification of sperm not
stained with YO-PRO-1 or PI, and incubated for 10 min at 37 ◦C. Then, 2 µL of YO-
PRO-1 (100 µM) and 2 µL of PI (2 µM) were added and incubated again for 10 min at
37 ◦C. Aliquots of stained sperm cells were examined under a fluorescence microscope
(Olympus BX 41, Tokyo, Japan) at 600× magnification. A minimum of 200 cells per slide
were examined in each aliquot, and four subpopulations were identified in the assay
(Figure 3A,B): viable sperm categorized as negative for both YO-PRO-1 and PI and positive
for JC-1 (YOPRO−/PI−); sperm with apoptotic-like changes in the plasma membrane
were categorized as positive for YO-PRO-1 and JC-1 but negative for PI (YOPRO+/PI−);
moribund/dead sperm were positive for YO-PRO-1, PI and JC-1; and dead sperm were
positive for PI.
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Figure 3. (A,B) Red deer sperm stained with the fluorescent combination of JC-1 and YOPRO/PI
fluorochromes under a fluorescence microscope: (a) Non-apoptotic cells, yellow/orange fluorescence
in midpiece (YOPRO−/PI−). (b) Apoptotic cell, green fluorescence in head region (YOPRO+/PI−).
(c) Moribund/dying sperm, cell with dual fluorescence green and red in head region (YO-PRO+/PI+).
(d) Dead sperm, red fluorescence in head region (PI+). Magnification 600×.

DNA integrity was assessed with acridine orange (AO; Life Technologies Ltd., Grand
Island, NY, USA), according to the method described by Partyka et al. [45] with some modi-
fications. A suspension of sperm samples (100µL) was subjected to brief acid denaturation
with 200µL of a lysis solution (Triton X-100 0.1% (v/v), NaCl 0.15 M, HCl 0.08 M, pH 1.4).
The samples were left for 30 s in the dark, and 600 µL of AO solution (6 µg AO/mL in
a buffer: citric acid 0.1 M, Na2HPO4 0.2 M, EDTA 1 mM, NaCl 0.15 M, pH 6) was added.
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The samples were left in the dark for 3 min, after which a minimum of 200 sperm cells were
randomly selected under a fluorescence microscope (Olympus BX 41) at 600× magnifica-
tion. In the analysis, the double-stranded sperm subpopulation (%, DNA integrity) with
green fluorescence was distinguished from the sperm population with damaged DNA and
yellow to red fluorescence (moderately and completely denatured DNA, respectively).

4.5. Experiment 2: Assessment of the Fertilizing Potential of Epididymal Spermatozoa

The fertilizing potential of epididymal spermatozoa stored for one, seven and ten days
in Bovidyl extender was determined by IVF of the oocytes collected from hinds and by AI
of hinds. Sperm samples collected from five males were used for IVF. The samples for AI
were pooled from the same males. The samples collected from each male were assessed for
quality according to a previously described procedure. The motility of sperm was assessed
subjectively before IVF and AI procedures.

The hinds used in both procedures were pharmacologically treated for induction of
estrus and ovulation according to the method described by Korzekwa et al. [31].

4.5.1. Induction of Estrus and Ovulation and Oocyte Collection

Ovaries were collected postmortem from 18 red deer hinds (from three groups of six
hinds each) directly after slaughter at a deer farm in Rudzie near Gołdap (north-eastern
Poland) on the 4th day of the estrous cycle after pharmacological synchronization of the
animals. Estrus and ovulation were induced during the estrous cycle (September) by
applying a single controlled-release vaginal sponge for sheep (Chronogest, MSD Animal
Health, Milton Keynes, UK, 20 mg flugestone acetate). For better synchronization, the
sponge was removed after 14 days, and equine serum gonadotropin (eCG, Syncrostim, 250 I,
Ceva Animal Health, Warsaw, Poland; 250 IU) was injected intramuscularly [31]. Estrus was
observed 54–56 h after the injection. The day of the estrous cycle was determined based on
macroscopic observations of the ovaries and the uterus, and it was confirmed by measuring
plasma 17-beta estradiol (E2) and progesterone (P4) levels by a radioimmunoassay. Blood
was sampled from the heart. The farmed animals were culled for financial reasons and
to renew the herd. The ovaries were transported to the laboratory in sterile phosphate-
buffered saline. Cumulus–oocyte complexes (COCs) were obtained by aspiration from
subordinate ovarian follicles measuring less than 5 mm in diameter, and by maceration of
ovarian tissue from the same ovary after aspiration. A stereo microscope (Discovery V20,
Zeiss, Poznan, Poland) was used to identify COCs consisting of oocytes with homogeneous
ooplasm without dark spots, surrounded by at least three layers of compact cumulus cells.
The COCs were washed twice in a wash medium (61008; IVF Bioscience, Falmouth, UK)
and subsequently in a maturation medium (61002; IVF Bioscience, Falmouth, UK).

4.5.2. In Vitro Oocyte Maturation and In Vitro Fertilization

In vitro oocyte maturation (IVM) and in vitro fertilization were conducted according
to method described by Korzekwa et al. [31]. Groups of 20 immature COCs were placed
in Petri dishes containing 100 µL of the maturation medium covered with mineral oil
(M8410, Sigma, Poznań, Poland) and were incubated at 38.5 ◦C in a 5% CO2 humidified
air atmosphere for 23 h. The COCs were washed in a fertilization medium (61003; IVF
Bioscience, Falmouth, UK).

The COCs were divided into three experimental groups: group 1 was fertilized with
the sperm stored in a liquid state at 5 ◦C for one day (n = 6), and group 2 was fertilized
with the sperm stored in a liquid state at 5 ◦C for seven days (n = 6) and group 3 was
fertilized with the sperm stored in a liquid state at 5 ◦C for ten days (n = 6). Before IVF,
sperm was incubated in a capacitation medium (61004; IVF Bioscience, Falmouth, UK) for
24 h, and motile spermatozoa were recovered by the swim-up procedure. After incubation,
sperm was double centrifuged at 200× g for 5 min, the supernatant was removed, and
the sperm pellet was diluted in an appropriate volume of the fertilization medium to
a final concentration of 2 × 106 motile sperm/mL. Groups of 20 COCs were co-incubated
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with spermatozoa in Petri dishes containing 100 µL of the fertilization medium, covered
with mineral oil for 15 h at 38.5 ◦C in a 5% CO2 humidified air atmosphere. Embryos
(blastocysts) were collected between day 6 and day 9. The developmental stage and
quality of the embryos were determined under a microscope (Zeiss Axio Observer A1; Carl
Zeiss Microscopy GmbH, Jena, Germany; magnification 200×) based on the International
Embryo Transfer Society manual. The quality of blastocysts was scored as follows: grade
A—excellent; grade B—good; grade C—fair and moderate; grade D—poor; and grade
E—dead or degenerating (Figure 4). Embryos classified into quality grades A–C were used
to determine the rate of embryo development to the blastocyst stage (IVF success rate) and
were assessed for morphological quality.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 12 of 16 
 

 

the sperm pellet was diluted in an appropriate volume of the fertilization medium to a 
final concentration of 2 × 106 motile sperm/mL. Groups of 20 COCs were co-incubated 
with spermatozoa in Petri dishes containing 100 μL of the fertilization medium, covered 
with mineral oil for 15 h at 38.5 °C in a 5% CO2 humidified air atmosphere. Embryos (blas-
tocysts) were collected between day 6 and day 9. The developmental stage and quality of 
the embryos were determined under a microscope (Zeiss Axio Observer A1; Carl Zeiss 
Microscopy GmbH, Jena, Germany; magnification 200×) based on the International Em-
bryo Transfer Society manual. The quality of blastocysts was scored as follows: grade A—
excellent; grade B—good; grade C—fair and moderate; grade D—poor; and grade E—
dead or degenerating (Figure 4). Embryos classified into quality grades A–C were used to 
determine the rate of embryo development to the blastocyst stage (IVF success rate) and 
were assessed for morphological quality. 

 
Figure 4. The developmental stage and quality of red deer embryos. (A) Blastocyst; complete blas-
tocyst; the cavity fills almost the entire embryo; the trophoblast composed of numerous densely 
arranged cells that form a coherent layer. (B) Morula, embryo with equal blastomeres and several 
unequal blastomeres, incomplete compaction. (C) Unfertilized oocyte. (D) Degenerated embryos. 
The image was taken under phase contrast microscopy at 200× magnification. Scale bar, 25 μm. 

4.5.3. Artificial Insemination (AI) Procedure 
The AI procedure involved 18 hinds (three groups of six hinds each) whose estrous 

cycle had been previously synchronized (as described above). The first group was insem-
inated with sperm stored for one day, the second group with sperm stored for seven days 
and the third group with sperm stored for ten days. The hinds were inseminated twice: 
56 h (first insemination) and 68 h after the administration of eCG (using to repeat insemi-
nation sperm stored for 2, 8 and 11 days, respectively). During the AI procedure, hinds 
were physically immobilized in a squeeze chute without anesthesia. The vulvar region 
was aseptically prepared, and a catheter for intracervical insemination (IMV Technolo-
gies, L’Aigle, France) was introduced into the cervix. A digital rectal examination was 
performed to facilitate catheter placement. Around 250 μL of the sperm suspension (con-
taining around 25–30 × 106 of spermatozoa) heated to 35–37 °C was placed in a syringe, 
injected into the catheter and deposited in the cervix. The success rate of fertilization with 
epididymal sperm was determined by dividing the number of pregnant hinds by the 
number of inseminated hinds, and it was expressed as percentage. Additionally, the birth 
rate for hinds was calculated by dividing the number of calves by the number of insemi-
nated hinds. The results were expressed as a percentage. 

4.5.4. Diagnosis of Pregnancy 
Thirty days after insemination, peripheral blood was sampled from the jugular vein 

to determine the levels of pregnancy-associated glycoproteins (PAGs) and progesterone 

Figure 4. The developmental stage and quality of red deer embryos. (A) Blastocyst; complete
blastocyst; the cavity fills almost the entire embryo; the trophoblast composed of numerous densely
arranged cells that form a coherent layer. (B) Morula, embryo with equal blastomeres and several
unequal blastomeres, incomplete compaction. (C) Unfertilized oocyte. (D) Degenerated embryos.
The image was taken under phase contrast microscopy at 200× magnification. Scale bar, 25 µm.

4.5.3. Artificial Insemination (AI) Procedure

The AI procedure involved 18 hinds (three groups of six hinds each) whose estrous
cycle had been previously synchronized (as described above). The first group was insemi-
nated with sperm stored for one day, the second group with sperm stored for seven days
and the third group with sperm stored for ten days. The hinds were inseminated twice: 56 h
(first insemination) and 68 h after the administration of eCG (using to repeat insemination
sperm stored for 2, 8 and 11 days, respectively). During the AI procedure, hinds were
physically immobilized in a squeeze chute without anesthesia. The vulvar region was asep-
tically prepared, and a catheter for intracervical insemination (IMV Technologies, L’Aigle,
France) was introduced into the cervix. A digital rectal examination was performed to
facilitate catheter placement. Around 250 µL of the sperm suspension (containing around
25–30 × 106 of spermatozoa) heated to 35–37 ◦C was placed in a syringe, injected into the
catheter and deposited in the cervix. The success rate of fertilization with epididymal
sperm was determined by dividing the number of pregnant hinds by the number of in-
seminated hinds, and it was expressed as percentage. Additionally, the birth rate for hinds
was calculated by dividing the number of calves by the number of inseminated hinds. The
results were expressed as a percentage.

4.5.4. Diagnosis of Pregnancy

Thirty days after insemination, peripheral blood was sampled from the jugular vein
to determine the levels of pregnancy-associated glycoproteins (PAGs) and progesterone
(P4). PAGs and P4 concentrations were determined according to the method described by
Korzekwa et al. [31].
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Serum levels of PAGs were determined with the EIA Pregnancy Test (99-41169, IDEXX,
Westbrook, ME, USA) after validation. The average intra- and inter-assay coefficients of
variation (CVs) were determined at 8.0% and 7.9%, respectively. The presence or absence of
PAGs in each sample was validated with the use of the provided formula. The circulating
concentrations of PAGs were calculated based on absorbance, where absorbency below 0.3
was indicative of non-pregnancy and absorbance above 0.3 was indicative of pregnancy.

Plasma P4 levels were determined by a radioimmunoassay (RIA) (KIP1458, DIAsource
ImmunoAssays, Louvain-la-Neuve, Belgium). The standard curve range was 0.12 to
36 ng/mL, and the ED50 of the assay was 0.06 ng/mL. The intra- and inter-assay CVs were
6.5% and 8.6%, respectively. Hinds with progesterone concentration of 6 ng/mL and higher
were considered pregnant [46].

4.6. Statistical Analysis

Data were examined by repeated measure ANOVA, using the general linear model
(GLM) procedure from Statistica software package, version 12.5 (StatSoft Incorporation,
Tulsa, OK, USA). Shapiro–Wilk and Levene’s tests were applied to check the normality of
data distribution and the homogeneity of variance, respectively. Data were not normally
distributed, and they were transformed accordingly. Percentage data were subjected to
arcsine transformation, and motility parameters (VCL, VSL, VAP, ALH and BCF) were
log-transformed to obtain normally distributed data before performing one-way analysis
of variance (ANOVA). The results were expressed as the mean ± SEM. Significant differ-
ences between means were determined by the Student–Newman–Keuls post hoc test at
a significance level of p < 0.05.

Fertilized oocytes, cleavage and blastocyst rates (%) were analyzed by the Fisher’s
exact test. Differences were considered statistically significant at p < 0.05.

5. Conclusions

The results of this study indicate that the quality and fertilizing capacity of red deer epi-
didymal spermatozoa are effectively preserved during liquid storage (for up to 10–11 days)
and could be used in ART. However, further research, including in more animals, is needed
to confirm these findings. The results of this study may indicate possible practical applica-
tions of liquid-stored epididymal sperm, which could contribute to breeding progress in
cervid farms. Liquid storage is a less demanding method than cryopreservation, therefore it
can be easily applied in cervid farms and can contribute to the exchange of genetic material.
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14. Dziekońska, A.; Niedźwiecka, E.; Niklewska, M.E.; Koziorowska-Gilun, M.; Kordan, W. Viability longevity and quality of
epididymal sperm stored in the liquid state of European red deer (Cervus elaphus elaphus). Anim. Reprod. Sci. 2020, 213, 106269.
[CrossRef] [PubMed]

15. Bainbridge, D.R.J.; Catt, S.L.; Evans, G.; Jabbour, H.N. Successful in vitro fertilization of in vivo matured oocytes aspirated
laparoscopically from red deer hinds (Cervus elaphus). Theriogenology 1999, 51, 891–898. [CrossRef]

16. Ros-Santaella, J.L.; Domínguez-Rebolledo, A.E.; Garde, J.J. Sperm flagellum volume determines freezability in red deer spermato-
zoa. PLoS ONE 2014, 9, e112382. [CrossRef]

17. Malo, A.F.; Garde, J.J.; Soler, A.J.; Garcia, A.J.; Gomendio, M. Male fertility in natural populations of red deer is determined by
sperm velocity and the proportion of normal spermatozoa. Biol. Reprod. 2005, 72, 822–829. [CrossRef]

18. Ramón, M.; Martínez-Pastor, F.; García-Álvarez, O.; Maroto-Morales, A.; Soler, A.J.; Jiménez-Rabadán, P.; Fernández-Santos, M.R.;
Bernabéu, R.; Garde, J.J. Taking advantage of the use of supervised learning methods for characterization of sperm population
structure related with freezability in the Iberian red deer. Theriogenology 2012, 77, 1661–1672. [CrossRef]

19. Fernández-Santos, M.R.; Esteso, M.C.; Soler, A.J.; Montoro, V.; Garde, J.J. Effects of egg yolk and cooling rate on the survival of
refrigerated red deer (Cervus elaphus hispanicus) epididymal spermatozoa. Reprod. Domest. Anim. 2006, 41, 114–118. [CrossRef]

20. Martinez-Pastor, F.; Guerra, C.; Kaabi, M.; Diaz, A.R.; Anel, E.; Herraez, P.; de Paz, P.; Anel, L. Decay of sperm obtained from
epididymes of wild ruminants depending on postmortem time. Theriogenology 2005, 63, 24–40. [CrossRef]

21. Cooper, T.G.; Yeung, C.H.; Fetic, S.; Sobhani, A.; Nieschlag, E. Cytoplasmic droplets are normal structures of human spermatozoa
but are not well preserved by routine procedures for assessing sperm morphology. Hum. Reprod. 2004, 19, 2283–2288. [CrossRef]
[PubMed]

http://doi.org/10.1111/j.1439-0531.2006.00773.x
http://doi.org/10.1016/j.theriogenology.2008.09.001
http://www.ncbi.nlm.nih.gov/pubmed/18986694
http://doi.org/10.1017/S1751731114002109
http://doi.org/10.1016/j.theriogenology.2005.03.009
http://www.ncbi.nlm.nih.gov/pubmed/16139605
http://doi.org/10.1371/journal.pone.0209692
http://www.ncbi.nlm.nih.gov/pubmed/30615639
http://doi.org/10.1016/S0093-691X(02)00742-2
http://doi.org/10.1556/004.47.1999.2.11
http://doi.org/10.1016/S0093-691X(01)00561-1
http://doi.org/10.1111/j.1439-0531.2007.00893.x
http://doi.org/10.1016/S0378-4320(00)00099-3
http://doi.org/10.1016/S0378-4320(00)00159-7
http://doi.org/10.1002/jez.a.10194
http://www.ncbi.nlm.nih.gov/pubmed/12541303
http://doi.org/10.1016/j.anireprosci.2008.02.001
http://www.ncbi.nlm.nih.gov/pubmed/18328648
http://doi.org/10.1016/j.anireprosci.2019.106269
http://www.ncbi.nlm.nih.gov/pubmed/31987322
http://doi.org/10.1016/S0093-691X(99)00036-9
http://doi.org/10.1371/journal.pone.0112382
http://doi.org/10.1095/biolreprod.104.036368
http://doi.org/10.1016/j.theriogenology.2011.12.011
http://doi.org/10.1111/j.1439-0531.2006.00649.x
http://doi.org/10.1016/j.theriogenology.2004.03.003
http://doi.org/10.1093/humrep/deh410
http://www.ncbi.nlm.nih.gov/pubmed/15242996


Int. J. Mol. Sci. 2022, 23, 14591 14 of 14

22. du Plessis, S.S.; Agarwal, A.; Mohanty, G.; van der Linde, M. Oxidative phosphorylation versus glycolysis: What fuel do
spermatozoa use? Asian J. Androl. 2015, 17, 230–235. [CrossRef] [PubMed]

23. Martínez-Pastor, F.; Fernández-Santos, M.R.; del Olmo, E.; Domínguez-Rebolledo, A.E.; Esteso, M.C.; Montoro, V.; Garde, J.J.
Mitochondrial activity and forward scatter vary in necrotic, apoptotic and membrane-intact spermatozoan subpopulations.
Reprod. Fertil. Dev. 2008, 20, 547–556. [CrossRef] [PubMed]

24. Ardón, F.; Helms, D.; Sahin, E.; Bollwein, H.; Töpfer-Petersen, E.; Waberski, D. Chromatin-unstable boar spermatozoa have little
chance of reaching oocytes in vivo. Reproduction 2008, 135, 461–470. [CrossRef] [PubMed]

25. Larson-Cook, K.L.; Brannian, J.D.; Hansen, K.A.; Kasperson, K.M.; Aamold, E.D.; Evenson, D.P. Relationship between the
outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure
assay. Fertil. Steril. 2003, 80, 895–902. [CrossRef]

26. Evenson, D.P.; Larson, K.L.; Jost, L.K. Sperm chromatin structure assay: Its clinical use for detecting sperm DNA fragmentation in
male infertility and comparisons with other techniques. J. Androl. 2002, 23, 25–43. [CrossRef]

27. Waberski, D.; Schapmann, E.; Henning, H.; Riesenbeck, A.; Brandt, H. Sperm chromatin structural integrity in normospermic
boars is not related to semen storage and fertility after routine AI. Theriogenology 2011, 75, 337–345. [CrossRef]

28. Golshan Iranpour, F.; Rezazadeh Valojerdi, M. The epididymal sperm viability, motility and DNA integrity in dead mice
maintained at 4–6 ◦C. Iran. J. Reprod. Med. 2013, 11, 195–200.

29. Demyda-Peyrás, S.; Dorado, J.; Hidalgo, M.; Anter, J.; De Luca, L.; Genero, E.; Moreno-Millán, M. Effects of oocyte quality,
incubation time and maturation environment on the number of chromosomal abnormalities in IVF-derived early bovine embryos.
Reprod. Fertil. Dev. 2013, 25, 1077. [CrossRef]

30. Berg, D.; Thompson, J.; Asher, G. Development of in vitro embryo production systems for red deer (Cervus elaphus). Anim. Reprod.
Sci. 2002, 70, 65–76. [CrossRef]
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