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Abstract: Orai1, the first identified member of the Orai protein family, is ubiquitously expressed
in the animal kingdom. Orai1 was initially characterized as the channel responsible for the store-
operated calcium entry (SOCE), a major mechanism that allows cytosolic calcium concentration
increments upon receptor-mediated IP3 generation, which results in intracellular Ca2+ store deple-
tion. Furthermore, current evidence supports that abnormal Orai1 expression or function underlies
several disorders. Orai1 is, together with STIM1, the key element of SOCE, conducting the Ca2+

release-activated Ca2+ (CRAC) current and, in association with TRPC1, the store-operated Ca2+ (SOC)
current. Additionally, Orai1 is involved in non-capacitative pathways, as the arachidonate-regulated
or LTC4-regulated Ca2+ channel (ARC/LRC), store-independent Ca2+ influx activated by the secre-
tory pathway Ca2+-ATPase (SPCA2) and the small conductance Ca2+-activated K+ channel 3 (SK3).
Furthermore, Orai1 possesses two variants, Orai1α and Orai1β, the latter lacking 63 amino acids in
the N-terminus as compared to the full-length Orai1α form, which confers distinct features to each
variant. Here, we review the current knowledge about the differences between Orai1α and Orai1β,
the implications of the Ca2+ signals triggered by each variant, and their downstream modulatory
effect within the cell.
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1. Introduction

The calcium ion (Ca2+) is a ubiquitous messenger involved in several physiological
events, including immune response, muscle contraction, neuronal transmission, and fertil-
ity, among others. Ca2+ is also heavily implicated at the cellular level, where it mediates
gene expression, secretion, cell proliferation, and apoptosis. Due to its pleiotropic effects,
altered intracellular Ca2+ homeostasis induces pathological conditions [1–3].

The human body possesses an intricated machinery that precisely regulates Ca2+

homeostasis, including the store-operated Ca2+ entry (SOCE), a major mechanism of Ca2+

mobilization in the electrically non-excitable and excitable cells, where the release of Ca2+

stored in the intracellular compartments, mainly the endoplasmic reticulum (ER), leads to
the activation of Ca2+ channels in the plasma membrane (PM), followed by a massive Ca2+

influx from the extracellular medium [4,5]. SOCE is mediated by two types of channels, the
Ca2+ release-activate calcium (CRAC) and the store-operated calcium (SOC) channels. The
passing of Ca2+ from the extracellular milieu through the channels generates two distinct
currents, Icrac and Isoc, each with identifiable features. Whereas CRAC influx is mediated
exclusively by the ER Ca2+ sensor, STIM1, and Orai1 channels, TRPC1 proteins associate
with Orai1 and STIM1 to form the SOC channels [5].

Orai1, a pivotal actor of SOCE, was first identified by three independent interference
RNA screens in Drosophila S2 cells that related a few Drosophila genes to SOCE, including
olf186-F, named Drosophila Orai (dOrai1) [6–8]. Feske and coworkers linked their findings in
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Drosophila to a region of human chromosome 12, containing the human homolog of dOrai1,
Orai1 (also termed CRACM1), by the genetic mapping of members of a family that presented
severe combined immunodeficiency (SCID). SCID patients express a homozygous R91W
point mutation in the Orai1 protein that impaired T-cell activation. Over-expression of
wild-type Orai1 in T cells from SCID patients reestablished SOCE [6]. In addition to SCID,
gain or loss of Orai1 function has been associated with other diseases, such as autoimmune
disorders (reviewed in [9–12]). Two other members of the Orai family have been identified,
Orai2 and Orai3 [7], which can associate with STIM1 and STIM2 to trigger SOCE [13–15].
The current evidence supports that native CRAC channels consist of the heteromeric associ-
ation of Orai1, Orai2, and/or Orai3 (PMID: 28294127, PMID: 29604961, PMID: 31015290),
where the presence of Orai2 and Orai3 in native CRAC channels ensures that the magnitude
of Ca2+ influx is proportional to the strength of agonist stimulation [16,17]. Despite there
being no evidence indicating the composition of native CRAC channels, the stoichiometry
of these channels in a given cell type presumably depends on the relative expression of
Orai2 and Orai3 [15,17,18].

All three Orai proteins present the same structure: a four-membrane spanning protein
containing one intracellular and two extracellular loops and the N- and C-terminus facing
the cytoplasm [6–8] (Figure 1a). While the transmembrane domains (TM1–4) are highly con-
served in all three isoforms, there are clear differences between the cytosolic regions, with
34% and 46% of sequence similarity between the N-terminus and C-terminus, respectively,
of Orai1 and Orai3. The extracellular regions of the Orai proteins diverge as well, with
an Orai3 third loop longer than the one exhibited by Orai1 and Orai2 (Figure 1b) [19–21].
In 2012, the structure of dOrai was crystallized, featuring an unexpected arrangement of
six dOrai subunits conforming to the channel [22]. Although tetrameric and pentameric
stoichiometries for the human Orai channels have been proposed, it is currently accepted
that the Orai1 proteins might form a hexamer [21,23–25].
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Figure 1. (a) Predicted topology of Orai proteins. (b) A schematic representation of the three members
of the Orai family with their structural domains. Abbreviations: L, loop; TM, transmembrane domain.

In the hexameric architecture, one dOrai channel is formed by three dimers with a
crossing C-termini. The TM1 domains form the inner ring that acts as the ion-conducting
pore. TM2–3 generate a central ring that protects the pore from interaction with the lipids
in the PM. TM4 arranges as the outer ring, interacting with other PM components. The N-
terminal sequence (aa 1–70) of human Orai1 (hOrai1) is further discussed in the following
sections. An α-helix of the TM1 domain, known as the extended transmembrane Orai1
N-terminus (ETON, aa 73–90), reaches the cytoplasm and is required for the association
with STIM1 and the gating of the channel [26]. The pore region is composed of a basic
domain (hOrai1 aa R83, K87, and R91, whose mutation to W induced SCID), a hydrophobic
segment (hOrai1 aa L95, F99, and V102), and the selectivity filter, formed by a ring of
six glutamates (hOrai1 aa E106). TM1 and TM2 are connected by the first extracellular
loop (loop1) that contains an acidic calcium accumulating region (CAR, hOrai1 aa D110,
D112, D114) that ensures Ca2+ influx even in low Ca2+ conditions [27]. The only cytosolic
Orai1 loop (loop2), located between TM2 and TM3, possesses two modulating domains
that control Ca2+ influx through Orai1: the first one (hOrai1 aa 151–154) facilitates Orai1
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fast calcium-dependent inactivation (FCDI) [28], and the second region within loop2 is
an interacting domain (hOrai1 aa 157–167) with the chaperonin-containing T-complex
protein 1 chaperonin complex (CCT) that mediates Orai1 internalization and recycling,
thus acting as a regulator of Ca2+ signaling mediated by SOCE [29]. TM3 and TM4 are
linked by another extracellular loop (loop3), which contains the unique glycosylation site
within Orai1 (hOrai1 aa N223), allowing the interaction with lectins (carbohydrate-binding
proteins) in a cell-type dependent manner, which results in the attenuation of SOCE [30].
All loops contain cysteine residues (hOrai1 loop1-C126, loop2-C143, and loop3-C195) that
modulate the redox regulation of Orai1 channels as treatment with H2O2 significantly
impaired SOCE [31]. The C-terminal region of dOrai extends to the cytoplasm from the
TM4 domain bending in a highly conserved region (hOrai1 aa 268–291), known as TM4
extended (TM4x) [32], which results in an antiparallel association between the C-termini
of two neighboring dOrai subunits [22]. This hinge region within Orai C-termini contains
the initial and main binding and activating site between STIM1 and Orai1 [33–37]. Further-
more, Orai1 C-terminal exhibits a region (hOrai1 aa 260–275), termed as the C-terminus
internalization handle (CIH), which exert a negative effect over SOCE by contributing to
the internalization of Orai1 during meiosis through caveolin- and dynamin-dependent
endocytic pathway [38,39].

Upon cell stimulation by physiological agonists, the reduction in the luminal ER Ca2+

concentration is sensed by STIM1, which suffers a conformational change that allows the
activation of Orai1 channels in the plasma membrane [6–8,40]. STIM1 binds to Orai1 C-
termini (aa 260–275) by an activating region located in the cytosolic STIM1-CC1α3 and -CC2
domain (aa 312–387) [37], which was simultaneously characterized by three independent
groups and dubbed as CAD (CRAC activating domain) [34], SOAR (STIM1-Orai1 activating
region) [35], and OASF (Orai1 activating small fragment) [36]. Orai1 C-termini is considered
the primary binding site with STIM1, as deletion of this fragment completely abolishes the
association between STIM1-Orai1 [33,41,42]. Although still a matter of debate (extensively
discussed in [43]), several reports have demonstrated that STIM1 interacts with Orai1
N-termini to gate and modulate the opened Orai1 channel [26,34,44,45]. For instance,
a recent study has shown that the STIM1-Orai1 N-termini interaction is vital to obtain
CRAC currents featuring the hallmarks of a wild-type CRAC current [45]. A typical feature
of CRAC channels is the fast inactivation mediated by Ca2+, which limits the number
of ions passing through the channel [46]. Other proteins, such as calmodulin [47–49] or
SARAF [50–52], contribute to regulating the Ca2+ flux through Orai1. Ultimately, when the
signal responsible for intracellular Ca2+ stores depletion ends, STIM1 disassociates from
Orai1 and returns to its coalescent state, and, subsequently, the channel closes, interrupting
the Ca2+ influx.

Since the identification of STIM [53] and Orai [6–8] proteins as main players for SOCE,
several models regarding the stoichiometry of both proteins have been presented [37,54–64].
Such knowledge is key to the creation of new drugs able to fight against conditions arising
from altered SOCE [9,12]. It is clear from the beginning that ectopic expression of any of the
two proteins in dissimilar ratios led to altered SOCE and CRAC currents [54,57]. In 2011,
Hoover and Lewis presented the optimal STIM1:Orai1 ratio as 2:1 [58]. The identification
of the dOrai1 crystal structure in 2012 [22], and further studies based on the channel
architecture determined that a bimolecular coupling between 1 STIM1 dimer and 2 adjacent
Orai1 subunits would suffice to activate the hexameric Orai1 channel [32,37,60,63,65,66],
which did not quite fit with the most favorable STIM1:Orai1 ratio [58]. However, new pieces
of evidence have been presented against this bimolecular model, favoring a unimolecular
association between 1 STIM1 dimer and 1 Orai1 subunit [62,64,67], which fits with the
2:1 optimal ratio. Zhou and coworkers proposed that the formation of the pocket by to
Orai1-TM4 through I316 and I319 may be an artifact of dOrai1 crystallization conditions;
thus, it would be improbable that 1 STIM1 dimer might bind to and activate 2 neighboring
Orai1 subunits [67]. Undoubtedly, this subject requires further investigation, and probably,
we will not solve all the questions until the full hOrai1 structure is identified. Fortunately,



Int. J. Mol. Sci. 2022, 23, 14568 4 of 17

new technologies, such as neural networks or artificial intelligence systems capable of
predicting a protein’s 3D structure from its amino acid sequence [68], might shed some
light, helping us to unravel the mystery.

In addition to the Ca2+ influx through CRAC channels, Orai1 is also responsible for the
Ca2+ entry mediated by the SOC channels in collaboration with STIM1 and TRPC1 [5,69–72].
STIM1 activates TRPC1 via the association of a region of STIM1 C-termini polybasic
domain (aa 684–685) with two conserved aspartates (aa 639–640) within TRPC1 [70,71].
The activation of SOC channels via receptor-mediated inositol 1,4,5-trisphosphate (IP3)
and the subsequent Ca2+ store release generates characteristic changes in cytosolic Ca2+

concentration, where Orai1 conducts the generation of Ca2+ oscillations and TRPC1 is
implicated in the frequency of baseline Ca2+ oscillations, supporting, as well, a maintained
Ca2+ elevation with higher agonist concentration [72,73]. Orai1-mediated Ca2+ oscillations
control NFAT translocation to the nucleus and NFAT-dependent gene expression, probably
due to the proximity of NFAT machinery neighboring the pore of Orai1 [72,74,75]. While
TRPC1 have no implications in NFAT activation [72], it is involved in the activation of NFκB
and the NFκB-dependent gene expression [72,76,77]. Furthermore, TRPC1 Ca2+ entry upon
STIM1 activation is crucial for triggering epithelial-to-mesenchymal transition (EMT) in
invasive ductal carcinoma breast cancer cells, where SOCE is mainly mediated by TRPC1
channels, and the implication of Orai1 channels is still unknown [78]. Additional studies
are needed to understand the physiology of SOC channels, which will help us to finally
explain their implication in the pathophysiology of certain diseases, such as cancer.

Moreover, Orai1 supports other non-capacitative Ca2+ entry pathways, as well. For
instance, Orai1 associates with STIM1 and Orai3 to form the arachidonate-regulated or
LTC4-regulated Ca2+ channel (ARC/LRC) [79,80]. Furthermore, Orai1 might act indepen-
dently of STIM1 associated with the secretory pathway Ca2+-ATPase-2 (SPCA2) [81,82]
or the small conductance Ca2+-activated K+ channel 3 (SK3) [83]. Store-independent Ca2+

entry and its role in physiology and pathophysiology are extensively reviewed in [84,85].
Orai1 is a ubiquitous and complex Ca2+ channel that contributes to several local

and global Ca2+ signals, which modulate the downstream effect of many Ca2+-dependent
pathways. Alterations in those routes lead to diseases [12], thus, a thorough understanding
of Orai1 is required. Recently, two Orai1 variants have been identified [5], which might
explain some of the questions that we had but have raised several new ones. Here we
review the current knowledge about the Orai1 variants and their implication in Ca2+ signals
mediated by Orai1.

2. Orai1 Variants: Orai1α and Orai1β

Orai proteins are evolutionarily conserved across the animal kingdom. Analysis of
the phylogenetic relationships of the Orai proteins in different species has revealed that
invertebrates contain single copies of the Orai protein (except for Tribolium castaneum and
Apis mellifera, which contain two Orai molecules). The Orai protein found in invertebrates
evolved into two Orai proteins in vertebrates, referred to as Orai1 and Orai2 in mammalian
cells. In mammals, specifically, duplication of the Orai1 gene led to Orai3, which exhibits
closer phylogenetic relationships with Orai1 [86].

At present, no variants of Orai1 derived from alternative pre-messenger RNA splicing
have been described; however, two forms of Orai1 have been identified in mammalian
cells generated by alternative translation initiation. The human full-length Orai1 vari-
ant, named Orai1α, contains 301 amino acids (Figure 2a), while the short form, known
as Orai1β (Figure 2b), arises from alternative translation initiation at methionine 64, or
even methionine 71, therefore lacking the N-terminal 63 or 70 amino acids present in
Orai1α [87,88]. It has been reported that the Kozak sequence for the first methionine in
the native 5′-untranslated region is rather weak, leading to the translation of Orai1β from
an alternative translation start site, methionines 64 and 71. Accordingly, improvement of
the Kozak sequence for the first methionine has been reported to lead to the generation of
Orai1α exclusively, as well as mutation of methionines 64 and 71 to alanine or valine [87].
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Conversely, mutation of the first methionine results in the production of Orai1β, which
strongly suggest that methionines 64 and 71 function as second translation initiation sites
in Orai1 [88].
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Figure 2. Cartoon depicting Orai1α or Orai1β relevant domains. Both variants of Orai1, Orai1α
(a) and Orai1β (b), are presented with several key amino acids and domains required for their
function and the association with other proteins. Abbreviations as they appear from the N– to the
C–termini: AC8, adenylyl cyclase 8; PIP2, phosphatidylinositol bisphosphate; PKC, protein kinase C;
PKA, protein kinase A, AKAP, A–kinase anchoring protein; Cav, caveolin; CaM, Calmodulin; ETON,
extended transmembrane Orai1 N-terminal region; CAR, Ca2+ accumulating region; C126, C143
and C195, cysteine residues that modulate the redox regulation of Orai1; FCDI, fast Ca2+-dependent
inactivation; CCT, chaperonin–containing T–complex protein 1 chaperonin complex; CIH, C-terminus
Internalization Handle; TM, transmembrane domain; TM4x, extended transmembrane domain 4.

Different functional domains have been identified in the Orai1α exclusive N-terminal
region, containing 63 amino acids, which have been associated with the sensitivity to
Ca2+-dependent inactivation, protein-protein interaction, or cellular location. Specifically,
residues 26–34 in Orai1α are involved in its interaction with adenylyl cyclase 8 (AC8), a
Ca2+-modulated cyclase with low affinity for this cation [89]. In addition, Orai1 has been
reported to be phosphorylated by PKC at N-terminal serines 27 and 30 residues, an event
that is strongly associated with the suppression of SOCE and CRAC channel function [90].
Furthermore, serine 34 is a PKA phosphorylation site reported to mediate Ca2+-dependent
Orai1 channel inactivation as a feedback mechanism upon the activation of AC8 [74]. There
is also a predicted PIP2-binding domain between amino acids 28–33 whose functional
role is still uncertain but might be involved in the distribution of Orai1 in the plasma
membrane [91] or the regulation of STIM1-Orai1 interaction by the protein SARAF [92].
Finally, residues 52–60 form a predicted caveolin-binding domain which might regulate the
plasma membrane location of Orai1 as it has been reported during meiosis, where Orai1
internalization has been shown to be dependent on its interaction with caveolin [39].

Orai1α and Orai1β are expressed in all the cells investigated, including HEK-293 and
HeLa cells, as well as a variety of tumor cells, such as luminal MCF7 and triple-negative
MDA-MB-231 breast cancer cells, squamous carcinoma A431 cells, lung adenocarcinoma
H441 cells and colorectal adenocarcinoma T84 cells [87,93]. The Orai1α:Orai1β expression
ratio varies among the cell lines investigated but mostly ranging from 0.3 to 1 [87,93], thus
suggesting that Orai1 mRNA transduction mostly favors the expression of the short variant.

Analysis of Orai1α and Orai1β subcellular locations has revealed that, as expected,
both Orai1 variants are predominantly localized in the plasma membrane [87]. Figure 3
shows that Orai1α-GFP and Orai1β-GFP expressed in Orai1-KO HEK-293 cells are exclu-
sively located at the plasma membrane; therefore, the truncation of N-terminal 63 amino
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acids in Orai1β does not affect its plasma membrane location in resting cells. Furthermore,
Fukushima and coworkers demonstrated that Ca2+ store depletion using the SERCA in-
hibitor thapsigargin or the physiological agonist carbachol resulted in the accumulation
of Orai1α and Orai1β into puncta with similar efficiency, thus indicating that Orai1α and
Orai1β exhibit a similar subcellular location [87]. Nevertheless, although no differences
have been found in the cellular distribution of both Orai1 variants, the mobility of Orai1α
and Orai1β in the plasma membrane significantly differs. As analyzed by rates of fluo-
rescence recovery after photobleaching (FRAP), either expressed singly or together, the
half-time of Orai1β recovery follows a normal distribution while that for Orai1α exhibits a
bimodal distribution, the first one with a half-time similar to that of Orai1β followed by
a second, predominant, population with a slower rate of recovery. The nature of the two
populations of Orai1α rates of recovery remains uncertain. The observation that Orai1β ex-
hibits the same mobility profile either expressed alone or co-expressed with Orai1α, which
is different from the Orai1α mobility profile, suggests that Orai1α and Orai1β do not form
heteromeric channels; however, further studies are required to characterize the two Orai1α
populations and whether the minor, faster, population of Orai1α might heteromerize with
Orai1β under certain conditions, as co-expression of both Orai1 forms slows down their
rates of recovery [87].
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3. Functional Properties of Orai1α and Orai1β

Using Orai1α- or Orai1β-optimized constructs that results in the production of one of
the Orai1 forms, Desai and coworkers demonstrated that both Orai1 variants can rescue
SOCE in Orai1-KO mouse embryonic fibroblasts (MEFs), with Orai1α showing smaller
efficiency. Similarly, expression of Orai1α or Orai1β in Orai1-KO MEFs and HEK-293 cells
restored Icrac but with similar efficiency [5]. The reason for the discrepant efficiencies of both
Orai1 variants in SOCE and Icrac was attributed to the dialysis of the intracellular fast Ca2+

chelator BAPTA for Icrac measurements, which impairs Ca2+-dependent inactivation of the
Orai1 channels. In fact, analysis of fast Ca2+-dependent inactivation of Orai1α and Orai1β
expressed in HEK-293 cells revealed that, in the presence of the slower Ca2+ chelator EGTA,
Orai1α produced a smaller current than Orai1β at all potentials tested, an observation that
was abrogated in the presence of BAPTA. These findings indicate that, while both variants
support Icrac, Orai1α shows a stronger fast Ca2+-dependent inactivation than Orai1β, the
latter being barely sensitive to Ca2+-depending inactivation as it behaves similarly in the
presence of EGTA and BAPTA [5]. These findings were confirmed in Orai1-KO HEK-293
cells expressing Orai1α or Orai1β using plasmids with the weak thymidine kinase (TK)
promoter to reconstitute Orai1 expression at a more physiological level [74]. Zhang et al.
also reported that the substitution of extracellular Ca2+ by Ba2+ abrogates the differences
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between Orai1α and Orai1β, which strongly suggests that the different inactivation rates
are mediated by Ca2+ [74].

The functional role of Orai1 variants in the Isoc current has also been investigated.
This current is the result of a complex mechanism where Ca2+ influx through Orai-forming
CRAC channels recruits TRPC channels to the plasma membrane [94]; therefore, Isoc
comprises the currents mediated by CRAC and TRPC1 channels [5,94]. In HEK-293 cells,
patch-clamp experiments have demonstrated that both Orai1α and Orai1β support Isoc with
similar efficiency [5]. These findings were confirmed by analyzing Mn2+ influx through
TRPC1 channels [73]. Mn2+ is used as a surrogate for Ca2+ that enters the cells through
TRPC1 but not via Orai1 channels in the presence of extracellular divalent cations, such
as Ca2+ [40,73]. However, the involvement of Orai1β in this mechanism seems to be cell-
specific, as, in HeLa cells, we have found that Orai1α, but not Orai1β, participates in the
recruitment of TRPC1 channels in the plasma membrane and is required for store-operated
cation entry through TRPC1. In this cellular model, Orai1β was not found to interact or
co-localize with TRPC1 channels, and expression of a dominant negative Orai1β mutant
failed to attenuate translocation of TRPC1 to the plasma membrane or Mn2+ influx through
TRPC1 channels [73]. The basis for the different involvement of Orai1β in TRPC1 function
and Isoc in these cell types is uncertain at present.

One of the most relevant functional differences between both Orai1 forms is that
Orai1α, but not Orai1β, has been shown to support Iarc [5], the store-independent Ca2+

selective current activated by arachidonate and its metabolite leukotriene C4 [95]. ARC
channels consist of heteropentamers of three Orai1 subunits and two Orai3 subunits [20,79]
and require the participation of plasma membrane resident STIM1 [80,96]. In HEK-293
cells, individual expression of Orai1α was found to rescue Iarc in cells transfected with
siOrai1, while Orai1β failed to do this.

4. Orai1 Variants and NFAT Activation

Nuclear factor of activated T-cell (NFAT) proteins are widely expressed transcription
factors that regulate a plethora of genes involved in immunity, development, and, more re-
cently, having an important function in cancer physiology [97,98]. Four out of five members
NFAT(1–4) are activated by phosphatases that respond to rises in cytosolic free-Ca2+ concen-
tration ([Ca2+]i), while only NFAT5 is sensitive to osmotic stress [99]. Ca2+-sensitive NFATs
are mainly activated by Orai1/CRAC channels [98,100], but increasing evidence supported
its activation by other channels involved in different modalities of Ca2+ influx into the
cell, such as L-type [101–103], T-type [104–106] and members of the TRP family not related
with SOCE [100,107–113]. The amplitude, duration, oscillatory pattern, and source of Ca2+

transients modulate the later activation of NFAT [15,16,114–117]. Thus, raises of [Ca2+]i
promoted by opened PM Ca2+-channels activate the Ca2+-dependent calmodulin (CaM),
which contains EF-hand motifs to sense [Ca2+]i, among other proteins. As a result, heavily
phosphorylated resting NFAT proteins located in the cytoplasm become dephosphorylated
by calcineurin, starting the calcineurin-NFAT pathway [99]. Active dephosphorylated
NFAT migrates towards the nucleus, binding there to the promoter region of many genes,
both alone or forming complexes with other transcription factors (for instance, AP-1, GATA-
4, or MEF-2) [99]. It has been suggested that calcineurin remains bound to NFAT to prevent
rephosphorylation during translocation [118]. Rephosphorylation on nuclear NFAT by
nuclear kinases (such as GSK3, JNK, p38) implies its inactivation and relocation to the
cytoplasm [99]. This way, PM Ca2+-channels can trigger gene transcription through the
calcineurin-NFAT pathway.

Focusing on SOCE, Orai1-mediated Icrac trigger NFAT(1, 2 and 4)
translocation [6,15,74,75,103,117,119–121], while its participation in NFAT(3 and 5) translo-
cation has not been yet reported. However, NFAT5 has been proposed as a powerful
regulator of Orai1 expression in megakaryocytes, the precursor cells of blood platelets [122].
As aside, Orai2 and Orai3 are not able (or less able) to activate NFATs translocation them-
selves in the absence of Orai1 [16,75,119]. Nevertheless, their presence can modulate
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Orai1-dependent NFATs activation by heteromerization with Orai1 [15–18,123,124], despite
their inability to directly activate NFATs. Therefore, Orai2 and Orai3 seem to act as Orai1
modulators rather than NFAT1 activators [15,16].

Since the identification of Orai1α and Orai1β variants has only recently been reported,
previous studies mostly described Orai1α-NFAT interactions. The role of the Orai1α
subunit in calmodulin and NFAT1 activation is not only restricted to the generation of
local high [Ca2+]i microdomains within ER-PM junctions. The Orai1α region located
within the amino acid residues 39–59 (AKAR region) interacts directly or indirectly with
the scaffolding protein A-kinase anchoring protein 79 (AKAP79) [75]. Once complexed
with Orai1α through AKAR, AKAP79 binds calcineurin and NFAT together, facilitating
their interaction, the calcineurin-mediated NFAT1 dephosphorylation, and the subsequent
NFAT activation [75,119]. In conclusion, Orai1α not only promotes the initiation but also
compartmentalizes the complexed AKAP79/calcineurin-NFAT pathway into high [Ca2+]i
microdomains during SOCE.

The Orai1α-AKAP79 interaction seems to be specific since the AKAR region is absent
in Orai2 or Orai3 subunits, and they are less able to interact with AKAP79 [75]. Interestingly,
Orai1β also lacks this N-terminal region necessary to form a complex with AKAP-79, but
the impact of its absence on NFAT activation is controversial. Kar and coworkers proposed
that Orai1-AKAP79 interaction is mandatory to drive the activation of NFAT translocation
in HEK-293 cells. They reported a relatively weak Orai1β-AKAP79 interaction due to the
absence of the AKAR region that, despite the strong Ca2+-influx promoted by Orai1β, is
too weak to promote NFAT1 translocation to the nucleus. Thus, Orai1β might fail to trigger
NFAT1-dependent gene expression due to the lack of the N-terminal region. This idea is
reinforced by the fact that Orai2 and Orai3 also lack AKAR, resulting in much less NFAT1
trafficking to the nucleus. However, it might indicate a remaining residual mechanism able
to promote NFAT1 dephosphorylation and translocation to a lesser extent [75]. In summary,
Kar et al. suggest that the presence of Orai1β might negatively contribute to Orai1α -
mediated NFAT1 activation, comprising then a mechanism to suppress gene expression
without interfering with other SOCE functions [75]. Given that, this study implies that
raises in [Ca2+]i themselves are not sufficient and that it is mandatory for the formation of
Orai1/AKAP-79/calmodulin/NFAT1 complexes to drive NFAT1 translocation.

AKAP79 also binds and recruits NFAT4 near L-type channels in neurons [103]. By
extrapolation, one might expect an abrogated Orai1β-NFAT4 interaction as well; how-
ever, Zhang and coworkers have reported direct NFAT4 activation by Orai1β also in
HEK-293 cells [74]. Zhang et al. show that both Orai1α and Orai1β are equally able to
activate NFAT1 [74]. Both variants activate NFAT1 and NFAT4 translocation at high ag-
onist concentrations, but only Orai1β can trigger NFAT4 translocation at physiological
agonist concentrations. The proposed mechanism explains how different [Ca2+]i oscillatory
frequencies modulate alternative NFAT1/NFAT4 patterns of translocation, which were
previously observed using different agonist concentrations [114,117,125,126]. Thus, authors
reported that Orai1β are less sensitive to FCDI as previously reported [5,87], which will
be important at the end for NFATs modulation. FCDI attenuates Icrac, and it is characteris-
tic of Orai1α [74]. Ca2+-dependent inactivation (CDI) comprises two components; a fast
inactivation (FCDI) occurring within milliseconds that is promoted by the high [Ca2+]i mi-
crodomain formed near the channel, and a slow inactivation (SCDI) occurring over seconds
triggered by overall rises in [Ca2+]i [127]. CDI was previously proposed as a mechanism to
avoid toxic [Ca2+]C rises, but this work also proposes that FCDI modulates the frequency of
[Ca2+]C oscillations. The lesser sensitivity to CDI exhibited by Orai1β has been attributed
to the absence of Ser34, which, in Orai1α, is phosphorylated by protein kinase A (PKA),
leading to CDI initiation. The lack of CDI entails the promotion of different oscillatory
[Ca2+]i frequencies by Orai1β than those generated by Orai1α. Thus, Orai1α leads to lower
frequency [Ca2+]i oscillations than Orai1β, which might underlie the activation of NFAT
isoforms at different degrees depending on the agonist concentration [74,117]. Both Orai1
isoforms generate robust Icrac at high agonist stimulation, and both would activate NFAT1
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and NFAT4, but only Orai1β would activate NFAT4 and not NFAT1 because NFAT1 does
not respond to weak Ca2+-currents, at low physiological agonist stimulation. The translo-
cation dynamics of both activated NFATs are different. Active NFAT4 translocates faster
and remains transiently, in an oscillatory mode, inside the nucleus, while NFAT1 remains
in a more sustained manner [15,125,126]. This mechanism seems to have a similar goal to
the heteromerization of Orai2 or Orai3 with Orai1, the generation of different patterns of
NFAT1/NFAT4 activation [15,16], except that the Orai1α/Orai1β heteromerization has not
been demonstrated [87]. Although the work suggests that Orai1- and IP3R-dependent Ca2+-
currents are important for NFATs activation, it does not clarify which one is the determinant
one. Other studies reported that NFAT4 requires Ca2+ influx from two sources, from PM
channels and nuclear IP3R, to be activated [117,126]. Nevertheless, their hypothesis implies
that raises in [Ca2+]i are sufficient to activate NFATs in contrast to Kar and coworkers and
that their oscillatory nature modulates NFATs function. Regarding other NFAT isoforms,
there are no studies about the possible interactions between Orai1β and NFAT2 or NFAT3.
Orai1α activity triggers NFAT2 translocation [121]. Whether the interaction is mediated by
AKAP79 or the NFAT2 is unresponsive to Orai1β activation remains unsolved.

5. Regulation of Orai1α by AC8 in Breast Cancer Cells

Mammalian adenylyl cyclases comprise nine (AC1–9) transmembrane enzymes and
one cytosolic isoform (AC10) that catalyze the synthesis of cyclic AMP (cAMP) from
ATP [128]. AC isoforms are located throughout the organism, displaying specific locations
and presenting cell and tissue-specific expression patterns [129]. ACs are classically acti-
vated by G-proteins downstream G-protein coupled receptors, but additionally, AC1 and
AC8 are activated by Ca2+ [129–137]. cAMP is a basic second messenger that has a major
function in cellular physiology. Molecular components of cAMP signaling pathways are
highly intracellularly compartmentalized and trigger a wide spectrum of basic cellular func-
tions [138]. PKA, for instance, is one of the cAMP effectors and controls a broad spectrum
of downstream signaling cascades [139]. Target molecules of PKA differ depending on
where this kinase is subcellularly located. Its compartmentalization is regulated by scaffold
proteins that form complexes with PKA to anchor it close to target molecules. Several
studies demonstrated that SOCE or SOCE components can trigger AC5, AC6, and AC8
activation [130–137]. AC8 is regulated by Ca2+ and exhibits a low affinity for this ion. This
isoform is able to form complexes with Orai1 channels [89,140], both proteins co-localize
into lipid rafts [141], and residues 26–34 of the Orai1α N-terminal region [89] directly bind
to the N-terminal region of AC8 [142]. The Orai1α region also contains the AKAR region,
which is necessary to bind to AKAP79, which recruits PKA. Palmitoylation targets AKAP79
to lipid rafts where Orai1 and AC8 are located [143]. Thus, the N-terminal region of Orai1α
recruits AC8/AKAP79/PKA closer, assembling the cAMP signaling complex nearby.

The Orai1-induced AC8 activation triggers a signaling loop ending in Orai1α phospho-
rylation by PKA. Orai1α-mediated SOCE activates AC8 in HEK293 cells overexpressing the
latter, generating local microdomains of high cytoplasmic cAMP concentration ([cAMP]c),
that activates the complexed PKA, which, in turn, phosphorylates Orai1α at Ser34. The
consequence of Ser34 phosphorylation is the activation of CDI since the mutation of this
phosphorylation site (the exchange of a Ser34 by Arg34) abrogates CDI [74]. cAMP sig-
naling is later degraded by phosphodiesterases to finish the signaling pathway [144,145].
Interestingly, Ser34 is also phosphorylated by PKG, having similar results on Orai1 ac-
tivity [146]. Two additional Ser residues (Ser27 and Ser30) phosphorylated by PKC were
described within the N-terminal region, whose function is to reduce Orai1 channel activ-
ity [90]. Interestingly, those three phosphorylatable Ser residues are located within the
26–34 residue region that contains the AC8 binding site [89]. Thus, the AC8-dependent
cAMP signaling pathway comprises a system to trigger CDI after Orai1 channel activa-
tion [74]. By contrast, Orai1β does not bind to AC8 [74,93] due to the lack of the N-terminal
region containing both AKAR and AC8 binding regions [74]. Orai1β is, therefore, unable
to bind and recruit AKAP-79 and AC8, failing to recruit the AC8/AKAP-79/PKA complex
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responsible for cAMP-dependent signaling. This interaction, therefore, seems to be selective
to Orai1α since neither Orai2 nor Orai3 contain both AKAR and AC8 binding regions as
well [89]. As a result, Orai1β is less sensitive to CDI, as depicted in the previous section.
The presence/absence of CDI after Orai1 channel activation would shape the amplitude
of SOCE and the pattern of Ca2+ oscillations, establishing different NFATs translocation
patterns [74]. AC8 participates in CDI since the Orai1α mutant lacking the AC8 binding
site still displays a diminished CDI [74]; however, AC8 is not the only inducer of CDI;
for instance, SARAF was previously proposed as a regulator of CDI after Orai1 channel
activation [147]. In agreement, previous studies revealed that cAMP increases attenuate
SOCE [148–150]. Hypothetically, the absence of the cAMP signaling complex close to
Orai1β-assembled channels might have consequences in Ca2+ signaling. It is known that
cAMP modulate Ca2+ homeostasis (extensively discussed in [136]). In summary, the high
[cAMP]c microenvironment generated around activated Orai1α subunits regulates not
only Icrac but also other Ca2+-handling mechanisms. Therefore, the distinct ability of Orai1
variants to activate AC8 might differentially shape the Ca2+ signals in cells where this
cyclase plays a functional role.

It has been reported that embryonic kidney HEK293 cells do not express AC8, but they
can recruit AKAP79/PKA and phosphodiesterase 4 (PDE4) complexes nearby activated
Orai1 channels in the absence of cAMP microdomains suggesting that there should be an
alternative source of cAMP able to trigger PKA activity close to Orai1 [145].

In cancer cells, the cAMP/PKA pathway promotes proliferation, migration, and
invasive properties, as well as other aspects of their physiology [151]. Moreover, the
Orai1 channel is a well-known regulator of proliferation and migration in breast cancer
cells [136,152]. Therefore, the SOCE-dependent cAMP signaling might have increased
importance in breast cancer biology since both Orai1 and AC8 have been found to be highly
expressed in these cells [93,153–156]. This is consistent with previous evidence supporting
a remodeling of the Ca2+-signaling machinery in cancer [136]. Indeed, both Orai1α and
Orai1β were found to be highly expressed in triple-negative breast cancer MDA-MB-231
and luminal MCF7 cell lines [93]. In these cells, AC8 overexpression interferes with PKA,
PKC, or PKG-induced Orai1 inactivation, impairing Ser27, 30, or 34 phosphorylation as
these residues overlap with the AC8 binding motif at the N-terminal region of Orai1α
subunit. AC8 is predominantly overexpressed over Orai1, and AC8 interaction has been
reported to restrict the accessibility to the phosphorylatable Ser residues. The consequence
is that AC8 enhances Orai1-mediated SOCE in breast cancer cells attenuating Orai1α
CDI [136]. Since Orai1β does not interact with AC8, it remains unaffected. Moreover,
it has been reported that AC8 knockdown attenuates cell proliferation and migration in
breast cancer cell lines, in contrast to non-tumoral breast epithelial cell lines that express
lesser AC8, offering a molecular explanation on previous observations reporting a role
of Orai1-mediated SOCE in proliferation and migration in breast cancer cells [136,152].
Finally, the transcription factor cAMP response element-binding protein (CREB) is a well-
known substrate of PKA. It has been reported that SOCE can also activate CREB [157–159],
and the induction of CREB activity by AC8 has been demonstrated in neurons [160,161].
Overstimulation of CREB has been associated with cancer [132]. Therefore, Orai1α-AC8
interaction might link SOCE with CREB function, allowing SOCE to modulate CREB-
dependent gene expression [162].

6. Conclusions

Orai1 is the key pore-forming protein of the CRAC channels, which mediate the
prototypical and best-characterized store-operated current Icrac. In addition, Orai1 promotes
store-dependent activation of the Isoc current involving TRPC1. Two variants of Orai1 are
expressed at the protein level in mammalian cells. These variants, Orai1α and Orai1β,
generated by alternative translation initiation, differ in the N-terminal 63 amino acids
lacking in the short form, Orai1β. While these forms have been reported to support Icrac
with similar efficiencies, their participation in Isoc depends on the cell type investigated,
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and Iarc activation is unique to Orai1α. Orai1 variants also differ in their sensitivity to
fast Ca2+-dependent inactivation, which explains the different Ca2+ signals mediated by
these forms when expressed individually. The absence of the N-terminal 63 amino acids in
Orai1β limits the interaction with different partners, including AC8, AKAP79, or caveolin,
as well as serine phosphorylation at residues 27, 31 and 34, present in Orai1α. These
differences have been proposed to underlie the distinct channel inactivation properties,
mobility profiles, and NFAT activation mechanisms. The presence of Orai1α and Oraiβ in
a given cell type provides an additional tool to generate Ca2+ signals appropriate to the
intensity of agonist stimulation.
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