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Abstract: Tuberculosis (TB) is still a significant threat to human health. A promising solution is
engineering nanoparticulate drug carriers to deliver anti-TB molecules. Itaconic acid (ITA) poten-
tially has anti-TB activity; however, its incorporation in nanoparticles (NP) is challenging. Here
we show an approach for preparing polymer-ITA conjugate NPs and a methodology for investi-
gating the NP degradation and ITA release mechanism. The conjugate was synthesized by the
two-directional growing of polylactic acid (PLA) chains, followed by capping their extremities with
ITA. The poly(lactate)-itaconate PLA-ITA was then used to formulate NPs. The degradation and drug
release processes of the polymer conjugate NPs were studied qualitatively and quantitatively. The
molecular structures of released species were characterized by using liquid NMR spectroscopy and
mass spectrometry. We discovered a complex NP hydrolysis process forming diverse oligomers, as
well as monomeric lactic acid (LA) and drug ITA. The slow degradation process led to a low release of
free drugs, although raising the pH from 5.3 to 7.4 induced a slight increase in the amounts of released
products. TEM images showed that bulk erosion is likely to play the primary role in the degradation
of PLA-ITA NPs. The overall results and methodology can be of interest for understanding the
mechanisms of NP degradation and drug release of this new polymer-drug conjugate system.

Keywords: drug delivery; polymer nanoparticles; poly(lactic acid); itaconic acid; NMR spectroscopy

1. Introduction

Tuberculosis (TB) is one of the world’s top ten causes of death and is the deadliest
infectious disease, according to the 2021 global report of WHO on TB [1]. It is caused by
Mycobacterium tuberculosis (Mtb), a bacteria that infects about one-quarter of the world’s
population, leading to 1.5 million deaths yearly [1]. Mtb primarily affects the lungs by
spreading through the air in the form of aerosol droplets emitted by an infected person [2].
Sometimes, Mtb can persist in pulmonary alveolar macrophages in a dormant state for a
long period, so the risk of reactivation exists even decades after infection.

Current first-line treatment for drug-susceptible TB consists of a 2-month initiation
phase with the antibiotics isoniazid (INH), rifampicin (RIF), and pyrazinamide (PZA) [3–6].
This drug regimen can successfully treat approximately 85% of TB-infected patients but
is associated with numerous side effects frequently causing poor patient compliance. In
addition, irregular drug supply and a lack of supervision contribute to the emergence of
drug-resistant Mtb strains [7].

There is a clear need to develop more efficient treatments to eradicate TB. Increasing
focus is put on nanoparticulate drug carriers targeting Mtb in alveolar macrophages, as
nanoparticles (NPs) have many advantages, such as drug (co)encapsulation and protection
bypassing biological barriers to reach the biological targets [8–12]. Therefore, NPs can allow
the administration of novel and potent anti-TB drug molecules.
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In this context, the original active ingredient in this study is itaconic acid (ITA),
a human metabolite playing an important role in the immune response [13] and with
potential antimicrobial and anti-inflammatory activity [14]. It has never been used yet for
TB treatment, but Michelucci et al. demonstrated that ITA might inhibit the growth of
Mtb [15]. Nevertheless, ITA, as a free drug, cannot penetrate inside the infected cells. That
is why it is necessary to design a suitable ITA nanocarrier.

However, ITA incorporation in NPs is a challenge, given the high solubility of this
molecule in aqueous solutions and its tendency to crystallize. For dealing with these issues,
a significant research trend is the synthesis of drug bioconjugates that self-assemble into
NPs, leading to excellent incorporation efficiencies. For example, various drugs were
conjugated with squalene, resulting in amphiphilic derivatives that spontaneously formed
NPs [16]. Similarly, drugs were conjugated with polymers. Tong and Cheng carried out
pioneering studies in the “drug-initiated” synthesis of polymers [17]. This method has been
proposed to prepare polymer prodrugs using either native functional groups of the drug
for ring-opening polymerization or pre-functionalized drugs for reversible deactivation
radical polymerization techniques [17–21]. Pipemidic acid (PIP), an antibacterial drug, was
successfully conjugated to poly(ε-caprolactone) (PCL) which self-assembled to produce
NPs [22]. The PIP-PCL conjugate was synthesized employing the “drug-initiated” method
in which the drugs were initiators for the polymerization.

Additionally, biodegradable polymers such as poly(lactic acid) or polylactide (PLA),
poly(D,L-lactic-co-glycolic acid) (PLGA), and polyacrylic acid (PAA) are some of the
most common biomaterials to make drug-loaded NPs [23–26]. In particular, PLA, whose
monomer is lactic acid (LA), is a popular drug carrier because of its biocompatibility and
biodegradability [24,27]. It was chosen to synthesize the pH-responsive polymer-drug
conjugate NPs made of poly(lactic acid)-itaconate PLA-ITA. As the environment inside the
TB-infected cells or granuloma has a more acidic pH than that inside normal cells [28,29],
successful NP degradation and ITA release upon changing environmental pH will result in
targeted intracellular delivery of ITA.

This study aims to design new polymer-drug conjugate NPs and to study their degra-
dation mechanism. A polymer synthesis step is followed by a formulation optimization
procedure and analysis of possible degradation products.

Nuclear magnetic resonance (NMR) spectroscopy has attracted attention for the char-
acterization of micelles and colloids for pharmaceutical applications [30–32]. As a classical
structural tool, it has become a promising technique for studying drug delivery processes
of nanocarriers [33–35]. For instance, 1H and 13C solution and solid-state NMR studies
have shown that amphiphilic poly(lactic acid)-poly(ethylene glycol) PEG-PLA copolymer
forms solvent-dependent structures [36]. Herein, we investigate the degradation processes
of PLA-ITA conjugate NPs mainly using liquid 1H and 13C NMR spectroscopy to identify
and quantify the released products. The methodology proposed here could be helpful for
other materials made by the “drug-initiated” method.

2. Results and Discussion
2.1. Synthesis of PLA-ITA Polymer-Drug Conjugate

The synthesis of ITA-terminated poly(L-lactic acid) oligomers was first reported by
Okuda et al. in 2012 [37]. They showed that it was possible to ring open itaconic anhydride
by the OH terminal group of a PLA chain by a one-pot process using a tin octanoate catalyst.
A reasonable chemoselectivity (87:13) for the more reactive C-5 carbonyl was observed,
and β-mono ester of itaconic acid was produced. To maximize the amount of incorporated
ITA while maintaining the self-assembly capacity of the oligomer, we planned a two-
directional growth of the polymeric chain to get two terminal hydroxyl groups available
for reaction with itaconic anhydride. Thus, conventional tin-catalyzed PLA synthesis using
D,L-lactide ring-opening polymerization was performed starting from 1,3-propanediol as
the initiator (Figure 1). After completion, the mixture was cooled, and an excess of itaconic
anhydride was added. After 3 additional hours of heating at 100 ◦C, the crude material
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was acid-washed and purified by precipitation affording the desired material as a white
solid. The material was characterized by 1H and 13C NMR spectroscopy, IR spectroscopy,
and mass spectrometry to determine its structure (see Section 1 in Supporting Information
and Figures S2–S4).
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Figure 1. Synthetic representation for the synthesis of two-directional poly(lactic acid)-itaconate,
denoted as PLA-ITA.

The 1H NMR spectrum of the obtained product (Figure S1) shows the characteristic
peaks of the repeating unit of lactic acid at 5.17 and 1.57 ppm and the signals of the propane
diol at 4.20 and 1.99 ppm. The chemical shift of lactate in PLA-ITA is similar to that in PLA
polymer alone and agrees with the literature [38]. The signature peaks of the two terminal
itaconate units displayed at 5.88 and 6.45 ppm correspond to the protons of the methylidene
groups =CH2. The smaller singlet at 5.83 ppm can be tentatively assigned to the minor
α-mono ester of itaconic, as observed previously [37]. Peak integration indicated an average
molecular weight of Mn = 3850–4050 g·mol−1, roughly corresponding to 25 lactic units for
both hydroxyl groups of the propanediol.

In short, PLA-ITA polymer-drug conjugate was synthesized successfully.

2.2. Preparation of PLA-ITA Polymer-Drug Conjugate Nanoparticles

Once the polymer PLA-ITA was produced, we optimized the formulation of PLA-ITA
NPs, based on the NPs’ mean hydrodynamic diameters and polydispersity (Table S1).
Among the tested formulations, single emulsion using dichloromethane (DCM) as an
organic solvent and PVA as an emulsifier, gave best results while avoiding polymer pre-
cipitation. The obtained PLA-ITA NPs had an average diameter of 331 ± 12 nm and a
polydispersity index (PDI) of 0.09 ± 0.05.

Nevertheless, the single emulsion formulation was not suited for the degradation
study. In a first attempt, PLA-ITA NPs prepared by single emulsion were incubated at
pH 7.4 and 5.3 for over one month. The obtained supernatant was measured by liquid
NMR spectroscopy. The 1H NMR spectra (Figure S5) show difficulties in accurate analysis.
Firstly, the peaks of interest of ITA in the region 5.5–6.5 ppm have very low intensity,
hindering both qualitative and quantitative characterization. This low intensity is due to
low ITA loading in 7.6 wt% of PLA-ITA, which corresponds to maximum ITA release below
3 mmol L−1. However, it is not easy to increase the wt% of ITA because it will increase
the solubility of the bioconjugates in aqueous media, risking its ability to form NPs in
water. The second issue is that the signals of interest of LA in the regions 1.1–1.8 ppm and
4.0–5.2 ppm strongly overlap with the resonances of PVA at 1.7 and 3.9 ppm. The signals of
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PVA are very intense compared to those of ITA and LA due to the high amounts (4 mg/mL)
of PVA in the NPs suspension [39].

To avoid these issues, PLA-ITA NPs were prepared by nanoprecipitation in small
volumes without using a PVA emulsifier. The attained mean hydrodynamic diameter was
343 ± 36 nm, and the PDI was 0.49 ± 0.07. In addition, the concentration of the analyzed
sample was increased to the maximum to improve the NMR sensitivity. Specifically,
samples of degradation products were freeze-dried, and the obtained precipitates were
redissolved again in a minimal amount of D2O.

2.3. Identification of Degradation Products of PLA-ITA Nanoparticles

The 1H NMR spectrum of freeze-dried degradation supernatant of PLA-ITA nano-
precipitation in phosphate buffer saline (PBS) at pH 7.4 after two months was displayed
in Figure 2. It presents several peaks assigned to methylidene protons =CH2 of ITA in
the region 5.7–6.6 ppm, contrasting with two singlets in the same region of free itaconic
acid. There are also more signals assigned to the methylene -CH2- protons in the region
3.25–3.70 ppm, in comparison with one peak in the spectrum of itaconic acid. Such an
increase in NMR signature peaks was not observed when incubating ITA in similar condi-
tions of PLA-ITA degradation (Figure S6), indicating that this phenomenon is due to the
degradation reaction of PLA-ITA and not to the interaction between ITA and phosphate
salts. Likewise, there are several quadruplets and doublets corresponding to LA’s methine
protons and methyl protons in the region 4.0–5.5 and 1.2–1.8 ppm, respectively. Such
multiplication of LA’s NMR signatures was also detected in lactic acid aqueous solution
incubated at similar conditions of PLA-ITA degradation (Figure S6). It was evidenced by
Espartero et al. that LA in an aqueous solution can exist in the form of different oligomers,
e.g., monomer, dimer, and trimer, resulting in multiple characteristic peaks in 1H NMR [40].
In agreement with these findings, the analysis of our degradation mixtures by 1H COSY
NMR revealed a mixture of at least three lactate species in monomeric, dimeric, and
trimeric forms.
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Therefore, we hypothesized that the degradation reaction of PLA-ITA also produces
such oligomers between ITA and LA. To confirm this hypothesis and explicitly assign these
different peaks of ITA and LA, 2D NMR correlation measurements were carried out. 1H-1H
COSY NMR measurement (Figure 3) helped to distinguish different peaks in 1D 1H by
showing the correlation pairs between methylidene =CH2 and methylene -CH2- protons
of ITA fragments (Figure S7) and between methine -CH and methyl -CH3 protons of LA
fragments (Figure S8). Additionally, 13C-1H HSQC and HMBC NMR (Figures S9–S14) gave
complementary information for the NMR assignment through the correlation pairs between
different types of protons with carboxylate -COO, double-bonded C=CH2, and methylene
-CH2. We identified 5 groups of correlated signals (4 proton signals and 5 C signals) for ITA
fragments and 6 groups of correlated signals (a couple of proton signals and 3 C signals)
for LA fragments. These data and possible structures of PLA-ITA degradation products are
gathered in Figure 4.
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Likewise, the existence of oligomers made of itaconate and lactate was also demon-
strated by MS spectrometry. The mass spectra of degradation products in PBS at pH
7.4 for two months (Figure S15) showed peaks of (−1) negative fragments of lactic acid
(m/z 89.3) and itaconic acid (m/z 129.1), as well as peaks of mixed esters between ITA and
LA monomers or propane-1,3-diol (Table 1).
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Figure 4. The main water-soluble degradation products of PLA-ITA NPs in PBS at pH 7.4, detected
by NMR spectroscopy (1H in red and 13C in blue).

Table 1. Assignment of ESI(-) mass spectra of water-soluble degradation products of PLA-ITA NPs
after 2-month incubation in PBS at pH 7.4.

Species Chemical Structure and Formula m/z of Negative Ion [M-H]

LA
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Table 1. Cont.

Species Chemical Structure and Formula m/z of Negative Ion [M-H]

ITA-LA
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The remaining parts of the PLA-ITA NPs were analyzed by MALDI MS. Some main
peaks in the positive mode MALDI spectra of original and degraded PLA-ITA were listed
in Table 2. In the spectrum of degraded PLA-ITA (Figure S16) recorded without added
cations, the peaks for [M+Na]+ and [M+K]+ were present because the instrument’s glass
chamber is made of Na and K. When Na+ was added, the peaks for [M+K]+ decreased
their intensity, thus supporting the peak assignments. Moreover, the spectrum for the
pH 5.3 sample shown in Figure S16 exhibits signals of PLA-ITA with two-time shorter
chain lengths than the original one (Table 2). This result indicates that: (i) the PLA-ITA NPs
are degraded into smaller fragments, consistent with the NMR and MS data, but (ii) the
degradation is still incomplete after 1–2 months.

Table 2. Assignment of positive mode MALDI mass spectra of original and degraded PLA-ITA
pellets. Incubation in PBS at pH 5.3 was done for 1 month.

Species MS Peak Mode m/z Assignment

Original
PLA-ITA

[M + Na]+

(n = x + y)

3131.89
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From the evidence of NMR and MS, it appears that the degradation of PLA-ITA
NPs not only produced itaconic acid and lactic acid but also created oligomers of ITA-LA
and ITA-propane-1,3-diol. The mechanism of base-catalyzed ester hydrolysis seems to be
random cleavage of the ester bonds and polymer chains. As a result, oligomers of different
chain lengths were formed.

Furthermore, quantitative 1H NMR allowed us to determine the % release of ITA
drug and lactic acid and studied the effect of pH on drug release and NPs degradation.
Table 3 shows that ITA-containing and LA-containing species formed faster at neutral
pH 7.4 than at acidic pH 5.3. It took 2 months for the degradation at pH 5.3 to produce a
similar level of % ITA release to that of degradation at pH 7.4 after 1 month. Conventionally,
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ester hydrolysis is usually catalyzed by acidic H+ cations [41]. However, knowing that the
starting pH of original PLA-ITA NPs is slightly acidic (pH = 5–6), incubation of PLA-ITA at
pH 7.4 caused a bigger pH change than at pH 5.3. In this case, the hydrolysis of the ester
bonds between LA and ITA probably followed a BAC2-type mechanism catalyzed by OH-

anion [42]. The slow and prolonged release of ITA conjugated with PLA NPs can be more
advantageous than the burst release of unconjugated drugs [43].

Table 3. Itaconate (ITA) and lactate (LA) release after PLA-ITA NPs degradation as analyzed by
quantitative 1H NMR spectroscopy.

PLA-ITA NPs Degradation
% ITA Release % LA Release

1 Month 2 Months 1 Month 2 Months

pH 7.4 18.4 17.4 8.7 8.8

pH 5.3 7.7 16.0 2.8 6.7

2.4. Degradation Mechanism of PLA-ITA Nanoparticles

To get a global view of how the degradation process happens, we monitored the size,
morphology, and stability of original and degraded PLA-ITA NPs for 2 months. On the one
hand, the size distribution and zeta potential of the original PLA-ITA NPs stored at 4 ◦C
for 2 months had less than a 10% difference. On the other hand, the degraded PLA-ITA
NPs suspension aggregated, whose size became too big to be measured by DLS. The ZP
magnitude of degraded PLA-ITA NPs decreased 2-times more than that of the original NPs
(Figure S17). As we could not determine the size of degraded NPs by DLS, we used TEM to
observe the evolution of NPs size and morphology. Figure 5 shows that as time progressed,
while the original NPs kept their morphology, the PLA-ITA NPs degraded at pH 7.4 and
became transparent. This NP transformation could be a sign of a bulk erosion mechanism
characterized by a fast water diffusion into the NPs followed by a slower water hydrolysis
reaction [44]. Thus, NPs could undergo bulk degradation, maintaining their size roughly
unchanged. However, degradation at pH 5.3 seemed to produce swollen NPs (Figure 5C).
Note that this swelling phenomenon is not observed in a control experiment with pure
PLA NPs without the presence of ITA (see Figure S18), suggesting that the swelling was
related to the presence of ITA within the NPs.

Figure 6 proposes the scheme of the degradation mechanism of PLA-ITA polymer
conjugate NPs at physiological pH, as revealed at the macroscopic level by TEM and atomic
scale by NMR and mass spectrometry analyses. At pH 7.4, there was no significant change
in particle size and morphology for up to 1 month, indicating the bulk erosion process. At
the same time, the internal structure of the polymer conjugate was considerably altered.
These data were consistent with the limited release of oligomeric species observed in the
solution. Even if free ITA molecules were released, the bioconjugate remains only partially
hydrolyzed.
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3. Materials and Methods
3.1. Chemicals

All reagents and solvents were used without further purification, otherwise indicated.
For polymer synthesis: Diethyl ether was distilled from sodium/benzophenone ketyl.

Toluene and dichloromethane were distilled from calcium hydride under a nitrogen atmo-
sphere. All reactions involving air- or water-sensitive compounds were routinely conducted
in glassware flame-dried under a positive pressure of nitrogen or argon. Itaconic anhydride,
tin(II) 2-ethylhexanoate, and D,L-lactide were purchased from Sigma-Aldrich Chemical Co.

For polymer nanoparticle preparation and degradation: Salts were purchased from
Sigma-Aldrich. Organic solvents were commercial analytical grade. Deionized (DI) water
was taken from the PURELAB Ultra ELGA purification system. For the NMR experiments,
the deuterated solvents were deuterium oxide (D2O) and deuterated trichloromethane
from Innova-Chem, +99.8 atom D %.

3.2. Synthesis of the Two-Directional Polymer PLA-ITA

A solution of anhydrous 1,3-propanediol (freshly distilled over CaH2, 285 mg, 3.75 mmol)
and D,L-lactide (10.0 g, 69.4 mmol) in anhydrous toluene (5 mL) was degassed using three
freeze-thaw cycles. Tin(II) 2-ethylhexanoate (130 mg, 0.3 mmol) in toluene (0.2 mL) was added
through a syringe, and the resulting mixture was placed in an oil bath at 140 ◦C. After 8 h,
the obtained gel was cooled to room temperature, and itaconic anhydride (2.0 g, 17.8 mmol)
was added. The reaction mixture was heated at 100 ◦C for 3 h. After cooling, the mixture
was concentrated under reduced pressure. The residue was taken up into CH2Cl2 (150 mL)
and washed with 0.1 N HCl (10 mL) and brine (10 mL). The organic phase was dried over
MgSO4 and concentrated under reduced pressure. The residue was taken into CH2Cl2 (5 mL)
and added dropwise into Et2O (100 mL). The solid was filtered and dried under a vacuum.
The process was repeated to precipitate an acetone solution of the polymer into water. After
drying under vacuum over P2O5, the title compound was obtained as a white solid (6.2 g).

3.3. Preparation of PLA-ITA Nanoparticles

Single emulsion: The organic phase was prepared by dissolving 60 mg of PLA-ITA
conjugate polymer in 1.5 mL dichloromethane (DCM). The aqueous phase was polyvinyl
alcohol (PVA) solution of 0.5 wt%. 4 mL of the aqueous phase was added to the organic
phase, and immediately afterward, the resulting mixture was vortexed for 20 s. Subse-
quently, it was sonicated at 20% power for 1.5 min and then at 10% power for 30 s, using
a sonication tip (Bandelin) dip inside the sample vial. The sample vial was placed in an
ice bath to avoid heating the suspension due to sonication. The sample was stirred by
magnetic stirring overnight at room temperature to evaporate the residual organic solvent.
A sheet of laboratory paper was used to cover the vial from dust.

Nanoprecipitation: The organic phase was prepared by dissolving 10 mg PLA-ITA
polymer in 0.75 mL acetone. The aqueous phase was deionized (DI) water. The organic
phase, i.e., the polymer solution, was added dropwise (1 drop of roughly 10 µL per second)
into 2 mL water under continuous gentle magnetic stirring. The sample was stirred
overnight at room temperature to evaporate the residual organic solvent. Each batch was
sonicated for about 10–15 s before combining all batches in a Falcon tube.

The NP suspension was stored in the fridge at −4 ◦C.
The concentration of the formulated PLA-ITA NPs was estimated from the weight of

the polymer divided by the volume of DI water remaining after evaporation of the organic
solvent. To determine the solvent volume inside the sample vial, one weighted the empty
vial containing the magnetic stirrer beforehand, and weighted the sample vial containing
NP suspension after overnight evaporation.

3.4. Degradation of PLA-ITA Nanoparticles

Briefly, the degradation of PLA-ITA nanoparticles (NPs) was tested in phosphate buffer
saline (PBS) at pH 7.4 and 5.3 in DI water. After a given period, the suspension in PBS
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was separated into supernatant and pellet, named degraded supernatant and pellet. The
obtained degraded supernatant was freeze-dried. Afterward, the freeze-dried precipitates
were dissolved in deuterated water D2O; the obtained sample was measured by liquid
NMR spectroscopy.

Incubation of 4.5 mg mL−1 PLA-ITA NPs in PBS 10 mmol L−1 was carried out as
follows. From the 5 mg mL−1 stock NPs aqueous suspension, 12.6 mL was pipetted into a
Falcon tube 15 mL. Then, 1.4 mL of PBS 100 mmol L−1 at pH 7.4 or 5.3 was pipetted into
this tube. The sample tube was closed, mixed, and placed in a rotator inside an oven set
at 37 ◦C. After a given time, such as 1 month and 2 months, roughly half of the incubated
sample tube was transferred to another 15 mL Falcon tube to avoid centrifuging a full
tube. These two tubes were centrifuged at 10,000 RCF (relative centrifugal force) for 15 min.
The supernatant from two tubes was put in another tube. The pellet was dried at room
temperature. The degraded supernatant was freeze-dried overnight using a Christ Alpha
2–4 LSCbasic lyophilizer. One tried to dissolve the freeze-dried precipitate in 600 µL D2O;
the solution was transferred to an NMR tube.

PBS 100 mmol L−1 in H2O was prepared as follows. Stock A was NaH2PO4 solution
of 0.1 mol L−1, and stock B was KH2PO4 0.1 mol L−1. Both these salts quickly dissolved
in DI water. To 40 mL of stock A and stock B, 0.32 g of NaCl was added and dissolved.
Different proportions of stock A and stock B were mixed to obtain different pH. 20 mL
PBS 100 mM with pH 7.4 and 5.3 was comprised of 4 mL stock A and 16 mL stock B, and
19.5 mL stock A and 0.5 mL stock B, respectively. The pH of PBS 100 and 10 mmol L−1 was
checked by a digital pH meter.

3.5. Characterization Methods

For characterizing the synthesized PLA-ITA, IR spectra of solid or neat liquid were
obtained on a Fourier Transform Shimadzu IRAffinity-1 spectrometer. Only significant
absorptions are listed. The 1H and 13C NMR spectra were acquired on Bruker Avance 300
(300 MHz and 75 MHz, for 1H and 13C, respectively) spectrometers. Recognition of methyl,
methylene, methine, and quaternary carbon nuclei in 13C NMR spectra was based on the
J-modulated spin-echo sequence.

The size and colloidal stability of NPs suspension were studied by Dynamic Light
Scattering (DLS) and Zeta-potential (ZP) measurements (Zetasizer Nano ZS90, Malvern
Panalytical, Malvern, The United Kingdom). Samples of 0.15 mg/mL of NPs were prepared
in DI water for DLS or in 1 mM KCl for ZP measurements. pH measurements were
conducted on a Hanna Instruments edge® pH digital meter.

Morphology and size of NPs were observed by TEM under a 120 kV and 80 kV JEOL
JEM-1400 microscope. NP suspensions were deposited on copper grids and observed with
staining. For the original polymer NPs, negative staining was done with phosphotungstic
acid. For the polymer NPs degraded at pH 7.4, after negative staining with phosphotungstic
acid, the TEM grid was washed twice with water to remove the residual salts coming
from the degradation medium. For the polymer NPs degraded at pH 5.3, the TEM grid
was washed twice with water prior to negative staining with uranyl acetate to prevent
precipitating uranyl acetate in phosphate. Negative staining of these acid-degraded samples
with phosphotungstic acid (pH 7.4) did not work, probably due to incompatible pH. Then
the TEM grid was washed twice with water again to remove the residual salts.

Solution spectra for the degradation study were recorded at 298 K. 1H, and 13C NMR
measurements were acquired with a Bruker Avance 400 MHz spectrometer equipped with
a 5 mm BBI probe head and operated at a magnetic field strength of 9.4 T, respectively.
D2O or DCCl3 were used as deuterated solvents. Typically, 1H spectra were recorded with
one pulse sequence at a 30◦ flip angle (pulse duration 2.8 µs), using 2 s recycle delay, 3 s
acquisition time, and 128 scans. 1H{1H} COSY, 1H{13C} HSQC and 1H{13C} HMBC spectra
were carried out on some selected samples using standard Bruker pulse sequences. The
recycle period was shortened to 1 s for all these 2D experiments. Typically, mixing times of
17 ms and 133 ms corresponding to 1

4 JH-C (1JH-C = 145 Hz) and 1
2 JH-C (2JH-C = 7.5 Hz) were
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employed for 1H{13C} HSQC and 1H{13C} HMBC experiments, respectively. The 13C spectra
were obtained with a standard power-gated decoupling pulse sequence, using typically
1 s recycle delay, 1.2 s acquisition time, and 25,600 scans. J-modulated spin-echo sequence
has also been used to identify methyl, methylene, methine, and quaternary carbon nuclei
in 13C NMR spectra. According to conventional standards, chemical shifts are reported
relative to 1% Me4Si in CDCl3 for both 1H and 13C.

Quantitative 1H NMR spectroscopy was based on the calibration of itaconic acid and
lactic acid solution in D2O with known concentrations.

ESI (electrospray ionization) mass spectra were recorded on an LTQ-Velos Pro Ther-
mofisher Scientific spectrometer, and MALDI-TOF (Matrix-assisted laser desorption-ionization
time of flight) mass spectra were recorded in an UltrafleXtreme apparatus (Bruker Daltonics,
Billerica, MA, the US) using the service from Small Molecule Mass Spectrometry platform
of ICSN (Centre de Recherche de Gif—http://icsn.cnrs.fr (accessed on 18 November 2022)).
The ESI MS and MALDI MS measurements were performed in negative and positive ion
modes, respectively.

For ESI MS measurement of the water-soluble degradation products, the residual
phosphate salts in the pellet had to be removed. Specifically, after freeze-drying the
degraded supernatant, the acquired powder was sonicated in 2 mL methanol for 20 min.
Then, the sample is allowed to stand for 1 h before centrifuging 10,000 RCF for 5 min and
took out the supernatant. This liquid was evaporated under a fume hood for 2 nights,
leaving the solid suitable for ESI MS measurement.

4. Conclusions

A novel synthetic approach is presented to produce PLA-ITA polymer conjugate NPs,
serving as a drug delivery system. The NP degradation products in PBS at pH 7.4 were
monitored by 1H and 13C NMR spectroscopy to analyze the nature of the species released in
the solution. Using two-dimensional correlation experiments (COSY, HSQC, and HMBC), a
series of small soluble oligomers were identified and quantified. The primary water-soluble
degradation products were found to correspond to seven molecules based on ITA and LA,
including the monomers LA and ITA, the dimer (LA)2, and the mixed coupled molecules
LA-ITA, ITA-LA, (LA)2-ITA, and ITA-(LA)2. ESI(-) mass spectrometry also detected mixed
ITA-LA derivatives. Moreover, MALDI-TOF mass spectrometry was employed to charac-
terize the insoluble degraded polymer residues, revealing the fragmentation of the initial
NPs into smaller ones. Quantitative analysis showed that the degradation process is slow
and that drug release remains limited. TEM images revealed conservation of particle size
during degradation, which is relatively consistent with a bulk erosion mechanism and
limited species release.

In the subsequent studies, to improve the drug delivery efficiency of this polymer-ITA
conjugate NPs, it appears necessary to employ polymers that degrade faster than D,L-PLA.
For example, one could explore a copolymer of lactic acid and glycolic acid PLGA with a
low ratio of lactic acid to glycolic acid or tune the crystallinity and molar mass of PLA.
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