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Abstract: Organic nanomaterials have attracted considerable attention in the area of photodynamic
and photothermal therapy, owing to their outstanding biocompatibility, potential biodegradability,
well-defined chemical structure, and easy functionalization. However, it is still a challenge to
develop a single organic molecule that obtains both photothermal and photodynamic effects. In this
contribution, we synthesized a new boron-dipyrromethene (BODIPY)-based derivative (DPBDP)
with an acceptor–donor–acceptor (A-D-A) structure by coupling 3,6-di(2-thienyl)-2,5-dihydropyrrolo
[3,4-c] pyrrole-1,4-dione (DPP) and BODIPY. To enhance the hydrophilicity of the BODIPY derivative,
the polyethylene glycol (PEG) chains were introduced to the meso- position of BODIPY core. The
amphiphilic DPBDP was then self-assembled into related nanoparticles (DPBDP NPs) with improved
hydrophilicity and enhanced absorbance in the NIR region. DPBDP NPs could simultaneously
generate the singlet oxygen (1O2) and heat under the irradiation of a single laser (690 nm). The
1O2 quantum yield and photothermal conversion efficiency (PCE) of DPBDP NPs were calculated
to be 14.2% and 26.1%, respectively. The biocompatibility and phototherapeutic effect of DPBDP
NPs were evaluated through cell counting kit-8 (CCK-8) assay. Under irradiation of 690 nm laser
(1.0 W/cm2), the half maximal inhibitory concentration (IC50) of DPBDP NPs was calculated to
be 16.47 µg/mL. Thus, the as-prepared DPBDP NPs could be acted as excellent candidates for
synergistic photodynamic/photothermal therapy.

Keywords: BODIPY; nanoparticles; self-assembly; photodynamic therapy; photothermal therapy

1. Introduction

Cancer is the main disease that threatens a human being’s health [1]. The devel-
opment of safe and effective treatments for cancer has received considerable attention
nowadays [2–5]. Among the various cancer treatment strategies, phototherapy, including
photodynamic therapy (PDT) and photothermal therapy (PTT), is a promising approach
due to its safety, high efficiency, and non-invasiveness [6–8]. In PDT, the photosensitizer is
irradiated by an appropriate wavelength of light to generate the reactive oxygen species
(ROS), causing the death of tumor cells [9–11]. For PTT, the photothermal agent absorbs
the laser energy to generate heat to thermally ablate the tumor [12,13]. The combination of
PDT and PTT could enhance cancer therapy through the synergistic effect [14,15].

The chemical structure of the photosensitizers or photothermal agents plays an impor-
tant role in the process of phototherapy, which directly affects its treatment efficacy. In the
past few years, cyanine, rhodamines, and porphyrin derivatives have been widely used as
photosensitizers in phototherapy [16–21]. Boron-dipyrromethene (BODIPY), bearing the
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large conjugated structure, was demonstrated as a new type of near-infrared fluorescent
dye and photosensitizer in recent years due to its eminent characteristics, such as high
fluorescence quantum yield, large molar extinction coefficient, good photo-stability, and
efficient ROS generation [22–24]. However, its poor water solubility and low absorption in
the near-infrared region seriously limit its potential applications in biological area [25,26].
Therefore, the introduction of hydrophilic groups and conjugated bone in molecule are
generally used to overcome these limits [27,28]. In this context, here we designed and
synthesized a new BODIPY-based compound (DPBDP) with a typical acceptor–donor–
acceptor (A-D-A) structure, where the diketopyrrolopyrrole (DPP) acted as the donor, with
the boron-dipyrromethene unit as the acceptor. The A-D-A structure in DPBDP could
enhance the intramolecular charge transfer (ICT) and reduce the energy band gap, resulting
in the redshift of the absorption to the near-infrared region. The covalent conjugation of 1,
8-naphthalenediimine (NDI) with BODIPY core can further promote the intramolecular
charge transfer due to its strong electron withdrawing ability, and the PEG chains in NDI
unit increase the hydrophilicity of the whole compound. Due to the amphiphilicity of
DPBDP, it could self-assemble into the related nanoparticles (DPBDP NPs) by the reprecip-
itation method. DPBDP NPs exhibit high colloidal stability in aqueous solution with an
average size of about 145 nm. Compared with the organic molecule, DPBDP NPs exhibit
the red-shifted absorption with the maximum peak around 670 nm. In addition, DPBDP
NPs can simultaneously generate 1O2 and heat under a single laser irradiation (690 nm).
The low dark cytotoxicity and high photocytotoxicity of DPBDP NPs were investigated
by the CCK-8 method and PI staining assay against the HeLa cells. Therefore, DPBDP
NPs could be used as potential nanoagents in cancer phototherapy through a synergistic
PDT/PTT treatment manner.

2. Results and Discussion
2.1. Synthesis

The synthetic routes of the intermediates and DPBDP NPs are shown in
Schemes 1 and 2. In brief, Compound 1a was synthesized by reacting DPP and 2-ethlhexyl
bromide in DMF in the presence of K2CO3. Compound 4a was synthesized via typical
Sonogashira coupling. Compound 6b was synthesized according to the previously reported
method [29]. After iodization with N-iodosuccinimide (NIS) in CHCl3, the monoiodized
compound 7b was obtained in high yield [30–32]. Finally, DPBDP was synthesized by the
conjugation of compound 4a with compound 7b [33]. Because of the electron-donating
characteristic of diketopyrrolopyrrole (DPP) and the electron-withdrawing ability of boron-
dipyrromethene, DPBDP exhibited a typical donor (D)–acceptor (A) structure, which could
facilitate the intramolecular charge transfer, benefiting the π-π stacking. Moreover, the
hydrophilicity of PEG chain in boron-dipyrromethene and the introduction of alkyl chains
in DPP endow DPBDP with amphiphilic characteristic. The amphiphilic DPBDP could self-
assemble into related nanoparticles (DPBDP NPs) through π-π stacking and hydrophobic
interaction without the addition of an extra polymer, as shown in Scheme 2.
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Scheme 1. The synthetic routes of compound 4a.

2.2. Theoretical Calculation

The geometry optimizations of DPBDP were conducted through Avogadro soft. The
density functional theory (DFT) calculations were investigated to obtain the electronic
structures and transition energy of DPBDP with Gaussian 09 through B3LYP/sto-3g tech-
nique. As shown in Figure 1, the LUMO orbital was predominantly located on the BODIPY
core, while the HOMO orbital was mainly located on the DPP unit. Accordingly, the
electrons transfer from DPP to BODIPY structure would happen when DPBDP was excited
to the excited states, further verifying the donor–acceptor structure of DPBDP. The HOMO
energy level of DPBDP was calculated to be −7.2913 eV, while the LUMO energy levels
was determined as −2.2251 eV. According to these values, the energy band gap of DPBDP
was estimated as 5.0662 eV.

2.3. Characterization

The morphology and particle size of DPBDP NPs were described through transmission
electron microscopy (TEM) and dynamic light scattering (DLS). As shown in Figure 2A,
DPBDP NPs exhibited the spherical morphology with the particle size of around 140 nm.
The DLS result revealed that DPBDP NPs had a reasonably uniform particle size distribu-
tion, with an average size of approximately 145 nm (Figure 2B), beneficial for the passive
tumor targeting due to the enhanced permeability and retention (EPR) effect. Besides, the
zeta potential of DPBDP NPs was valued as −18.3 mV (Figure 2C), which facilitated the
stability of nanoparticles in aqueous medium due to the electrostatic repulsion.
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Scheme 2. The synthetic routes of DPBDP and DPBDP NPs.
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Figure 1. Optimized geometry and the frontier molecular orbitals electron density distribution
of DPBDP.

Figure 2. (A) The TEM image of DPBDP NPs, scale bar: 100 nm; (B) the DLS profile of DPBDP NPs;
(C) the zeta potential of DPBDP NPs in DI water; (D) absorption spectra of DPBDP and DPBDP NPs;
(E) fluorescence spectra of DPBDP, DPBDP NPs and ZnPc; (F) absorption spectra of DPBDP NPs in
deionized water for several days.

2.4. Photophysical Properties

The photophysical data of DPBDP and DPBDP NPs are summarized in Table 1.
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Table 1. The photophysical properties of DPBDP and DPBDP NPs.

Sample Absorption
Peaks (nm) ε (L·moL−1·cm −1) Emission

Peaks (nm) Φf
a Φ∆

b

DPBDP 621 3.0 × 105 672 0.18 0.088

DPBDP NPs 653 3.3 × 105 – — 0.142
a The fluorescence quantum yields (Φf) were determined using zinc phthalocyanine as a reference [34,35]; b the
singlet oxygen quantum yields (Φ∆) were computed using 1,3-diphenylisobenzofuran (DPBF) as a capture reagent
and methylene blue (MB) as a reference under 690 nm laser irradiation [36,37].

The UV-vis absorption spectrum of DPBDP and DPBDP NPs were examined in THF
and DI water, respectively. As shown in Figure 2D, the absorption spectra of DPBDP and
DPBDP NPs were similar in trend, with maximum peaks at 621 and 653 nm, respectively.
Comparing with that of DPBDP, the absorption spectrum of DPBDP NPs broadened and red-
shifted to some extent, probably due to the aggregation of molecules in the nanoparticles.
The fluorescence spectrum of DPBDP and DPBDP NPs were investigated in the THF and
aqueous solution, respectively. As shown in Figure 2E, DPBDP exhibited the strong red
emission under excitation of 620 nm, with the maximum emission peak at 672 nm. However,
after transforming into the nanoparticles, the fluorescence of molecule was significantly
quenched, probably due to the aggregation-caused quenching (ACQ) phenomenon. The
fluorescence quantum yield of DPBDP was valued to be 0.18 with ZnPc as a reference
(Figure S1). The stability of DPBDP NPs in deionized water was assessed by UV-vis
absorption spectrum. As shown in Figure 2F, the absorption spectrum of DPBDP NPs did
not display any significant variation in a period of several days’ storage, indicating their
high stability in water.

2.5. Reactive Oxygen Species (ROS) Generation

The reactive oxygen species (ROS) generation of DPBDP and DPBDP NPs was de-
termined using 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) as a probe, which
could be oxidized to green fluorescent DCF by ROS. As indicated in Figure 3A, the fluores-
cence intensity of the mixture solution of DCFH-DA and DPBDP NPs enhanced gradually
with the irradiation (690 nm laser) time, which was significantly faster than that of DPBDP,
indicating the higher ROS efficiency of DPBDP NPs. The singlet oxygen (1O2) genera-
tion ability of DPBDP and DPBDP NPs was further quantitatively evaluated through1,3-
diphenylisobenzofuran (DPBF) method with methyl blue as standard (Figure 3B). As shown
in Figure S2, the 1O2 quantum yield of DPBDP NPs (0.142) was apparently higher than that
of DPBDP (0.088), which agreed well with the result of the DCFH method.

Figure 3. (A) Fluorescence intensity of DCF at 414 nm in the presence of DPBDP NPs as a function of
illumination time; (B) linear degradation of DPBF solution with DPBDP and DPBDP NPs.

2.6. Photothermal Properties

The photothermal properties of DPBDP NPs were investigated by recording the
temperature change of the solution at different concentrations and under laser irradiation
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at different power densities. As indicated in Figure 4A, the temperature rise of solution
was positively correlated with the concentration of DPBDP NPs under laser irradiation
(690 nm, 1.5 W/cm2, 10 min). Furthermore, the temperature elevation of DPBDP NPs
was dependent on the laser power density (Figure 4B). The temperature elevation of the
aqueous solution at different concentration was visually verified by the thermal images of
the corresponding solutions after laser irradiation for 10 min (Figure 4C). The photothermal
conversion efficiency (PCE) of DPBDP NPs was measured by monitoring the temperatures
change of DI water and DPBDP NPs under continuous irradiation for 10 min, followed
by cooling for 10 min (Figure 4D). Based on the data obtained (Figures S3 and S4), the
photothermal conversion efficiency (PCE) of DPBDP NPs was calculated to be 26.1%.
Moreover, the temperature change of DPBDP NPs did not display any significant variation
after five cycles of heating and cooling (Figure 4E), implying the favorable photothermal
stability. Therefore, DPBDP NPs could be employed as a prospective therapeutic agent
for PTT.

Figure 4. Photothermal properties of DPBDP NPs. (A) Photothermal curves of DPBDP NPs at several
concentrations under 690 nm laser (1.5 W/cm2) irradiation; (B) photothermal curves of DPBDP NPs
(75 µg/mL) under 690 nm laser irradiation at different laser power densities; (C) optical pictures
and photothermal imaging of DPBDP NPs solution with different concentrations; (D) photothermal
conversion effect of DPBDP NPs (75 µg/mL) and water under 690 nm irradiation; (E) −lnθ curve
fitting of cooling time to temperature driving force in cooling phase of DPBDP NPs; (F) photothermal
stability of DPBDP NPs during the five cycles of laser irradiation (75 µg/mL, 1.5 W/cm2).

2.7. Cell Viability Assay

The biocompatibility and phototherapeutic effect of DPBDP NPs were evaluated
through CCK-8 assay. As shown in Figure 5A and Figure S5, after incubation with DPBDP
NPs in dark for 24 h, the HeLa cells still maintained over 90% viability even at the con-
centration of 25 µg/mL, indicating the good biocompatibility of DPBDP NPs. In contrast,
under 690 nm laser irradiation (1.0 W/cm2) for 10 min, the cell viability decreased with the
concentration of DPBDP NPs. The survival rate of cancer cells was dropped to 18% when
the concentration of DPBDP NPs was elevated to 25 µg/mL, suggesting their excellent
phototherapeutic efficacy. The half maximal inhibitory concentration (IC50) of DPBDP NPs
under 690 nm laser (1.0 W/cm2) irradiation was calculated to be 16.47 µg/mL.
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Figure 5. (A) CCK-8 assay of HeLa cells without or with 690 laser irradiation (1.0 W/cm2, 10 min);
(B) calcein-AM and PI staining after 12 h incubation with PBS, PBS+laser, DPBDP NPs and DPBDP
NPs+laser, scale bar = 20 µm; (C) cell apoptosis and necrosis level of HeLa cells stained by Annexin
V-FITC/PI after 12 h incubation with PBS, PBS+laser, DPBDP NPs and DPBDP NPs+laser.

2.8. Live/Dead Cell Staining Assay

To further verify the biocompatibility and phototoxicity of DPBDP NPs, calcein-AM
and PI staining was carried out, where the propidium iodide (PI) stains the dead cells with
red color, while calcein-AM stains the living cells with green. As shown in Figure 5B, similar
to the control groups (PBS and PBS+laser), the DPBDP NPs group did not display any
significant red fluorescence, indicating the good biocompatibility of DPBDP NPs. However,
the DPBDP NPs+laser group displayed clear red fluorescence and little green fluorescence,
suggesting that the DPBDP NPs had a high phototherapeutic effect.
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2.9. Apoptosis and Necrosis Assay

Meanwhile, the apoptosis level of HeLa cells in these groups was investigated by flow
cytometer. As shown in Figure 5C, the apoptosis and necrosis percentage of cells in the
DPBDP NPs+laser group was 69%, which was significantly higher than that of PBS group
(3.7%), PBS+laser group (6%), and DPBDP NPs group (7.1%). Thus, DPBDP NPs presented
the synergistic therapeutic effect (PTT/PDT) against HeLa cells, which was consistent with
the result of the live/dead cell staining assay.

2.10. The Intracellular ROS Generation

The generation of ROS in cancer cells was investigated using 2′,7′-dichlorofluorescein
diacetate (DCFH-DA) as a probe [38,39], which could be transformed to fluorescent 2′,7′-
dichlorofluorescein (DCF) upon reacting with ROS produced by NPs under
irradiation [40,41]. As shown in Figure 6, an intense green emission was observed around
the nucleus of the HeLa cells, which was stained with Hoechst 33342 (blue fluorescence),
suggesting the efficient intracellular ROS generation upon laser irradiation.

Figure 6. ROS generation in HeLa cells after incubation with DPBDP NPs (20 µg/mL) for 12 h
followed by the treatment with DCFH-DA (10 µM) for 1 h and 690 nm laser irradiation (1.0 W/cm2,
5 min), scale bar = 20 µm.

3. Experimental Sections
3.1. Materials and Characterization

All the starting chemicals were obtained from Aladdin (Shanghai, China) and used
without further purification. The structures of intermediates and targeting materials were
characterized by NMR spectra on the Agilent 400MR spectrometer, and mass spectra on
a Bruker Auto flex MALDI-TOF mass spectrometer (Figures S6–S16). The absorption
and fluorescence spectra were recorded through UV-vis Spectrophotometer (Shimadzu,
Kyoto, Japan) and Fluorescence Spectrometer (PE LS55, Waltham, MA, USA), respectively.
The DLS and zeta potential were measured by a Mavern ZetaSizer Nano-ZS (Mavern
Instruments, Bejing, China). The TEM image was studied on the JEM-2100 transmission
electron microscope. The excitation light was provided by a fiber-coupled 690 nm laser
(MW-GX-690/700Mw, Changchun, China).

3.2. Synthesis of Compound 1a

To a solution of DPP (0.9 g, 4 mmol) and anhydrous potassium carbonate (2.07 g,
15 mmol) in 40 mL of N, N-dimethylformamide, brominated isooctane (2.3 g, 12 mmol)
was injected under nitrogen atmosphere. After stirring at 100 ◦C for 24 h, the solvent was
removed by rotary evaporator. The residue was purified by silica gel column chromatog-
raphy (eluent: DCM: petroleum ether = 1:1) to obtain red solid compound 1a (1.7 g, 53%).
1HNMR (400 MHz, CDCl3) δ: 8.87 (dd, J = 1.0 Hz, 3.9 Hz, 2H), 7.62 (dd, J = 1.1 Hz, 5.1 Hz,
2H), 7.26 (dd, J = 3.9 Hz, 5.0 Hz, 2H), 4.01 (d, J = 7.6 Hz, 4H), 1.90 (m, 2H), 1.22 (m, 8H),
0.87 (m, 12H).
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3.3. Synthesis of Compound 2a

Compound 1a (262 mg, 0.5 mmol) and NBS (214 mg, 1.2 mmol) were dissolved in
anhydrous CH2Cl2 (20 mL). After stirring at room temperature in dark for 48 h, the reaction
mixture was washed with saturated solution of Na2SO3. The organic layer was collected,
and the solvent was removed under reduced pressure. The residue was purified by silica
gel column chromatography (eluent: DCM: MeOH = 120:1). Compound 2a was isolated as
a red solid (192 mg, 48%). 1H NMR (400 MHz, CDCl3) δ 8.66 (d, J = 4.2 Hz, 2H), 7.24 (d,
J = 4.2 Hz, 2H), 3.97–3.93 (m, 4H), 1.32 (dd, J = 13.6, 6.3 Hz, 18H), 0.90 (d, J = 7.9 Hz, 12H).

3.4. Synthesis of Compound 3a

Compound 2a (0.100 g, 0.15 mmol), CuI (2.8 mg, 0.015 mmol), PdCl2(PPh3)2 (5 mg,
0.0073 mmol), THF (6 mL), triethylamine (4 mL), and trimethylsilylacetylene (0.1 mL,
0.7 mmol) were added to a 50 mL Schlenk flask under nitrogen atmosphere. After being
heated to 50 ◦C overnight, the solvent was removed under vacuum, and the crude product
was further purified by silica gel column chromatography using petroleum ether/DCM
(2:1) as eluent. The product was isolated as a dark purple solid with a yield of 70%. 1H
NMR (400 MHz, CDCl3) δ 8.81 (d, J = 4.1 Hz, 2H), 7.32 (d, J = 4.1 Hz, 2H), 3.98 (dd, J = 7.7,
3.8 Hz, 4H), 1.30 (ddd, J = 21.1, 11.6, 6.6 Hz, 18H), 0.87 (d, J = 6.9 Hz, 12H), 0.27 (s, 18H).

3.5. Synthesis of Compound 4a

Compound 3a (0.1 g, 0.14 mmol), KF (0.109 g, 1.89 mmol), and deoxygenated THF/water
(9 mL/2.8 mL) were added to a two-neck flask. After stirring under nitrogen atmosphere
overnight, the organic fraction was extracted with dichloromethane, and the organic layer
was evaporated to obtain the crude mixture, which was then purified by silica gel column
chromatography using DCM/petroleum ether (7:1) as an eluent. The product was obtained
in 75% yield. 1H NMR (400 MHz, CDCl3) δ 8.83 (d, J = 3.6 Hz, 2H), 7.38 (d, J = 3.5 Hz, 2H),
3.98 (s, 4H), 3.60 (s, 2H), 1.32–1.24 (m, 18H), 0.87 (d, J = 8.2 Hz, 12H).

3.6. Synthesis of Compound 4b

To a solution of ethanol (14 mL), 4-bromo-1,8-napthalic anhydride (1.4 g, 5.1 mmol)
and 2-(2-(2-methoxyethoxy) ethoxy) ethanamine 2 (1.08 g, 5.6 mmol) were added. After
refluxing for 8 h, the solvent was removed under vacuum. The residue was dissolved in
ethylacetate and washed with water. The organic extract was evaporated, and the crude
product was purified by silica gel column chromatography (eluent: hexane: ethyl acetate
=5:1) to give compound 4b as a yellow solid (2.92 g, 90%). 1H NMR (400 MHz, CDCl3) δ
8.64 (dd, J = 7.3, 1.0 Hz, 1H), 8.55 (dd, J = 8.5, 1.0 Hz, 1H), 8.39 (d, J = 7.9 Hz, 1H), 8.03 (d,
J = 7.9 Hz, 1H), 7.83 (dd, J = 8.4, 7.4 Hz, 1H), 4.42 (t, J = 6.1 Hz, 2H), 3.82 (t, J = 6.1 Hz, 2H),
3.69 (dd, J = 5.8, 3.6 Hz, 2H), 3.61 (dd, J = 5.9, 3.6 Hz, 2H), 3.57 (dd, J = 5.8, 3.8 Hz, 2H), 3.46
(dt, J = 14.1, 5.2 Hz, 4H), 1.16 (t, J = 7.0 Hz, 3H).

3.7. Synthesis of Compound 5b

Under the nitrogen atmosphere, compound 4b (870 mg, 2 mmol), 2-aldehyde phenyl-
boronic acid (374 mg, 2.4 mmol), K2CO3 (1.1 g, 8 mmol) and Pd(PPh3)4 (185 mg, 0.16 mmol)
were dissolved in 12 mL mixed solution of THF and water (THF: water = 3:1). After reflux-
ing for 12 h, the organic solvent was removed under vacuum, and the residue was purified
by silica gel column chromatography (DCM:EA = 5:1) to give compound 5b as a yellow
solid (870 mg, 70%). 1H NMR (400 MHz, CDCl3) δ 10.00 (s, 1H), 8.63 (dd, J = 14.4, 7.4 Hz,
2H), 8.51 (d, J = 8.5 Hz, 1H), 7.89 (d, J = 3.8 Hz, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.81-7.76 (m,
1H), 7.43 (d, J = 3.8 Hz, 1H), 4.44 (t, J = 6.1 Hz, 2H), 3.83 (t, J = 6.0 Hz, 2H), 3.71-3.68 (m, 2H),
3.63-3.60 (m, 2H), 3.57 (dd, J = 5.7, 3.9 Hz, 2H), 3.49- 3.42 (m, 4H), 1.15 (t, J = 7.0 Hz, 3H).

3.8. Synthesis of Compound 6b

To a two-necked round bottom flask, compound 5b (1 mmol), 2,4-dimethylpyrrole
(2.5 mol), and anhydrous DCM (40 mL) were added under nitrogen atmosphere. After
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stirring at room temperature for 30 min, TFA (10 µL) was added dropwise. The resulting
solution was then stirred for another 12 h followed by the addition of DDQ (1 mmol).
After 2 h, 10 mL TEA was added to quench the reaction. Then, 10 mmol boron trifluoride
ether was added, and the reaction mixture was stirred at room temperature for another
6 h. The solvent was then removed under vacuum, and the residue was purified by silica
gel column chromatography (eluent: DCM:MeOH = 120:1) to obtain compound 6b with a
yield about 17%. 1H NMR (400 MHz, CDCl3) δ 8.62 (d, J = 7.6 Hz, 3H), 7.86–7.79 (m, 2H),
7.38 (d, J = 3.5 Hz, 1H), 7.16 (d, J = 3.6 Hz, 1H), 4.47 (t, J = 6.1 Hz, 2H), 3.86 (t, J = 6.1 Hz,
2H), 3.73 (dd, J = 5.7, 3.7 Hz, 2H), 3.64 (dd, J = 5.9, 3.6 Hz, 2H), 3.60 (dd, J = 5.8, 3.9 Hz, 2H),
3.51–3.46 (m, 4H), 2.58 (s, 6H), 1.82 (s, 6H), 1.17 (t, J = 7.0 Hz, 3H).

3.9. Synthesis of Compound 7b

Compound 6b (200 mg, 0.31 mmol) and NIS (229 mg, 1.24 mmol) were dissolved
in anhydrous CH2Cl2 (15 mL). After stirring at room temperature for half an hour, the
saturated solution of Na2SO3 was added. The organic fraction was extracted with DCM,
which was then concentrated under vacuum. The obtained residue was purified by silica
gel column chromatography (eluent: DCM:MeOH = 120:1) to obtain compound 7b as an
orange solid (252 mg, 92%). 1H NMR (400 MHz, CDCl3) δ 8.67–8.54 (m, 3H), 7.85–7.77
(m, 2H), 7.36 (dd, J = 6.3, 3.5 Hz, 1H), 7.14 (dd, J = 3.5, 1.2 Hz, 1H), 6.06 (s, 1H), 4.45 (t,
J = 6.0 Hz, 2H), 3.83 (t, J = 6.0 Hz, 2H), 3.70 (dd, J = 5.7, 3.4 Hz, 2H), 3.60 (ddd, J = 9.5, 5.2,
3.1 Hz, 4H), 3.50–3.43 (m, 4H), 2.60 (d, J = 29.9 Hz, 6H), 1.80 (s, 6H), 1.15 (t, J = 7.0 Hz, 3H).

3.10. Synthesis of DPBDP

To a 25 mL flask, compound 4a (30 mg, 0.051 mmol), 7b (126 mg, 0.15 mmol), AsPh3
(200 mg, 0.523 mmol), bis-(triphenylphosphine) palladium dichloride (15 mg, 0.02 mmol),
and cuprous iodide (3 mg, 0.015 mmol) were dissolved in 12 mL mixed solution of toluene
and triethylamine (5:1). After stirring at 95 ◦C under argon overnight, the solvent was
removed in vacuum. The obtained residue was purified through silica gel column chro-
matography (DCM:MeOH: 120:1) to yield a blue solid (17 mg, 15%). 1H NMR (400 MHz,
CDCl3) δ 8.96–8.82 (m, 2H), 8.69–8.54 (m, 4H), 7.97–7.67 (m, 5H), 7.53 (s, 1H), 7.40 (s, 1H),
7.29 (d, J = 4.0 Hz, 1H), 7.19 (s, 3H), 6.80 (d, J = 8.2 Hz, 1H), 6.15 (s, 1H), 5.34 (s, 1H), 4.48–3.43
(m, 28H), 2.65 (d, J = 37.1 Hz, 6H), 1.89 (d, J = 29.4 Hz, 6H), 1.65 (d, J = 30.0 Hz, 8H), 1.26 (d,
J = 13.9 Hz, 26H), 1.16 (t, J = 7.0 Hz, 6H), 0.92–0.83 (m, 12H). 13C NMR (101 MHz, CDCl3)
δ 163.04 (s), 131.08 (d, J = 10.0 Hz), 128.89 (s), 128.01 (s), 127.51 (d, J = 12.2 Hz), 76.33 (s),
76.01 (s), 75.69 (s), 69.57 (s), 69.16 (s), 68.74 (s), 66.89 (s), 65.58 (s), 38.26 (s), 30.91 (s), 29.01 (s),
28.68 (s), 28.34 (s), 26.19 (s), 22.04 (s), 21.67 (s), 14.10 (s), 13.07 (d, J = 7.2 Hz), 11.86 (s),
9.47 (s). MALDI-TOF MS: calcd:1939.7345, found: 1939.7399.

3.11. Preparation of DPBDP Nanoparticles

DPBDP NPs were prepared through the reprecipitation approach. Specifically, DPBDP
(1 mg/mL) in THF was added dropwise to DI water under sonication in a period of 15 min.
The organic solvent was then removed by air blowing.

3.12. Photothermal Performances

The temperature of the DPBDP NPs solution at different concentrations was recorded
under irradiation of a 690 nm laser (1.5 W/cm2, 10 min). Meanwhile, the solution tempera-
ture of DPBDP NPs (75 µg/mL) was measured upon 690 nm laser irradiation at different
power densities. The PCE of DPBDP NPs was valued by comparing with DI water under
irradiation of a 690 nm laser (1.5 W/cm2, 10 min) followed by cooling for 10 min.

3.13. Cells Culture and Cytotoxicity Assay

HeLa cells were cultured using Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco,
New South Wales, Australia) supplemented with 10% fetal bovine serum (FBS, Gibco, New
South Wales, Australia) and 1% penicillin/streptomycin solution in a 37 ◦C cell incubator.
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The cell viability was evaluated through CCK-8 assay. For the cell viability assay, HeLa
cells were seeded in 96-well plates (1.0 × 104 cells per well) and incubated at 37 ◦C for
24 h. Subsequently, the cells were treated with different concentrations of DPBDP NPs (0, 5,
10, 15, 20 and 25 µg/mL) in medium. After incubation for another 12 h, the experimental
cells were irradiated with or without 690 nm laser (1.0 W/cm2) for 10 min. The cells were
then incubated for another 12 h followed by washing with PBS buffer (pH 7.4). Finally,
10% CCK-8 solution was added to the above each well followed by the incubation for 1 h.
The optical density (OD) at 450 nm was measured by a Spectra Max M5 microplate reader
(Molecular Devices, San Francisco, CA, USA).

3.14. Live/Dead Cell Staining Assay

HeLa cells were seeded in 96-well plates (3.0 × 103 cells per well) and incubated at
37 ◦C for 24 h. Thereafter, the previous medium was replaced by fresh medium with PBS or
DPBDP NPs (20 µg/mL) for 24 h. Subsequently, the experimental wells were treated with
or without a 690 nm laser irradiation (1.0 W/cm2, 10 min). After incubation for another
24 h, the cells were stained with calcein-AM and PI for 20 min, and the cellular state was
observed using an inverted fluorescence microscope (Zeiss Axio Vert.A1, Jena, Germany).

3.15. Apoptosis and Necrosis Assay

HeLa cells were seeded on 24-well plates (1.0 × 105 cells per well) and incubated at
37 ◦C for 24 h. Fresh medium with PBS or DPBDP NPs were added into the plates for
24 h incubation, followed by irradiation with or without 690 nm laser for 10 min. After
24 h, the cells were stained with an Annexin V-FITC/PI apoptosis detection kit. Finally, all
the treated cells were harvested and analyzed by flow cytometer (FCM, BD FACSVerse,
Piscatway, NJ, USA).

3.16. The Intracellular ROS Generation

HeLa cells were plated into confocal dishes. After incubation for 24 h, the cells were co-
incubated with DPBDP NPs (20 µg/mL). After 24 h, the medium was removed followed by
washing twice with PBS. DCFH-DA (10 µM) in medium was then added. After incubation
for 30 min, the cells were irradiated under 690 nm laser (1.0 W/cm2) for 5 min, followed
by washing twice with PBS. The cells were then stained with Hoechst 33342, and the
fluorescent images were collected through a confocal laser scanning microscopy (Zeiss
LSM780, Jena, Germany).

4. Conclusions

In summary, a new BODIPY-based derivative (DPBDP) with an acceptor–donor–
acceptor (A-D-A) structure was synthesized by coupling the DPP unit with BODIPY core.
To enhance the hydrophilicity of the BODIPY derivative, the PEG chains were introduced
to the meso- position of BODIPY core. The amphiphilic DPBDP was then self-assembled
into related nanoparticles (DPBDP NPs) with improved hydrophilicity and enhanced
absorbance in the NIR region. Compared with the organic molecules, DPBDP NPs exhibited
the red-shifted absorption with the maximum peak around 670 nm. DPBDP NPs exhibited
efficient photodynamic and photothermal effects under irradiation of 690 nm laser. The 1O2
quantum yield and PCE of DPBDP NPs were calculated to be 14.2% and 26.1%, respectively.
The good biocompatibility and remarkable phototoxicity of DPBDP NPs were verified
through the CCK-8 method against HeLa cells. The IC50 of DPBDP NPs under irradiation
was calculated to be 16.47 µg/mL Therefore, DPBDP NPs could be used as potential
nanoagents in cancer phototherapy through a synergistic PDT/PTT treatment manner.
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