Functional Characterization of TetR-like Transcriptional Regulator PA3973 from Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Results
2.1. Overview of the PA3973 from P. aeruginosa
2.2. Identification of PA3973-Regulated Genes and Binding Sites for This Transcriptional Regulator in the P. aeruginosa Genome
2.3. Genes under the Direct Control of PA3973
2.4. Towards the Biological Function of PA3973-PA3971 Gene Cluster
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains, Plasmids, and Growth Experiments
4.2. Motility and Biofilm Formation Assays
4.3. Protein Purification
4.4. Cross-Linking of Purified Protein
4.5. RNA Isolation, RNA-Seq
4.6. RT-qPCR Analyses
4.7. Chromatin Immunoprecipitation and Sequencing
4.8. In Vitro Protein-DNA Interactions
4.9. Regulatory Experiments with Promoter-xylE Fusions in E. coli
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Peak Summit | FE | Feature | PAO1161 ID (D3C65_) | PAO1 ID | Product | FC PA3973+ vs. EV+ | FC ΔPA3973 vs. WT | Pseudo CAP |
---|---|---|---|---|---|---|---|---|
1,062,605 | 17.78 | T+ | 05115 | PA3974 | hybrid sensor histidine kinase/response regulator | 0.77 | 1.00 | TCRS |
1,062,605 | 17.78 | P+ | 05120 | PA3973 | TetR/AcrR family transcriptional regulator | 111.53 | 0.01 | TR |
863,356 | 13.68 | P− | 04180 | PA4157 | IclR family transcriptional regulator | 0.99 | 0.90 | TR |
863,356 | 13.68 | P+ | 04185 | PA4156 | TonB-dependent receptor FvbA | 0.91 | 0.99 | TSM |
5,408,527 | 11.95 | P− | 25685 | PA4709 | hemin-degrading factor PhuS | 0.94 | 1.02 | PE; TSM |
5,408,527 | 11.95 | P+ | 25690 | PA4710 | TonB-dependent hemoglobin/transferrin/lactoferrin family receptor PhuR | 1.61 | 1.31 | TSM |
74,770 | 9.93 | P− | 00350 | PA0061 | hypothetical protein | 0.55 | 0.99 | HUU |
74,770 | 9.93 | T− | 00355 | PA0062 | hypothetical protein | 0.84 | 0.99 | HUU |
2,439,925 | 8.05 | P− | 11790 | PA2722 | GFA family protein | 0.83 | 1.12 | HUU |
2,439,925 | 8.05 | T− | 11795 | PA2721 | VOC family protein | 0.90 | 0.93 | HUU |
223,938 | 7.31 | T+ | 01035 | PA0194 | TauD/TfdA family dioxygenase | 1.14 | 1.07 | PE |
223,938 | 7.31 | P+ | 01040 | PA0195 | Re/Si-specific NAD(P)(+) transhydrogenase subunit alpha (PntAA) | 1.06 | 1.24 | EM; TSM |
2,728,908 | 7.02 | T+ | 13155 | PA2469 | LysR family transcriptional regulator | 0.86 | 0.99 | TR |
2,728,908 | 7.02 | P+ | 13160 | PA2468 | ECF sigma factor FoxI | 2.44 | 0.90 | TR |
5,817,693 | 6.44 | T+ | 27515 | PA5057 | poly(3-hydroxyalkanoate) depolymerase PhaD | 0.91 | 0.92 | CCC |
5,817,693 | 6.44 | P+ | 27520 | PA5058 | class II poly(R)-hydroxyalkanoic acid synthase | 0.73 | 1.14 | CIM |
5,358,006 | 6.44 | T+ | 25450 | NA | hypothetical protein PhaC | 1.48 | 1.12 | NA |
5,358,006 | 6.44 | P+ | 25455 | NA | serine/threonine-protein phosphatase | 1.66 | 1.10 | NA |
1,536,054 | 6.29 | P− | 07345 | PA3552 | UDP-4-amino-4-deoxy-L-arabinose- oxoglutarate aminotransferase ArnB | 1.31 | 1.00 | AP; ARS; CWLC |
1,536,054 | 6.29 | T− | 07350 | PA3551 | alginate biosynthesis protein AlgA | 1.06 | 1.05 | AP; SF; CWLC |
1,229,065 | 6.17 | T+ | 05895 | PA3829 | alpha/beta hydrolase | 0.59 | 0.94 | HUU |
1,229,065 | 6.17 | P+ | 05900 | PA3828 | LPS export ABC transporter permease LptF | 0.98 | 1.00 | MP |
2,863,600 | 5.27 | T+ | 13525 | PA2396 | N(5)-hydroxyornithine transformylase PvdF | 0.84 | 1.04 | AP; SF |
2,863,600 | 5.27 | T− | 13530 | PA2395 | formylglycine-generating enzyme family protein PvdO | 1.01 | 0.86 | AP |
546,136 | 5.10 | T+ | 02560 | PA0484 | ACT domain-containing protein | 0.53 | 1.27 | HUU |
546,136 | 5.10 | T− | 02565 | PA0485 | EamA family transporter | 0.73 | 1.04 | MP |
2,596,292 | 4.94 | T+ | 12535 | PA2583 | response regulator | 1.42 | 1.06 | TCRS; TR |
2,596,292 | 4.94 | P+ | 12540 | PA2582 | ProQ activator of osmoprotectant transporter ProP | 1.17 | 0.96 | HUU |
4,238,513 | 4.88 | P− | 19950 | PA1178 | PhoP/Q and low Mg2+ inducible outer membrane protein H1 | 1.19 | 0.96 | AP; MP; TSM |
4,238,513 | 4.88 | P+ | 19955 | PA1177 | periplasmic nitrate reductase NapE | 0.43 | 1.41 | EM |
1,565,661 | 4.83 | P− | 07455 | PA3531 | Bacterioferritin BfrB | 0.28 | 1.03 | AP; TSM |
1,565,661 | 4.83 | T− | 07460 | PA3530 | (2Fe-2S)-binding protein Bfd | 6.48 | 0.63 | HUU |
4,782,429 | 4.71 | P− | 22665 | PA0672 | biliverdin-producing heme oxygenase HemO | 0.91 | 1.08 | BCPGC |
4,782,429 | 4.71 | P+ | 22670 | PA0671 | translesion DNA synthesis-associated protein ImuA | 2.61 | 1.00 | HUU |
6,336,688 | 4.46 | P− | 29970 | PA5523 | aspartate aminotransferase family protein | 0.80 | 0.99 | PE |
6,336,688 | 4.46 | P+ | 29975 | PA5524 | SDR family oxidoreductase | 0.83 | 0.98 | PE |
5,155,744 | 4.45 | P− | 24430 | NA | site-specific integrase | 1.53 | 1.10 | NA |
5,155,744 | 4.45 | T− | 24435 | NA | hypothetical protein | 3.05 | 1.18 | NA |
4,752,637 | 4.28 | P− | 22570 | PA0691 | Transposase PhdA | NA | HUU | |
4,752,637 | 4.28 | T− | 22575 | PA0690 | phosphate depletion regulated TPS partner A, PdtA | 0.81 | 1.04 | HUU |
1,495,167 | 4.28 | T+ | 07140 | PA3588 | outer membrane porin, OprD | 0.77 | 1.03 | CCC; MP; TSM |
1,495,167 | 4.28 | T− | 07145 | PA3587 | LysR family transcriptional regulator MetR | 0.94 | 1.01 | TR |
2,454,141 | 4.23 | T+ | 11865 | PA2708 | DUF748 domain-containing protein | 0.80 | 0.96 | HUU |
2,454,141 | 4.23 | P+ | 11870 | PA2707 | MoxR family ATPase | 0.67 | 1.17 | HUU |
2,610,170 | 4.18 | T+ | 12605 | PA2570.1 | tRNA-Leu | 0.92 | 1.10 | NCRNA |
2,610,170 | 4.18 | P+ | 12610 | PA2570 | PA-I galactophilic lectin LecA | 1.17 | 1.44 | AP; MA; CWLC |
534,991 | 4.14 | T+ | 02505 | PA0473 | glutathione S-transferase family protein PsfA | 0.77 | 1.06 | PE |
534,991 | 4.14 | P+ | 02510 | PA0474 | PaaI family thioesterase | 0.99 | HUU | |
2,138,915 | 4.09 | P− | 10205 | PA3015 | hypothetical protein | 0.64 | 1.07 | HUU |
2,138,915 | 4.09 | P+ | 10210 | PA3014 | fatty acid oxidation complex subunit alpha FadB | 0.49 | 1.03 | AABM; FAPM |
559,247 | 4.07 | P− | 02635 | PA0499 | probable pili assembly chaperone | 1.41 | 1.17 | CHSP; MA |
559,247 | 4.07 | P+ | 02640 | PA0500 | biotin synthase BioB | 1.07 | 1.01 | BCPGC |
5,632,780 | 4.02 | P− | 26750 | PA4913 | branched-chain amino acid ABC transporter substrate-binding protein | 0.66 | 1.07 | TSM |
5,632,780 | 4.02 | P+ | 26755 | PA4914 | LysR family transcriptional regulator AmaR | 0.69 | 1.10 | TR |
1,186,255 | 4.00 | P− | 05685 | PA3867 | recombinase family protein | 1.49 | 1.00 | DRRMR |
1,186,255 | 4.00 | P+ | 05690 | PA3866 | pyocin protein S4 | 2.04 | 1.09 | AP; SF |
4,470,329 | 17.53 | gb+ | 21130 | PA0958 | outer membrane porin OprD | 0.70 | 1.00 | TSM |
977,796 | 10.14 | gb+ | 04705 | PA4056 | riboflavin-specific deaminase/reductase RibD | 0.96 | 0.94 | BCPGC |
1,833,017 | 8.32 | gb+ | 08720 | PA3290 | DUF2235 domain-containing protein Tle1 | 1.50 | 1.05 | SF |
578,029 | 7.73 | gb− | 02735 | PA0518 | cytochrome c551, NirM | 0.04 | 1.34 | BCPGC; EM |
3,067,087 | 7.41 | gb+ | 14395 | PA2227 | AraC-type transcriptional regulator VqsM | 1.62 | 1.22 | TR |
6,269,947 | 6.38 | gb+ | 29640 | PA5459 | class I SAM-dependent methyltransferase | 1.47 | 0.87 | CWLC |
4,031,730 | 6.26 | gb− | 18950 | PA1369 | hypothetical protein | 1.20 | 1.29 | HUU |
5,431,668 | 6.05 | gb+ | 25790 | PA4729 | 3-methyl-2-oxobutanoate hydroxymethyltransferase PanB | 0.74 | 0.97 | BCPGC |
3,604,758 | 5.72 | gb+ | 16880 | PA1766 | alpha-L-glutamate ligase-like protein | 1.49 | 1.00 | HUU |
2,690,883 | 5.55 | gb+ | 12965 | PA2507 | catechol 1.2-dioxygenase CatA | 0.72 | 1.21 | CCC |
4,554,008 | 4.92 | gb− | 21565 | PA0879 | acyl-CoA dehydrogenase | 0.64 | 1.00 | PE |
2,637,920 | 4.47 | gb+ | 12745 | PA2546 | ring-cleaving dioxygenase | 0.83 | 0.98 | PE |
4,271,470 | 4.45 | gb− | 20110 | PA1150 | pyocin-S2, Pys2 | 1.57 | 1.12 | AP; SF |
2,759,466 | 4.44 | gb− | 13220 | PA2456 | hypothetical protein | 1.48 | 1.32 | HUU |
4,010,081 | 4.38 | gb− | 18870 | PA1385 | glycosyltransferase family 1 protein | 1.96 | 1.21 | CWLC |
126,634 | 4.28 | gb− | 00565 | NA | hypothetical protein | 0.92 | 1.12 | NA |
4,014,784 | 4.27 | gb− | 18885 | PA1382 | type II secretion system protein GspD | 0.82 | 1.20 | PSE |
4,338,596 | 4.21 | gb− | 20435 | PA1089 | HAD family hydrolase | 1.98 | 0.91 | HUU |
801,087 | 4.21 | gb− | 03900 | PA4211 | phenazine biosynthesis protein PhzB 1 | 1.75 | 1.17 | SF |
1,194,762 | 4.20 | gb− | 05725 | NA | hypothetical protein | 1.55 | NA | |
1,983,113 | 4.18 | gb+ | 09485 | PA3148 | UDP-N-acetylglucosamine 2-epimerase WbpI | 1.58 | 1.11 | CWLC; PE |
3,666,357 | 4.11 | gb− | 17215 | PA1702 | type III secretion protein Pcr4 | 0.81 | PSE; SF | |
2,377,635 | 4.06 | gb− | 11420 | PA2780 | bacterial swarming regulator BswR | 1.27 | 1.08 | TR |
3,419,943 | 4.04 | gb+ | 16040 | PA1920 | class III (anaerobic) ribonucleoside-triphosphate reductase subunit NrdD | 0.06 | 2.91 | NBM |
4,011,617 | 4.04 | gb− | 18875 | PA1384 | UDP-glucose 4-epimerase GalE | 1.58 | 1.12 | CCC; CIM; NBM |
ChIP-Seq | RNA-Seq (FC) | |||||||
---|---|---|---|---|---|---|---|---|
Peak Summit | FE | Feature | PAO1161_ID | PAO1_ID | Product | PA3973+ vs. EV+ | ΔPA3973 vs. WT | Pseudo CAP |
1,062,605 | 17.8 | P+ | D3C65_05120 | PA3973 | TetR/AcrR family transcriptional regulator | 111.53 | 0.01 | TR |
1,565,661 | 4.8 | T− | D3C65_07460 | PA3530 | (2Fe-2S)-binding protein | 6.48 | 0.63 | HUU |
2,793,777 | 2.3 | P− | D3C65_13380 | PA2426 | RNA polymerase factor sigma-70 | 5.52 | 0.97 | TR |
5,055,569 | 2.3 | P+ | D3C65_23920 | PA4515 | PKHD-type hydroxylase | 4.87 | 0.89 | HUU |
6,162,338 | 2.7 | P− | D3C65_29150 | PA5369.2 | 23S ribosomal RNA | 4.05 | ND | NCRNA |
5,386,852 | 3.0 | P− | D3C65_25575 | PA4690.2 | 23S ribosomal RNA | 4.04 | ND | NCRNA |
4,791,422 | 3.0 | P− | D3C65_22690 | NA | 23S ribosomal RNA | 3.98 | ND | NA |
4,726,925 | 2.8 | T− | D3C65_22440 | PA0716 | ATP-binding cassette domain-containing protein | 3.85 | 1.17 | HUU |
723,925 | 2.9 | P+ | D3C65_03525 | NA | 23S ribosomal RNA | 3.76 | ND | NA |
1,148,582 | 2.3 | P− | D3C65_05510 | PA3899 | sigma-70 family RNA polymerase sigma factor | 3.71 | 0.91 | TR |
5,300,300 | 2.5 | P− | D3C65_25120 | PA4625 | filamentous hemagglutinin N-terminal domain | 3.46 | 0.93 | CWLC; SF |
5,155,744 | 4.5 | T− | D3C65_24435 | NA | hypothetical protein | 3.05 | 1.18 | NA |
4,447,533 | 3.8 | P+ | D3C65_20980 | PA0985 | pyocin S5 | 2.82 | 1.11 | MP; SF |
4,782,429 | 4.7 | P+ | D3C65_22670 | PA0671 | translesion DNA synthesis-associated protein ImuA | 2.61 | 1.00 | HUU |
1,966,031 | 2.9 | P+ | D3C65_09410 | PA3162 | 30S ribosomal protein S1 | 2.54 | 1.04 | TPTMD |
2,728,908 | 7.0 | P+ | D3C65_13160 | PA2468 | ECF sigma factor FoxI | 2.44 | 0.90 | TR |
883,435 | 2.2 | T− | D3C65_04265 | PA4140 | FAD-binding protein | 2.35 | 0.96 | HUU |
5,055,569 | 2.3 | P− | D3C65_23915 | PA4514 | TonB-dependent siderophore receptor | 2.19 | 1.31 | TSM |
4,729,931 | 2.3 | P− | D3C65_22445 | PA0715 | RNA-directed DNA polymerase | 2.14 | 1.17 | RPTP |
6,345,389 | 3.5 | P− | D3C65_30010 | PA5531 | protein TonB | 2.11 | 0.98 | TSM |
2,754,299 | 2.9 | P+ | D3C65_13195 | PA2461 | pentapeptide repeat-containing protein | 2.09 | 1.15 | HUU |
1,186,255 | 4.0 | P+ | D3C65_05690 | PA3866 | pyocin protein | 2.04 | 1.09 | AP; SF |
6,171,043 | 2.0 | P+ | D3C65_29200 | PA5375 | BCCT family transporter | 0.49 | 0.93 | MP; TSM |
2,138,915 | 4.1 | P+ | D3C65_10210 | PA3014 | fatty acid oxidation complex subunit alpha FadB | 0.49 | 1.03 | AABM; FAPM |
4,836,775 | 2.7 | T+ | D3C65_22855 | PA4309 | methyl-accepting chemotaxis protein PctA | 0.47 | 1.04 | AP; CHE |
1,659,181 | 2.6 | T− | D3C65_07870 | PA3451 | hypothetical protein | 0.44 | 1.07 | HUU |
2,101,587 | 2.3 | P− | D3C65_10015 | PA3049 | ribosome modulation factor | 0.44 | 1.36 | TPTMD |
4,238,513 | 4.9 | P+ | D3C65_19955 | PA1177 | periplasmic nitrate reductase NapE protein | 0.43 | 1.41 | EM |
5,605,641 | 2.1 | P− | D3C65_26630 | PA4889 | ferredoxin reductase | 0.43 | 0.72 | PE |
141,900 | 3.3 | T+ | D3C65_00655 | PA0121 | GntR family transcriptional regulator | 0.40 | 0.91 | HUU |
4,782,429 | 3.1 | P+ | D3C65_00220 | NA | transposase | 0.39 | 1.56 | NA |
1,724,552 | 2.2 | P+ | D3C65_08220 | PA3384 | phosphonate ABC transporter ATP-binding protein | 0.37 | ND | TSM |
1,300,584 | 2.2 | P+ | D3C65_06250 | PA3762 | NGG1p interacting factor NIF3 | 0.35 | 1.17 | HUU |
3,815,440 | 2.1 | P+ | D3C65_17955 | PA1561 | PAS domain S-box protein | 0.34 | 1.31 | AP; CHE |
3,027,948 | 2.8 | P− | D3C65_14225 | PA2259 | LacI family DNA-binding transcriptional regulator | 0.33 | 1.06 | TR |
1,565,661 | 4.8 | P− | D3C65_07455 | PA3531 | Bacterioferritin (Bfr) | 0.28 | 1.03 | AP; TSM |
4,729,931 | 2.3 | T− | D3C65_22450 | PA0714 | hypothetical protein | 0.26 | 1.16 | HUU |
3,690,709 | 2.7 | P− | D3C65_17365 | PA1673 | hemerythrin | 0.20 | 1.52 | HUU |
References
- Gales, A.C.; Jones, R.N.; Turnidge, J.; Rennie, R.; Ramphal, R. Characterization of Pseudomonas Aeruginosa Isolates: Occurrence Rates, Antimicrobial Susceptibility Patterns, and Molecular Typing in the Global SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin. Infect Dis. 2001, 32 (Suppl. 2), S146–S155. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-Infections in People with COVID-19: A Systematic Review and Meta-Analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Parkins, M.D.; Somayaji, R.; Waters, V.J. Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clin. Microbiol. Rev. 2018, 31, e00019-18. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Modrzejewska, M.; Kawalek, A.; Bartosik, A.A. The LysR-type transcriptional regulator BsrA (PA2121) controls vital metabolic pathways in Pseudomonas aeruginosa. mSystems 2021, 6, e0001521. [Google Scholar] [CrossRef] [PubMed]
- Poole, K. Stress responses as determinants of antimicrobial resistance in Pseudomonas aeruginosa: Multidrug efflux and more. Can J. Microbiol. 2014, 60, 783–791. [Google Scholar] [CrossRef]
- Udaondo, Z.; Ramos, J.-L.; Segura, A.; Krell, T.; Daddaoua, A. Regulation of carbohydrate degradation pathways in Pseudomonas involves a versatile set of transcriptional regulators. Microb. Biotechnol. 2018, 11, 442–454. [Google Scholar] [CrossRef]
- Soukarieh, F.; Williams, P.; Stocks, M.J.; Cámara, M. Pseudomonas aeruginosa Quorum Sensing systems as drug discovery targets: Current Position and Future Perspectives. J. Med. Chem. 2018, 61, 10385–10402. [Google Scholar] [CrossRef][Green Version]
- Bartosik, A.A.; Glabski, K.; Jecz, P.; Mikulska, S.; Fogtman, A.; Koblowska, M.; Jagura-Burdzy, G. Transcriptional profiling of parA and parB mutants in actively dividing cells of an opportunistic human pathogen Pseudomonas aeruginosa. PLoS ONE 2014, 9, e87276. [Google Scholar] [CrossRef]
- Galán-Vásquez, E.; Luna, B.; Martínez-Antonio, A. The regulatory network of Pseudomonas aeruginosa. Microb. Inform. Exp. 2011, 1, 3. [Google Scholar] [CrossRef][Green Version]
- Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000, 406, 959–964. [Google Scholar] [CrossRef]
- Winsor, G.L.; Griffiths, E.J.; Lo, R.; Dhillon, B.K.; Shay, J.A.; Brinkman, F.S.L. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the pseudomonas genome database. Nucleic Acids Res. 2016, 44, D646–D653. [Google Scholar] [CrossRef][Green Version]
- Balasubramanian, D.; Schneper, L.; Kumari, H.; Mathee, K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res. 2013, 41, 1–20. [Google Scholar] [CrossRef]
- Huang, H.; Shao, X.; Xie, Y.; Wang, T.; Zhang, Y.; Wang, X.; Deng, X. An integrated genomic regulatory network of virulence-related transcriptional factors in Pseudomonas aeruginosa. Nat. Commun. 2019, 10, 2931. [Google Scholar] [CrossRef][Green Version]
- Ramos, J.L.; Martínez-Bueno, M.; Molina-Henares, A.J.; Terán, W.; Watanabe, K.; Zhang, X.; Gallegos, M.T.; Brennan, R.; Tobes, R. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 2005, 69, 326–356. [Google Scholar] [CrossRef][Green Version]
- Deng, W.; Li, C.; Xie, J. The Underling mechanism of bacterial TetR/AcrR family transcriptional repressors. Cell Signal. 2013, 25, 1608–1613. [Google Scholar] [CrossRef]
- Aramaki, H.; Yagi, N.; Suzuki, M. Residues important for the function of a multihelical dna binding domain in the new transcription factor family of cam and Tet repressors. Protein. Eng. 1995, 8, 1259–1266. [Google Scholar] [CrossRef]
- Engohang-Ndong, J.; Baillat, D.; Aumercier, M.; Bellefontaine, F.; Besra, G.S.; Locht, C.; Baulard, A.R. EthR, a repressor of the TetR/CamR family implicated in ethionamide resistance in Mycobacteria, octamerizes cooperatively on its operator. Mol. Microbiol. 2004, 51, 175–188. [Google Scholar] [CrossRef]
- Orth, P.; Schnappinger, D.; Hillen, W.; Saenger, W.; Hinrichs, W. Structural basis of gene regulation by the tetracycline inducible Tet Repressor-Operator system. Nat. Struct. Biol. 2000, 7, 215–219. [Google Scholar] [CrossRef]
- Schumacher, M.A.; Miller, M.C.; Grkovic, S.; Brown, M.H.; Skurray, R.A.; Brennan, R.G. Structural mechanisms of QacR induction and multidrug recognition. Science 2001, 294, 2158–2163. [Google Scholar] [CrossRef]
- Kisker, C.; Hinrichs, W.; Tovar, K.; Hillen, W.; Saenger, W. The complex formed between Tet repressor and tetracycline-Mg2+ reveals mechanism of antibiotic resistance. J. Mol. Biol. 1995, 247, 260–280. [Google Scholar] [CrossRef]
- Su, C.-C.; Rutherford, D.J.; Yu, E.W. Characterization of the multidrug efflux regulator AcrR from Escherichia coli. Biochem Biophys. Res. Commun. 2007, 361, 85–90. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ruiz, C.; Levy, S.B. Regulation of AcrAB expression by cellular metabolites in Escherichia coli. J. Antimicrob. Chemother. 2014, 69, 390–399. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Grkovic, S.; Brown, M.H.; Skurray, R.A. Regulation of bacterial drug export systems. Microbiol. Mol. Biol. Rev. 2002, 66, 671–701. [Google Scholar] [CrossRef][Green Version]
- Aires, J.R.; Köhler, T.; Nikaido, H.; Plésiat, P. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob. Agents Chemother. 1999, 43, 2624–2628. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Matsuo, Y.; Eda, S.; Gotoh, N.; Yoshihara, E.; Nakae, T. MexZ-mediated regulation of MexXY multidrug efflux pump expression in Pseudomonas aeruginosa by binding on the mexZ-mexX intergenic DNA. FEMS Microbiol. Lett. 2004, 238, 23–28. [Google Scholar] [CrossRef]
- Yamamoto, M.; Ueda, A.; Kudo, M.; Matsuo, Y.; Fukushima, J.; Nakae, T.; Kaneko, T.; Ishigatsubo, Y. Role of MexZ and PA5471 in Transcriptional regulation of MexXY in Pseudomonas aeruginosa. Microbiol. (Read.) 2009, 155, 3312–3321. [Google Scholar] [CrossRef][Green Version]
- Dean, C.R.; Visalli, M.A.; Projan, S.J.; Sum, P.-E.; Bradford, P.A. Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob. Agents Chemother. 2003, 47, 972–978. [Google Scholar] [CrossRef][Green Version]
- Fraud, S.; Poole, K. Oxidative stress induction of the MexXY multidrug efflux genes and promotion of aminoglycoside resistance development in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2011, 55, 1068–1074. [Google Scholar] [CrossRef][Green Version]
- Lau, C.H.-F.; Fraud, S.; Jones, M.; Peterson, S.N.; Poole, K. Reduced Expression of the RplU-RpmA ribosomal protein operon in MexXY-Expressing pan-aminoglycoside-resistant mutants of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2012, 56, 5171–5179. [Google Scholar] [CrossRef][Green Version]
- Masuda, N.; Sakagawa, E.; Ohya, S.; Gotoh, N.; Tsujimoto, H.; Nishino, T. Contribution of the MexX-MexY-OprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2000, 44, 2242–2246. [Google Scholar] [CrossRef]
- Morita, Y.; Gilmour, C.; Metcalf, D.; Poole, K. Translational control of the antibiotic inducibility of the PA5471 gene required for MexXY multidrug efflux gene expression in Pseudomonas aeruginosa. J. Bacteriol. 2009, 191, 4966–4975. [Google Scholar] [CrossRef][Green Version]
- Morita, Y.; Sobel, M.L.; Poole, K. Antibiotic inducibility of the MexXY multidrug efflux system of Pseudomonas aeruginosa: Involvement of the antibiotic-inducible PA5471 gene product. J. Bacteriol. 2006, 188, 1847–1855. [Google Scholar] [CrossRef][Green Version]
- Kawalek, A.; Modrzejewska, M.; Zieniuk, B.; Bartosik, A.A.; Jagura-Burdzy, G. Interaction of ArmZ with the DNA-binding domain of MexZ induces expression of mexXY multidrug efflux pump genes and antimicrobial resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2019, 63, e01199-19. [Google Scholar] [CrossRef]
- Bahl, C.D.; MacEachran, D.P.; O’Toole, G.A.; Madden, D.R. Purification, crystallization and preliminary x-ray diffraction analysis of Cif, a virulence factor secreted by Pseudomonas aeruginosa. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2010, 66, 26–28. [Google Scholar] [CrossRef][Green Version]
- MacEachran, D.P.; Stanton, B.A.; O’Toole, G.A. Cif is negatively regulated by the TetR family repressor CifR. Infect Immun. 2008, 76, 3197–3206. [Google Scholar] [CrossRef][Green Version]
- Chen, L.; Xu, X.; Fan, C.; Zhang, R.; Ji, Y.; Yu, Z.; Qu, H.; Feng, Z.; Chi, X.; Cheng, S.; et al. Pip serves as an intermediate in RpoS-modulated Phz2 expression and pyocyanin production in Pseudomonas aeruginosa. Microb. Pathog. 2020, 147, 104409. [Google Scholar] [CrossRef]
- Hwang, S.; Kim, C.Y.; Ji, S.-G.; Go, J.; Kim, H.; Yang, S.; Kim, H.J.; Cho, A.; Yoon, S.S.; Lee, I. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa. Sci. Rep. 2016, 6, 26223. [Google Scholar] [CrossRef]
- Dong, Y.-H.; Zhang, X.-F.; Xu, J.-L.; Tan, A.-T.; Zhang, L.-H. VqsM, a novel AraC-type global regulator of quorum-sensing signalling and virulence in Pseudomonas aeruginosa. Mol. Microbiol. 2005, 58, 552–564. [Google Scholar] [CrossRef]
- Kawalek, A.; Bartosik, A.A.; Glabski, K.; Jagura-Burdzy, G. Pseudomonas aeruginosa partitioning protein ParB acts as a nucleoid-associated protein binding to multiple copies of a pars-related motif. Nucleic Acids Res. 2018, 46, 4592–4606. [Google Scholar] [CrossRef][Green Version]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef]
- Yan, Y.; Tao, H.; He, J.; Huang, S.-Y. The HDOCK server for integrated protein-protein docking. Nat. Protoc. 2020, 15, 1829–1852. [Google Scholar] [CrossRef] [PubMed]
- Machanick, P.; Bailey, T.L. MEME-ChIP: Motif analysis of large dna datasets. Bioinformatics 2011, 27, 1696–1697. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Elias, S.; Degtyar, E.; Banin, E. FvbA is required for vibriobactin utilization in Pseudomonas aeruginosa. Microbiol. (Read.) 2011, 157, 2172–2180. [Google Scholar] [CrossRef][Green Version]
- Mettrick, K.A.; Lamont, I.L. Different roles for anti-sigma factors in siderophore signalling pathways of Pseudomonas aeruginosa. Mol. Microbiol. 2009, 74, 1257–1271. [Google Scholar] [CrossRef] [PubMed]
- Dotreppe, D.; Mullier, C.; Letesson, J.-J.; De Bolle, X. The alkylation response protein AidB is localized at the new poles and constriction sites in Brucella abortus. BMC Microbiol. 2011, 11, 257. [Google Scholar] [CrossRef][Green Version]
- Landini, P.; Hajec, L.I.; Volkert, M.R. Structure and transcriptional regulation of the Escherichia coli adaptive response gene AidB. J. Bacteriol. 1994, 176, 6583–6589. [Google Scholar] [CrossRef][Green Version]
- Mulrooney, S.B.; Howard, M.J.; Hausinger, R.P. The Escherichia coli alkylation response protein AidB is a redox partner of flavodoxin and binds RNA and acyl carrier protein. Arch. Biochem. Biophys. 2011, 513, 81–86. [Google Scholar] [CrossRef][Green Version]
- Hamill, M.J.; Jost, M.; Wong, C.; Elliott, S.J.; Drennan, C.L. Flavin-induced oligomerization in Escherichia coli adaptive response protein AidB. Biochemistry 2011, 50, 10159–10169. [Google Scholar] [CrossRef]
- Mielecki, D.; Wrzesiński, M.; Grzesiuk, E. Inducible repair of alkylated DNA in microorganisms. Mutat. Res. Rev. Mutat. Res. 2015, 763, 294–305. [Google Scholar] [CrossRef]
- Chang, W.; Small, D.A.; Toghrol, F.; Bentley, W.E. Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide. BMC Genom. 2005, 6, 115. [Google Scholar] [CrossRef]
- Ferrández, A.; García, J.L.; Díaz, E. Transcriptional regulation of the divergent paa catabolic operons for phenylacetic acid degradation in Escherichia coli. J. Biol. Chem. 2000, 275, 12214–12222. [Google Scholar] [CrossRef][Green Version]
- Busby, S.; Irani, M.; Crombrugghe, B. Isolation of mutant promoters in the Escherichia coli galactose operon using local mutagenesis on cloned dna fragments. J. Mol. Biol. 1982, 154, 197–209. [Google Scholar] [CrossRef]
- Wozniak, K.J.; Simmons, L.A. Hydroxyurea induces a stress response that alters dna replication and nucleotide metabolism in Bacillus subtilis. J. Bacteriol. 2021, 203, e0017121. [Google Scholar] [CrossRef]
- Wade, J.T.; Struhl, K.; Busby, S.J.W.; Grainger, D.C. Genomic analysis of protein-dna interactions in bacteria: Insights into transcription and chromosome organization. Mol. Microbiol. 2007, 65, 21–26. [Google Scholar] [CrossRef]
- Shimada, T.; Ishihama, A.; Busby, S.J.W.; Grainger, D.C. The Escherichia coli RutR transcription factor binds at targets within genes as well as intergenic regions. Nucleic Acids Res. 2008, 36, 3950–3955. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, B.; Gu, D.; Hao, Y.; Chen, M.; Ma, Y.; Zhou, X.; Reverter, D.; Zhang, Y.; Wang, Q. Binding site profiles and N-terminal minor groove interactions of the master quorum-sensing regulator LuxR enable flexible control of gene activation and repression. Nucleic Acids Res. 2021, 49, 3274–3293. [Google Scholar] [CrossRef]
- Ochsner, U.A.; Vasil, A.I.; Vasil, M.L. Role of the Ferric Uptake Regulator of Pseudomonas aeruginosa in the regulation of siderophores and Exotoxin A expression: Purification and activity on iron-regulated promoters. J. Bacteriol. 1995, 177, 7194–7201. [Google Scholar] [CrossRef][Green Version]
- Sjöberg, B.-M.; Torrents, E. Shift in ribonucleotide reductase gene expression in Pseudomonas aeruginosa during infection. Infect Immun. 2011, 79, 2663–2669. [Google Scholar] [CrossRef][Green Version]
- Crespo, A.; Pedraz, L.; Torrents, E. Function of the Pseudomonas Aeruginosa NrdR Transcription Factor: Global Transcriptomic Analysis and its role on ribonucleotide reductase gene expression. PLoS ONE 2015, 10, e0123571. [Google Scholar] [CrossRef][Green Version]
- Torrents, E. Ribonucleotide Reductases: Essential enzymes for bacterial life. Front. Cell. Infect. Microbiol. 2014, 4, 52. [Google Scholar] [CrossRef]
- Neidhardt, F.C.; Bloch, P.L.; Smith, D.F. Culture medium for Enterobacteria. J. Bacteriol. 1974, 119, 736–747. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular cloning. A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989. [Google Scholar]
- Irani, V.R.; Rowe, J.J. Enhancement of transformation in Pseudomonas aeruginosa PAO1 by Mg2+ and heat. BioTechniques 1997, 22, 54–56. [Google Scholar] [CrossRef] [PubMed]
- Lasocki, K.; Bartosik, A.A.; Mierzejewska, J.; Thomas, C.M.; Jagura-Burdzy, G. Deletion of the parA (soj) homologue in Pseudomonas aeruginosa causes ParB instability and affects growth rate, chromosome segregation, and motility. J. Bacteriol. 2007, 189, 5762–5772. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rashid, M.H.; Kornberg, A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2000, 97, 4885–4890. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Djordjevic, D.; Wiedmann, M.; McLandsborough, L.A. Microtiter plate assay for assessment of listeria monocytogenes biofilm formation. Appl. Environ. Microbiol. 2002, 68, 2950–2958. [Google Scholar] [CrossRef][Green Version]
- Jagura-Burdzy, G.; Thomas, C.M. Purification of KorA protein from Broad Host Range plasmid RK2: Definition of a hierarchy of KorA operators. J. Mol. Biol. 1995, 253, 39–50. [Google Scholar] [CrossRef]
- Kotecka, K.; Kawalek, A.; Kobylecki, K.; Bartosik, A.A. The AraC-type transcriptional regulator GliR (PA3027) activates genes of glycerolipid metabolism in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2021, 22, 5066. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A New Mathematical Model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Zukowski, M.M.; Gaffney, D.F.; Speck, D.; Kauffmann, M.; Findeli, A.; Wisecup, A.; Lecocq, J.P. Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc. Natl. Acad. Sci. USA 1983, 80, 1101–1105. [Google Scholar] [CrossRef][Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Hanahan, D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 1983, 166, 557–580. [Google Scholar] [CrossRef]
- Simon, R.; O’Connell, M.; Labes, M.; Pühler, A. Plasmid vectors for the genetic analysis and manipulation of Rhizobia and other Gram-negative bacteria. Methods Enzymol. 1986, 118, 640–659. [Google Scholar]
- Bartosik, A.A.; Mierzejewska, J.; Thomas, C.M.; Jagura-Burdzy, G. ParB deficiency in Pseudomonas aeruginosa destabilizes the partner protein ParA and affects a variety of physiological parameters. Microbiology 2009, 155, 1080–1092. [Google Scholar] [CrossRef][Green Version]
- Kawalek, A.; Kotecka, K.; Modrzejewska, M.; Gawor, J.; Jagura-Burdzy, G.; Bartosik, A.A. Genome sequence of Pseudomonas aeruginosa PAO1161, a PAO1 derivative with the ICEPae1161 integrative and conjugative element. BMC Genom. 2020, 21, 14. [Google Scholar] [CrossRef][Green Version]
- Kovach, M.E.; Elzer, P.H.; Hill, D.S.; Robertson, G.T.; Farris, M.A.; Roop, R.M.; Peterson, K.M. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 1995, 166, 175–176. [Google Scholar] [CrossRef]
- Ludwiczak, M.; Dolowy, P.; Markowska, A.; Szarlak, J.; Kulinska, A.; Jagura-Burdzy, G. Global transcriptional regulator KorC coordinates expression of three backbone modules of the broad-host-range RA3 plasmid from IncU incompatibility group. Plasmid 2013, 70, 131–145. [Google Scholar] [CrossRef][Green Version]
- El-Sayed, A.K.; Hothersall, J.; Thomas, C.M. Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology 2001, 147, 2127–2139. [Google Scholar] [CrossRef][Green Version]
- Spratt, B.G.; Hedge, P.J.; te Heesen, S.; Edelman, A.; Broome-Smith, J.K. Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9. Gene 1986, 41, 337–342. [Google Scholar] [CrossRef]
- Thorsted, P.B.; Shah, D.S.; Macartney, D.; Kostelidou, K.; Thomas, C.M. Conservation of the genetic switch between replication and transfer genes of IncP plasmids but divergence of the replication functions which are major host-range determinants. Plasmid 1996, 36, 95–111. [Google Scholar] [CrossRef]
- Lukaszewicz, M.; Kostelidou, K.; Bartosik, A.A.; Cooke, G.D.; Thomas, C.M.; Jagura-Burdzy, G. Functional dissection of the ParB Homologue (KorB) from IncP-1 plasmid RK2. Nucleic Acids Res. 2002, 30, 1046–1055. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotecka, K.; Kawalek, A.; Modrzejewska-Balcerek, M.; Gawor, J.; Zuchniewicz, K.; Gromadka, R.; Bartosik, A.A. Functional Characterization of TetR-like Transcriptional Regulator PA3973 from Pseudomonas aeruginosa. Int. J. Mol. Sci. 2022, 23, 14584. https://doi.org/10.3390/ijms232314584
Kotecka K, Kawalek A, Modrzejewska-Balcerek M, Gawor J, Zuchniewicz K, Gromadka R, Bartosik AA. Functional Characterization of TetR-like Transcriptional Regulator PA3973 from Pseudomonas aeruginosa. International Journal of Molecular Sciences. 2022; 23(23):14584. https://doi.org/10.3390/ijms232314584
Chicago/Turabian StyleKotecka, Karolina, Adam Kawalek, Magdalena Modrzejewska-Balcerek, Jan Gawor, Karolina Zuchniewicz, Robert Gromadka, and Aneta Agnieszka Bartosik. 2022. "Functional Characterization of TetR-like Transcriptional Regulator PA3973 from Pseudomonas aeruginosa" International Journal of Molecular Sciences 23, no. 23: 14584. https://doi.org/10.3390/ijms232314584