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Abstract: Hypertension increases arterial stiffness, leading to dysfunction and structural changes in
the left atrium (LA) and left ventricle (LV). However, the effects of hypertension on the right atrium
(RA) and the right ventricle are still not fully understood. The purpose of this study was to clarify
whether there is an interaction not only in the left ventricular system but also in the right ventricular
system in hypertensive patients with preserved LV ejection fraction. The current retrospective obser-
vational study included patients (n = 858) with some risk of metabolic abnormalities (hypertension,
diabetes, and dyslipidemia) who had visited our hospital and undergone echocardiography between
2015 and 2018. Among them, we retrospectively studied 165 consecutive hypertensive patients
with preserved LV ejection fraction who had echocardiography performed on the same day as a
cardio-ankle vascular index (CAVI) in our hospital. The phasic function of both atria was evaluated by
two-dimensional speckle-tracking echocardiography. CAVI was measured using Vasela 1500 (Fukuda
Denshi®). In the univariate analysis, CAVI was significantly correlated with LA and RA conduit
function (LA conduit function, r = −0.448, p = 0.0001; RA conduit function, r = −0.231, p = 0.003).
A multivariate regression analysis revealed that LA and RA conduit function was independently
associated with CAVI (LA, t = −5.418, p = 0.0001; RA, t = −2.113, p = 0.036). CAVI showed a possibility
that the association between heart and vessels are contained from not only LA phasic function but
also RA phasic function in hypertensive patients.

Keywords: arterial stiffness; cardio-ankle vascular index; hypertension; right atrial phasic function;
speckle-tracking echocardiography

1. Introduction

Hypertension is one of the risk factors for cardiovascular disease and can also be a
cause of atherosclerosis [1]. Inadequately controlled hypertension leads to left ventricular
hypertrophy and eventually to heart failure [2]. Therefore, it is important to routinely
assess the actual damage of hypertension. Systemic circulation consists of the heart and
vessels. While there are various methods that can analyze cardiac function, there is no
good evaluation system that can analyze vascular function due to the complicated effects
of blood pressure at the measurement time. The cardio-ankle vascular index (CAVI) is a
non-invasive and simple method which can assess arterial stiffness independent of blood
pressure at the time of measurement [3,4]. The artery dilates to the caliber to receive the
blood delivered by the left ventricle during the systolic phase, and during the diastolic
phase, the artery contracts to send the blood to the periphery. This function has been
referred to as the “Windkessel function” or “diastolic pump”. This arterial elasticity
plays an important role in systemic circulation. Therefore, decreased arterial stiffness is
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directly related to improvement in cardiac burden. Miyoshi reported that CAVI could
reliably predict cardiovascular events in a large cohort prospective study; in patients
with cardiovascular disease risk factors, those with higher CAVI had an elevated risk of
cardiovascular events in the five-year observation [5]. As for the interaction between the
heart and blood vessels, detailed observational studies are needed from the viewpoint of
cardiovascular remodeling and cardiovascular disease development.

Recent technological advancements, such as two-dimensional speckle-tracking echocar-
diography (2DSTE), have enabled direct measurements of myocardial deformation indices.
This technology, which can be used to detect the early stage of atrial and ventricular dys-
function before remodeling, was applied to elucidate the interaction of the left atrium (LA)
and left ventricle (LV) caused by hypertension [6,7]. We have previously reported that
CAVI is associated with LA phasic function [8]. However, the interaction between the
right atrium (RA), right ventricle (RV), LA, LV, and the arterial tree has not yet been fully
understood. The purpose of this study was to clarify whether there is an interaction not
only in the left ventricular system but also in the right ventricular system in hypertensive
patients with preserved LV ejection fraction (LVEF).

2. Results
2.1. Characteristics of the Study Population

The clinical characteristics of the study population are summarized in Table 1.

Table 1. Comparison of the clinical characteristics according to the CAVI value.

Clinical Parameter All Subjects (N = 165) Group A (N = 85) Group B (N = 80) p Value

age (years) 69.0 (59.5, 75.0) 64.0 (53.5, 72.5) 72.0 (66.0, 76.0) 0.0001
male, n (%) 119 (72) 61 (72) 58 (73) 0.916
BMI (kg/m2) 23.4 (21.2, 25.7) 23.6 (21.0, 25.9) 23.4 (21.9, 25.1) 0.872
heart rate (beats/min) 67.0 (59.0, 87.0) 68.0 (60.0, 78.0) 67.0 (58.3, 77.0) 0.393
SBP (mmHg) 135.0 (123.0, 144.0) 131.0 (119.5, 142.5) 138.0 (127.0, 144.0) 0.09
DBP (mmHg) 81.0 (74.0, 87.0) 82.0 (74.0, 88.5) 81.0 (74.5, 85.0) 0.658
BP Category

normal, n (%) 31 (19) 21 (25) 10 (13) 0.045
elevated, n (%) 29 (18) 16 (19) 13 (16) 0.664
stage1 HT, n (%) 38 (23) 22 (26) 16 (20) 0.370
stage2 HT, n (%) 67 (41) 26 (31) 41 (51) 0.010

diabetes mellitus, n (%) 65 (39) 24 (28) 41 (51) 0.002
hyperlipidemia, n (%) 102 (62) 48 (56) 54 (68) 0.145
CAD, n (%) 34 (21) 11 (13) 23 (29) 0.012
CVD, n (%) 15 (9) 10 (12) 5 (6) 0.218
creatinine (mg/dL) 0.80 (0.65, 0.93) 0.79 (0.64, 0.90) 0.80 (0.65, 0.96) 0.462
HbA1c (%) 6.0 (5.7, 7.0) 5.9 (5.6, 6.7) 6.2 (5.8, 7.3) 0.051
BNP (pg/dL) 21.2 (11.0, 49.8) 18.0 (10.0, 31.0) 30.0 (13.9, 58.8) 0.003
CAVI 8.9 (8.2, 9.7) 8.2 (7.6, 8.7) 9.7 (9.3, 10.2) 0.0001
medications

diuretics, n (%) 12 (7) 7 (8) 5 (6) 0.624
α-blocker, n (%) 2 (1) 1 (1) 1 (1) 0.966
β-blocker, n (%) 24 (15) 9 (11) 15 (9) 0.137
ACE/ARB, n (%) 50 (30) 23 (27) 27 (34) 0.35
calcium blocker, n (%) 67 (41) 33 (39) 34 (43) 0.631

Data are presented as mean ± standard deviation, number (%), or median (interquartile range), as appropriate.
Abbreviations: BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; BP, blood
pressure; HT, hypertension; CAD, coronary artery disease; CVD, cerebrovascular disease; BNP, brain natriuretic
peptide; CAVI, cardio-ankle vascular index; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II
receptor blocker.

The mean age was 66.5 ± 11.7 years, and 72% were men. The mean CAVI was 8.9 ± 1.2.
In our study, 80 participants (48.5%) were in group B. The patients in group B were of older
age, had a higher percentage of diabetes, and had higher levels of serum BNP compared to
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those of group A. Table 2 shows the traditional echocardiographic parameters. Patients
with abnormal CAVI (group B) had a lower E/A ratio, e’, and TAPSE, but LA and RA
volume index did not differ between the two groups. When applied to the LV geometry
classification of the American Society of Echocardiography [9], the study subjects consisted
of normal geometry (n = 29; group A = 19, B = 10, p = 0.204), concentric remodeling (n = 119;
group A = 59, B = 60, p = 0.199), and concentric hypertrophy (n = 17; group A = 7, B = 10,
p = 0.084). We performed the post hoc power analysis using G*Power software between
group A and B. The detection power was 89% (p < 0.05, two tails) in this study.

Table 2. Comparison of the traditional echocardiographic parameters according to the CAVI value.

Traditional Echocardiographic
Parameters

All Subjects
(N = 165) Group A (N = 85) Group B (N = 80) p Value

LV end-diastolic diameter (mm) 42.4 ± 5.1 42.4 ± 5.1 41.4 ± 5.1 0.188
LV end-systolic diameter (mm) 25.0 (22.0, 28.0) 25.0 (22.0, 28.0) 25.0 (22.0, 28.0) 0.898
LV ejection fraction (%) 68.0 (66.0, 70.0) 68.0 (66.0, 69.0) 67.0 (65.0, 71.0) 0.516
LV stroke volume (mL) 55.3 ± 15.8 56.8 ± 16.0 53.8 ± 15.6 0.223
LV mass index (g/m2) 73.0 (57.0, 91.5) 67.0 (55.0, 82.5) 75.0 (61.3, 64.8) 0.081
RWT 0.51 (0.45, 0.58) 0.50 (0.43, 0.57) 0.54 (0.46, 0.60) 0.476
E wave (cm/s) 61.0 (49.5, 72.0) 66.0 (51.0, 74.0) 57.5 (48.0, 68.0) 0.045
A wave (cm/s) 79.0 (61.5, 93.0) 73.0 (57.0, 92.0) 82.0 (69.0, 93.0) 0.116
E/A ratio 0.76 (0.61, 0.95) 0.81 (0.66, 1.07) 0.71 (0.60, 0.86) 0.003
e’ (cm/s) 5.5 (4.5, 7.0) 6.1 (4.7, 7.7) 5.2 (4.3, 6.3) 0.002
E/e’ ratio 10.6 (8.4, 14.0) 10.5 (7.9, 13.7) 11.4 (8.8, 14.3) 0.220
TAPSE (mm) 19.5 ± 4.7 20.2 ± 4.3 18.8 ± 5.0 0.047
RVFAC 44.4 ± 8.7 45.6 ± 8.5 43.1 ± 8.8 0.072
LAVI (mL/m2) 25.6 (20.5, 32.0) 27.0 (21.0, 32.0) 25.0 (20.0, 32.0) 0.585
RAVI (mL/m2) 14.0 (12.0, 18.0) 15.0 (12.5, 18.0) 14.0 (12.0, 17.8) 0.487

Data are presented as mean ± standard deviation or median (interquartile range), as appropriate. Abbreviations:
RWT, relative wall thickness; E, peak early diastolic velocity of transmitral flow; A, peak atrial systolic velocity of
transmitral flow; e’, peak early diastolic mitral annular motion velocity; TAPSE, tricuspid annular plane systolic
excursion; RVFAC, right ventricular fractional area change; LAVI, left atrial volume index; RAVI, right atrial
volume index; LV, left ventricle.

2.2. Comparison between CAVI and 2DSTE

As shown in Figure 1, LA reservoir strain was significantly lower in group B than in
group A (20.3 ± 6.1 vs. 24.7 ± 8.0, p = 0.0001; Figure 1A). LA conduit strain was significantly
lower in group B than in group A (8.7 ± 3.3 vs. 12.8 ± 6.1, p = 0.0001; Figure 1B). Similarly,
RA reservoir strain was significantly lower in group B than in group A (26.7 ± 10.1 vs.
30.1 ± 11.4, p = 0.046; Figure 1E). RA conduit strain was significantly lower in group B
than in group A (13.0 ± 5.6 vs. 15.8 ± 7.0, p = 0.005; Figure 1F). No significant differences
between group B and group A were identified in biatrial pump strain and biventricular
strain (Figure 1C,D,G,H).

To clarify the correlation between CAVI and 2DSTE, simple regression analyses were
performed, with CAVI as a dependent variable (Figure 2). CAVI was correlated with LA
reservoir strain (r = −0.387, p = 0.0001; Figure 2A), LA conduit strain (r = −0.448, p = 0.0001;
Figure 2B), and RA conduit strain (r = −0.231, p = 0.003; Figure 2F).

The RVGLS and RVFWS values were similar as follows: The RVGLS for group A was
−18.9 ± 5.3 (%) and the RVFWS for group A was −18.7 ± 5.8 (%). The RVGLS for group
B was −17.8 ± 4.7 (%) and the RVFWS for group A was −17.6 ± 5.3 (%). The correlation
between the RVGLS and CAVI was r = 0.203, p = 0.009, and the RVFWS and CAVI was
r = 0.142, p = 0.068.
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Multiple regression analyses were performed for parameters associated with LA
and RA conduit function to identify independent variables. In the multiple regression
analysis of LA conduit function, CAVI (standardized coefficient β = −0.375, p = 0.0001),
SBP (standardized coefficient β = −0193, p = 0.006), and LVGLS (standardized coefficient
β = −0.191, p = 0.006) were all identified as independent variables (Table 3). In contrast,
the multiple regression analysis of RA conduit function, RVFWS (standardized coefficient
β = 0.318, p = 0.0001), CAVI (standardized coefficient β = −0156, p = 0.036), and E/e’
(standardized coefficient β = −0.146, p = 0.045) were identified as independent variables
(Table 4).

Table 3. Multiple regression documenting the association of LA conduit strain with clinical variables.

Independent Variable Standard Coefficient t Value p Value

CAVI −0.375 −5.418 0.0001
SBP −0.193 −2.791 0.006

LVGLS −0.191 −2.772 0.006
Variables that were not independent included: age, male sex (0:(−), 1:(+)), diabetes mellitus (0:(−), 1:(+)),
hyperlipidemia (0:(−), 1:(+)), E/e’, RVFWS, LAVI, and RAVI. Abbreviations: SBP, systolic blood pressure; peptide;
CAVI, cardio-ankle vascular index; E, peak early diastolic velocity of transmitral flow; e’, peak early diastolic
mitral annular motion velocity; LVGLS, left ventricular global longitudinal strain; RVFWS, right ventricular free
wall longitudinal strain; LAVI, left atrial volume index; RAVI, right atrial volume index.

Table 4. Multiple regression documenting the association of RA conduit strain with clinical variables.

Independent Variable Standard Coefficient t Value p Value

RVFWS 0.318 4.324 0.0001
CAVI −0.156 −2.113 0.036
E/e’ −0.146 −2.018 0.045

Variables that were not independent included, age, male sex (0:(−), 1:(+)), SBP, diabetes mellitus (0:(−), 1:(+)),
hyperlipidemia (0:(−), 1:(+)), LVGLS, LAVI, and RAVI. Abbreviations: SBP, systolic blood pressure; peptide; CAVI,
cardio-ankle vascular index; E, peak early diastolic velocity of transmitral flow; e’, peak early diastolic mitral
annular motion velocity; LVGLS, left ventricular global longitudinal strain; RVFWS, right ventricular free wall
longitudinal strain; LAVI, left atrial volume index; RAVI, right atrial volume index.

3. Discussion

Arterial stiffness plays a key role in the pathophysiology of cardiovascular disease and
is an independent predictor of cardiovascular morbidity and mortality [10,11]. The degree
and duration of hypertension are known to be very important factors in the worsening of
arterial stiffness as an afterload of the heart. This chronic burden subsequently leads to left
ventricular hypertrophy, atrial fibrillation, and heart failure. Arterial stiffness can be evalu-
ated by measuring the pulse wave velocity (PWV). However, the challenge with the clinical
use of PWV has a limitation because PWV itself is closely dependent on blood pressure
during measurement [12]. CAVI overcomes this problem and becomes the better index to
assess cardiovascular interaction. To avoid the occurrence of cardiovascular disease, it is
important to detect cardiovascular remodeling in the early stages. Recently, several studies
on the cardiovascular interaction evaluated by CAVI have been reported [13–16]. Moreover,
there have been several reports showing high CAVI in pulmonary hypertension [17–20].
Sato et al. reported that CAVI decreases with chronic thromboembolic pulmonary hyper-
tension treatment [21]. Moreover, there are several reports on effective ways to improve
CAVI, such as by administering olmesartan [22] and eplerenone [23] for hypertension;
pitavastatin [24] for dyslipidemia; continuous positive airway pressure [25,26] for sleep
apnea syndrome; glimepiride [27] and pioglitazone [28] for diabetes, body weight reduc-
tion [26,29], and smoking cessation [30]; and nicorandil after coronary intervention [31].

We investigated the cardiovascular interaction focusing on hypertensive patients
before cardiac remodeling. This is the first report to suggest that CAVI is strongly associated
with not only LA phasic function but also RA phasic function before cardiac remodeling
in hypertensive patients using 2DSTE and CAVI (Figures 1 and 2). Multiple regression
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analyses revealed that LA conduit function reflects CAVI, SBP, and LVGLS (Table 3), and
that RA conduit function is associated with RVFWS, CAVI, and E/e’ (Table 4). We speculate
that increased arterial stiffness, as determined by CAVI, was independently related with
LA phasic function and RA phasic function in hypertensive patients with preserved LVEF.

Our current understanding of this process includes the fact that not only LA but also
RA phasic dysfunction precedes cardiac structural remodeling. The results of this study
indicate that increased arterial stiffness is closely associated with impaired RA conduit
function. A decrease of RA conduit function has been shown for patients with increased
pulmonary artery pressure [32] and LV dysfunction related to LV hypertrophy [33] and
heart failure with preserved LVEF [34]. On the other hand, RA conduit function has been
reported to be affected by biventricular dysfunction [35]. However, our results showed
significant association between RA conduit function and CAVI compared to biventric-
ular systolic function. This suggests the value of RA phasic function beyond systolic
biventricular function.

Singh et al. [36] demonstrated that LA strain progressively worsens with the severity of
diastolic dysfunction, and it could indicate an early stage of diastolic dysfunction compared
to conventional echocardiographic parameters. Similar reasoning may be applied to explain
the decrease in RA strain, although our knowledge of diastolic RV dysfunction is limited.
In this study, we found that RVFWS and LV diastolic function (E/e’) was independently
associated with RA conduit function. RA conduit dysfunction reflects the part of RV and LV
dysfunction. We were able to propose the concept of cardiovascular interaction involving
the right heart system in hypertensive patients using CAVI. Through this concept, we might
be able to properly control the risk of future heart failure caused by hypertension.

CAVI values have been reported to be increasing by 0.05 per year in Japanese health
examination data [37]. Recently, various therapeutic approaches to reduce CAVI values
have been explored [38,39]. CAVI is a noninvasive method for vascular assessments. It is
important to intervene appropriately before cardiac and vascular remodeling occurs.

As shown in Figure 3, the concept of cardiovascular interaction was associated with the
left and right heart circulation systems through CAVI in this study. We can understand that
by incorporating non-invasive and simple CAVI assessment into routine clinical practice, an
increase in CAVI indicates the presence of a cardiovascular load and a decrease indicates its
improvement in individual patients. The present findings together with previous research
reports should facilitate improvement of our cardiovascular practice.

Study Limitations

This study had several limitations. First, most of the patients used antihypertensive
agents. ACE-I/ARBs and Ca blockers are known to have a strong effect on the regression of
left ventricular hypertrophy. In this study, the percentage of those taking ACE-I/ARBs was
30% and Ca blockers, 41%. Second, our findings are based on limited data from Japanese pa-
tients. Third, no data from a simultaneous invasive evaluation of LA and RA function were
available because our patients had preclinical, asymptomatic hypertension. Fourth, the
present study was a retrospective cross-sectional single-center study. Fifth, 57% of study pa-
tients were treated for their hypertension. This was a retrospective observational study; we
did not know the details of the duration of treatment. To further clarify this cardiovascular
interaction, longitudinal studies are needed for advanced hypertensive patients.
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4. Materials and Methods
4.1. Study Patients

The current retrospective observational study included patients (n = 858) with some
risk of metabolic abnormalities (hypertension, diabetes, and dyslipidemia) who had visited
the department of cardiology division of Toho University Sakura Medical Center (Chiba,
Japan) and undergone echocardiography between 2015 and 2018. Among them, we retro-
spectively studied 165 consecutive hypertensive patients with preserved LVEF who had
echocardiography performed on the same day as their CAVI. The exclusion criteria were
as follows: LVEF <50%, acute myocardial infarction, old myocardial infarction, cardiomy-
opathy, open-heart surgery, non-sinus rhythm, atherosclerosis obliterans (ankle-brachial
index, <0.9), pulmonary hypertensive disease, moderate or severe valvular disease, and
strain analysis not available (Figure 4).
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Patients were defined as having hypertension if they had systolic blood pressure (SBP)
≥140 mmHg and/or diastolic blood pressure (DBP) ≥90 mmHg or were taking antihyper-
tensive agents. SBP and DBP were measured simultaneously during CAVI measurements
using Vasela 1500. We used SBP and DBP values determined from measurements at the
right side in this study. According to the American College of Cardiology/American Heart
Association, the detail of hypertension was classified as follows and the results are shown
in Table 1.

The presence of the following concomitant diseases was recorded: diabetes mel-
litus (defined as glycated hemoglobin ≥6.5% (NGSP-standardized value) or requiring
antidiabetic treatment) and dyslipidemia (defined as low-density lipoprotein cholesterol
concentration ≥140 mg/dL, high-density lipoprotein cholesterol concentration <40 mg/dL,
triglyceride concentration ≥150 mg/dL, or requiring antihyperlipidemic treatment).

4.2. Measurement of the Cardio-Ankle Vascular Index

Patients were examined in a quiet room with a constant temperature; all the CAVI
values were determined from measurements obtained using a vascular screening sys-
tem (VaSera1500; Fukuda Denshi Co., Ltd., Tokyo, Japan) and a previously described
method [3,9]. Briefly, in the supine position, cuffs were applied to a patient’s bilateral
upper arms and ankles, and their head was held in the midline position. After the patient
had been allowed to rest for 10 min, low cuff pressure (30–50 mmHg) was used to enable
detection of both brachial and ankle pulse waves with a minimal effect on hemodynamics.
Blood pressure was subsequently measured.

The CAVI value was determined with the following equation, derived from the
Bramwell–Hill equation:

CAVI value = a {(2p/∆P) × In (Ps/Pd) PWV2} + b,

in which Ps and Pd are systolic and diastolic blood pressure, respectively; PWV is pulse-
wave velocity from the origin of the aorta to the tibial artery-femoral artery junction; ∆P
is the difference between systolic and diastolic blood pressure (i.e., Ps − Pd); p is blood
density; and a and b are constants. The CAVI value was adjusted for blood pressure
based on the stiffness parameter β. We used CAVI values determined from measurements
obtained from the right side in this study.

The CAVI values were categorized into two groups according to the current recom-
mendation for the CAVI optimal cut-off value for predicting cardiovascular disease: <9 for
normal and ≥9 for abnormal [38,40]. We defined the two groups as group A (CAVI < 9)
and group B (CAVI ≥ 9) and compared the results of the two groups.

4.3. Echocardiographic Examination
4.3.1. Two-Dimensional Echocardiography

All echocardiographic examinations were carried out using a commercially avail-
able system (Vivid7, E9, S5, and S6; GE Healthcare, Boston, MA, USA) according to the
American Society of Echocardiography and the European Association of Cardiovascular
Imaging guidelines [41]. The Simpson’s method was used to calculate LA volume from
measurements obtained in the apical 4-chamber and 2-chamber views, and RA volume was
also calculated using the Simpson’s method from the apical 4-chamber view at end-systole.
The LA and RA volume were then indexed according to body surface area. Early (E)
and late (A) diastolic mitral inflow velocity and E/A ratio were determined by Doppler
echocardiography. Tissue Doppler imaging of the septal mitral annulus was recorded to
measure early diastolic velocity (e’), and the ratio of early trans-mitral valve flow velocity
to mitral annular velocity (E/e’) was calculated. Tricuspid annular plane systolic excursion
(TAPSE) was measured as the displacement of the lateral tricuspid annulus toward the
apex during systole.



Int. J. Mol. Sci. 2022, 23, 14469 9 of 12

4.3.2. Speckle-Tracking Echocardiography

Biatrial and biventricular strain indices were quantitated offline, using the EchoPAC
PC system, version 113 (General Electric Healthcare, Chicago, IL, USA). The software
detects borders semi-automatically and tracks the LA and RA borders throughout the
entire cardiac cycle. Cases of inaccurate endocardial detection were corrected manually.
LA strain was determined as the average of values obtained for six LA segments in the
apical 4-chamber and 2-chamber views, whereas RA strain was determined as the average
of values obtained from apical 4-chamber views. The reference for zero strain was set at
LV end-diastole (R-R triggering), in accordance with current recommendations [42]. Strain
curves were used to evaluate three RA and LA phasic functions: reservoir, conduit, and
pump function. RA and LA longitudinal strain reflects reservoir function (RASr and LASr),
and RA and LA pump function (RASp and LASp) corresponds to RA and LA strain at
the onset of the P wave; RA and LA conduit function (RASc and LASc) is the difference
between the two (i.e., RASr − RASp and LASr − LASp) (Figure 5A,B) [42,43]. RV global
longitudinal strain (RVGLS) was also calculated based on the 4-chamber view; six segmental
strain values from the RV free wall and ventricular septum were averaged. RV free wall
longitudinal strain (RVFWS) was calculated by averaging each of the three regional peak
systolic strains along the entire RV free wall (Figure 5C) [42,44]. LV global longitudinal
strain (LVGLS) was calculated as the average negative peak of longitudinal strain in
the 4-chamber, 2-chamber, and apical long-axis in accordance with current guidelines
(Figure 5D) [42,43].
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Figure 5. Analysis of longitudinal strain in a 4-chamber view. Dotted lines depict the average curve of
the six segments. (A,B): The first positive peak of the curve is the peak atrial strain during ventricular
systole, measured at the end of the reservoir phase (RASr and LASr). The peak defection is followed
by a plateau and peak atrial strain in late diastole at the onset of the P wave on the electrocardiogram,
just before the active atrial pump (RASp and LASp) begins. RA conduit (RASc) is calculated as
the difference between RASr and RASp. LA conduit (LASc) is calculated as the difference between
LASr and LASp. (C,D): Longitudinal strain of RV and LV was analyzed as the average of negative
peak strain (RVFWS and LVGLS). RA, right atrium; LA, left atrium; RV, right ventricle; LV, left
ventricle; RVFWS, right ventricular free wall longitudinal strain; LVGLS, left ventricular global
longitudinal strain.
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4.4. Statistical Analysis

For continuous variables, the two-tailed unpaired t-test or the Mann–Whitney U test
was used; the data are presented as mean ± standard deviation or median (lower and
upper limits of interquartile range), as appropriate. For categorical variables, the chi-
square test or Fisher’s exact test was applied to the data, as appropriate. We analyzed the
relationship between CAVI and various clinical parameters using Spearman’s correlation
analysis. A multivariate analysis was performed using stepwise regression analysis with
backward elimination to identify independent factors associated with CAVI and atrial
phasic function. The SPSS software package (PASW Statistics 25, Chicago, IL, USA) was
used for all statistical analyses. Statistical significance was set at p < 0.05. We performed the
post hoc power analysis using G*Power 3 software (Germany) between group A and B [45].

5. Conclusions

CAVI showed a possibility that the association between heart and vessels are con-
tained from not only LA phasic function but also RA phasic function in hypertensive
patients. Hypertensive patients with high CAVI may require more attention to prevent
cardiac remodeling.
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