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Chemicals and Reagents 

The following chemicals were purchased and used without further purification: 

Bismuth citrate (purity≥99.9%) powder was purchased from the MACKLIN reagent 

network in China. Calcium hydroxide (purity≥95%, Ca(OH)2) and ammonium 

chloride (purity≥99.5%, NH4Cl ) were obtained from Tianjin Shengao Chemical 

Reagent Co. , Ltd. in China. Nafion solution (5.0 wt%) was obtained from Tianjin 

Incole Union Technology Co .,Ltd in China. Hydrochloric acid (36.0–38.0%, HCl) , 

potassium bicarbonate (purity ≥99.5%, KHCO3) was purchased from Sinopharm 

Chemical Reagent Co., Ltd in China. Self-produced Deionized water. (18.24 MΩ cm-1) 

was used in the entire experiment. 

Characterization and measurement 

Powder X-ray diffraction (XRD) measurements were conducted by a Smart 

Target X-ray diffractometer (Smart Lab, Japan). To observe the surface morphology 

of each electrocatalyst, we used an F-SEM cold field emission scanning electron 

microscope (F-SEM, Zeiss Sigma 300, Germany). High-resolution transmission 

electron microscope (HRTEM) and a high angle annular dark-field scanning 

transmission electron microscope (HAADFSTEM) was also used to obtain 

high-resolution images (FEI Talos F200x, America). Elemental content was analyzed 

by X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-alpha, America), 

using a monochromatic Al-Kα radiation source (Mono Al-Kα) with 1486.6 eV of 

energy. Chemical states and surface material composition an X-ray photoelectron 

spectrometer was used for charge neutralization in the range of 75-150W with a low 

energy electron gun using a single cathode light source in a super-vacuum state. For 

the samples before electrocatalytic reaction, we directly characterize the freshly 

prepared electrodes. For the sample after electrocatalytic reaction, we washed the 

sample with deionized water, removed the surface electrolyte, and carried out 

characterization after drying. 

Density Functional Theory Simulation 

The free energies of CO2 reduction states were carried out by the Vienna 

Ab-initio Simulation Package (VASP)[1, 2], taking advantage of the density 



functional theory (DFT) with the Projected Augmented Wave[3] (PAW) method. The 

revised Perdew-Burke-Ernzerhof (RPBE) functional was used to describe the 

exchange and correlation effects[4-6]. For all the geometry optimizations, the cutoff 

energy was set to be 500 eV. The Monkhorst-Pack grids[7] were set to be 3×2×1 for 

performing the surface calculations. The (012) surface of Bi was used to represent the 

catalytic surface. The slab models were constructed by using four atomic layers. The 

nitrogen dopant was introduced by substituting surface bismuth atom. During the 

calculations, the bottom two layers were kept fixed, while the top two layers and the 

adsorbates were allowed to fully relax. A 15 Å vacuum thickness was added in the 

z-direction of the simulation box, preventing the interactions between the adjacent 

slabs.  

In aqueous conditions, the reduction of CO2 to produce HCOOH could occur in 

the following two elementary steps: 

CO2 + (H+ + e–) + * → *OCHO 

*OCHO + (H+ + e–) → * + HCOOH 

Based on the above mechanism, the free energy of *OCHO intermediate is 

important to identify a given material’s activity in catalysing CO2 reduction. The 

computational hydrogen electrode[8] (CHE) model proposed by Norskov et al. was 

used to calculate the free energies of CO2 reduction intermediates, based on which the 

free energy of an adsorbed species is defined as 

∆G��� = ∆���� + ∆���� − �∆���� +  ∫ ���� 

Where ∆Eads is the electronic adsorption energy, ∆EZPE is the zero point energy 

difference between adsorbed and gaseous species, T∆Sads is the corresponding entropy 

difference between these two states, and ∫CPdT is the enthalpy correction. The 

electronic binding energy is referenced as graphene for each C atom, ½ H2 for each H 

atom, and (H2O – H2) for each O atom, plus the energy of the clean slab.  

 

 
Figure S1. (a) SEM image of N−BiNSs , (b) SEM−EDS of N−BiNSs, (c) SEM image of BiNSs. 



Table S1. Performance comparison of N−Bi nanosheets for electrocatalytic CO2RR towards 

foamate production with other representative electrocatalysts in the literatures 

 

Electrocatalyst  Electrolyte Potential FEformate (%) Current density Ref.  

N−BiNSs 0.5 M 

KHCO3 

 

-0.95 V ( Vvs. 

RHE) 

94.27 33.63 mA cm-2 This work 

BiNSs 81.54 10.29 mA cm-2 

Ultrathin Bi 

nanosheets 

0.1 M 

KHCO3 

-1.10 V 

( vs. RHE) 

90.1 16.5 mA cm-2 [9] 

Bi@Sn NPs 0.5 M 

KHCO3 

-1.10 V 

( vs. RHE) 

91 31.0 mA cm-2 [10] 

In2O3–ZnO NCs 0.5 M 

KHCO3 

-1.20 V 

( vs. RHE) 

.95 22 mA cm-2 [11] 

SnOx/C 0.5 M 

KHCO3 

-0.75V 

( vs. RHE) 

84.2 6.7 mA cm-2 [12] 

Bi-Sn 0.1 M 

KHCO3 

-1.0 V 

( vs. RHE) 

93.9 12.4 mA cm-2 [13] 

Sb nanosheets 0.5 M 

NaHCO3 

-1.06 V 

( vs. RHE) 

84.0 9.5 mA cm-2 [14] 

Cu57Sn43 0.05 M 

KHCO3 

-0.92 V 

( vs. RHE) 

57.0 2.5 mA cm-2 [15] 

Bi 0.1 M 

KHCO3 

-0.79 V 

( vs. RHE) 

20.0 -- [16] 

B doped graphene 66.0 --  

Sn dendrite 

electrode 

0.1 M 

KHCO3 

-1.36 V 

( vs. RHE) 

71.6 17.1 mA cm−2 [17] 

Sn/CNT–

Agls/CC 

0.5 M 

KHCO3 

−0.96 V  

( vs. RHE) 

82.7 26.7 mA cm−2 [18] 

P-orbital 

localized–Bi 

0.5 M 

KHCO3 

-1.160 V 

( vs. RHE) 

95 54.1 mA cm−2 [19] 

SnO2 pNWs 0.1 M 

NaHCO3 

-0.8 V 

(V vs. RHE) 

80 4.8 mA cm−2 [20] 

Ultrasmall SnO2 

NP 

1 M 

KHCO3 

-1.21 V 

( vs. RHE) 

64 92.8 mA cm−2 [21] 

BiOx/C 0.5 M 

NaHCO3 

-1.37 V 

( vs. Ag/AgCl) 

92.1 1.35 mA cm−2 [22] 

Sulfide-derived 

Bi 

0.5 M 

NaHCO3 

-0.75 V 

( vs. RHE) 

84 4.2 mA cm−2 [23] 

Sn-CF1000 0.1 M 

KHCO3 

-0.8V 

( vs. RHE) 

62 11 mA cm−2 [24] 



Figure S2. (a) The formate was detected in the reduction product by IC. (b) Linear diagram of 

peak area and concentration. 

 

Figure S3. The LSV of N−BiNSs catalyst in 0.5 M KHCO3 aqueous solutions with saturated gases 

N2 or CO2, sweeping speed of 10 mV s-1. 
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Figure S4. Total FE at different potentials in an H-type electrolytic cell (0.5 M KHCO3) of (a) 

BiNSs, (b) N−BiNSs−1 (c) N−BiNSs−2 ; (d) Current response of N−BiNSs in 0.5 M KHCO3 

saturated with CO2. 

 

Figure S5. (a) Tafel slope test curve of N-BiNSs; (b) The impedance spectra of the catalyst at CP 

electrode were obtained under CO2RR (-0.95 V vs. RHE) condition (frequency range: 10 kHz-1.0 

Hz); (c) The BiNSs, N−BiNSs−1 and N−BiNSs−2 the relationship between charge current density 

difference (△J) and scanning rate. 

 

 

 

 

 



Figure S6. The catalyst (a) BiNS, (b) N−BiNSs, (c) N−BiNSs−1, and (d) N−BiNSs−2 cycle 

volt-ampere curve. 

 

Figure S7.  Total FEtoal different potentials in an H-type electrolytic cell (0.5 M KHCO3) of (a) 

N−BiNSs, (a)SEM, (b) XRD. 

 

 

 

 



Figure S8. Schematic diagram of flow cell device used in electrocatalytic test. 
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