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Abstract: Here we developed KARAJ, a fast and flexible Linux command-line tool to automate
the end-to-end process of querying and downloading a wide range of genomic and transcriptomic
sequence data types. The input to KARAJ is a list of PMCIDs or publication URLs or various
types of accession numbers to automate four tasks as follows; firstly, it provides a summary list of
accessible datasets generated by or used in these scientific articles, enabling users to select appropriate
datasets; secondly, KARAJ calculates the size of files that users want to download and confirms the
availability of adequate space on the local disk; thirdly, it generates a metadata table containing
sample information and the experimental design of the corresponding study; and lastly, it enables
users to download supplementary data tables attached to publications. Further, KARAJ provides
a parallel downloading framework powered by Aspera connect which reduces the downloading
time significantly.

Keywords: biological data; Genomics; transcriptomics; Download; Bioinformatics; sequence data;
FASTQ; Linux

1. Introduction

Nowadays, with the advent of new biomedical technologies, the growth rate of
genomic and transcriptomic data has been unprecedented (~40 billion gigabytes of new
data every year) [1]. This has allowed researchers to access invaluable data sources for
performing computational and statistical analyses to develop a list of testable hypotheses
focused on decoding the information of genetic materials [2,3]. This process via identifying
a list of genetic patterns and molecular signatures, can lead to a better understanding
of molecular mechanisms underlying biological processes with the goals of improving
human health, developing preventive measures, and curing complex diseases [2,3]. A
primary bottleneck in achieving this aim is the lack of quick and convenient access to
genomic/transcriptomic data, particularly those that are highly relevant to the desired
research question. These data are commonly stored in FASTQ, FASTA, BAM, SAM, GFF,
GTF, and VCF file formats, referred to as sequence data [4–8]. Multiple databases including
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Sequence Read Archive (SRA) [9], Gene Expression Omnibus (GEO) [10,11], European
Molecular Biology Lab-European Bioinformatics Institute European Nucleotide Archive
(EMBL-EBI ENA) [12], DNA Data Bank of Japan Gene Expression Archive (DDBJ GEA) [13],
and Encyclopedia of DNA Elements (ENCODE) database [14,15] support storage and access
to sequence data through a unique accession number to each study and experiment.

The architecture of data storage systems in the aforementioned databases and the
connection between these databases have been reviewed by Gálvez-Merchán, et al. in
more detail [16]. Although existing tools such as ffq [16], SRA Toolkit [9], Pysradb [17], SRA-
explorer [18] and nf-core/fetchngs [19] facilitate access to genomic/transcriptomic sequence
data, there are practical limitations that need to be addressed either manually or with extra
in-house scripting. This makes the process of querying and downloading these data time
consuming and technically challenging.

The first challenge is finding accession numbers; researchers need to manually check
several research articles individually to find the accession numbers of genomic/transcriptomic
data relevant to their research questions, a time-consuming and tedious task. Currently,
there are tools to ease this step [9,11,17,20–24], but they are not automated and powerful
enough, and still there are some steps (going through the text of multiple papers and
searching for sequence data IDs) that need to be performed manually. The limitations of
these tools have been reviewed elsewhere [25].

The second challenge is that these files are customarily extremely large, causing a
significant impediment before beginning the desired analysis. There are options available
for rapid downloading of sequence data. The most efficient available option to download
sequence data is IBM Aspera connect (Aspera) which uses parallel transferring to accelerate
the downloading process [26]. Our in-house experiment with downloading ten FASTQ files
obtained from GSE126379 [27] indicates that Aspera is 3.2, 3.1 and 5.0 times faster than wget,
curl, fastq-dump, respectively. Downloading via Aspera protocol requires a specific type of
URL, which consists of a public key authentication and a resource path of corresponding
data to a network-optimized data transfer protocol (FASP—Fast Adaptive and Secure
Protocol). The ffq tool acquires the download link for these files using accession numbers;
however, it does not generate the Aspera download link [16]. SRA-explorer retrieves the
download links for both the transfer protocols FTP and Aspera, but it must be downloaded
manually from its webpage, followed by in-house scripting to execute the downloading
process [18]. SRA Toolkit [9] also retrieves FTP protocol links via SRA accession numbers;
however, its downloader fastq-dump is not an efficient option compared to Aspera as it is
less stable and also slower (showed by our in-house experiment). The Pysradb tool [17] is
another available option that retrieves Aspera protocol download links for different types of
accession numbers. However, it does not support all types of accession numbers including
BioProject database identifier (PRJNA) accession number type.

The third challenge arises when a user needs to analyze many files in the local system,
which is usually limited in memory capacity. Because the amount of space needed to
store these files is unknown and there is no straightforward way to determine this and
the memory storage needed on the local drive, users are not able to acknowledge space
allocation. Therefore, it is a common experience for researchers to attempt to download all
files of interest and then encounter insufficient local storage space, resulting in the killing
of the process and requiring the whole process to be redone. None of the above-mentioned
tools offer any solution for this issue.

Lastly, to the best of our knowledge, there is no currently available tool for retrieving
processed data of studies published as supplementary tables attached to scientific articles.
Commonly, these supplementary data tables can be crucial for downstream analyses of
sequence data.

In summary, with the exponential growth rate of new genomic datasets, current
pipelines need to be improved by being end-to-end automated. To address this unmet
need, we developed a flexible and user-friendly command-line tool KARAJ to automate and
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streamline querying and downloading sequence data. This automation makes performing
genomic data analyses more efficient.

2. Description

KARAJ provides an end-to-end automated platform for querying and downloading
a wide range of biological data types. KARAJ: (i) provides a summary list of accessible
datasets generated by, or used in, scientific articles and enables the user to select datasets
they want to download; (ii) calculates the size of the selected datasets and confirms avail-
ability of adequate local storage space; (iii) generates a metadata table containing sample
information and experimental design of the corresponding study; (iv) enables users to
download supplementary data tables attached to publications; and (v) supports PRJNA ID
to fetch genomic and transcriptomic data (Figure 1).
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Figure 1. The architecture of KARAJ. Input and output file formats are shown by green and red
boxes, respectively. The blue box represents the processing steps provided by KARAJ. The input
to KARAJ is a list of either PubMed Central PMCIDs or URLs for articles. KARAJ then mines the
text of corresponding articles for the accession numbers (Extracted list). Then, KARAJ generates a
report summary of these accession numbers containing the information including number of samples,
description, experimental design, and the sequencing technology. This report summary gives the
user the opportunity to choose accession numbers that are of interest (Selected list). KARAJ fetches
the header for data linked to these accession numbers and calculates the size of these data and checks
with the local drive to ensure the availability of adequate space. When adequate local storage space
exists, KARAJ downloads all files using a parallel framework powered by the Aspera protocol. KARAJ
also accepts list of accession numbers as an input to retrieve sequence data. Image created with
BioRender.com under the NX24GYLITA agreement number.

KARAJ takes advantage of the Lynx package [28] to mine the text of research articles for
accession numbers and Supplementary Materials. For mining purposes, KARAJ supports
both PubMed Central unique reference number (PMCID) and publication URL. KARAJ
utilizes ffq [16] to retrieve the download links for various types of accession numbers for
databases including SRA, GEO, DDBJ, ENA, and ENCODE. Using Entrez Direct [21], KARAJ
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converts PRJNA ID to SRP ID and then fetches the download link using ffq [16] through
SRP ID for the corresponding PRJNA ID. KARAJ downloads selected accession numbers
and Supplementary Materials by the user through Aspera [26] and axel [29] packages, which
are known for rapid downloading (Figure 1). Lastly, KARAJ provides a parallel framework
for running these packages which speeds up the downloading process by at least two times
and up to the number of local system cores. We evaluated the KARAJ parallel framework
for Aspera, and it reduced the downloading time of GSE126379 sequence data by 3.6-fold
using 8 cores compared to Aspera alone.

3. Installation

KARAJ is implemented in bash as two shell scripts, Installer and KARAJ tool. The
Installer script checks the availability of seven packages required for executing KARAJ,
which are ffq [16], pysradb [17], Lynx [28], IBM Aspera connect [26], axel [29], wget [30]
and Entrez Direct [21] and installs these dependencies if needed. KARAJ is flexible in using
the number of cores on the local system, by a default setting, it automatically recognizes the
number of available cores on the local system and uses n-1 number of cores for execution.
The user can override this by including the appropriate command line option. The KARAJ
tool and its related instructions are provided at https://github.com/GTP-programmers/
KARAJ (accessed on 18 November 2022).

4. Tutorial

Below is a list of operations that are supported by KARAJ. A summary of options and
common errors is provided in Supplementary Tables S1 and S2.

$ ./KARAJ.sh -l URL1 URL2 URL3
The URL(s) of the article(s) that the user is willing to mine for accession numbers is

(are) given with the -l option. More than one URL can be specified by separating each URL
using a space. The URL(s) must be for the full text version of the research article(s). There
is no limit to the number of URLs.

$ ./KARAJ.sh -p PMCID1 PMCID2 PMCID3
The option -p corresponds to PMCID(s) of article(s). Specifying more than one PMCID

is possible by separating each PMCID using a space. Users can specify as many PMCIDs as
they wish.

$ ./KARAJ.sh -i accession1 accession2 accession3
The option -i corresponds to accession number(s). Using this option, the user can

download sequence data linked to that accession number. Multiple accession numbers can
be passed to this option. Karaj supports a wide range of types of accession numbers. Given
that KARAJ is powered by ffq [16], it supports PRJNA, SRP, ERP, GSE, SRR, SRA, SRX, SRS,
ERX, ERS, ERP, DRR, DRS, DRX, DRP, GSM, ENCSR, ENCSB, ENCSD, CXR and SAMN.

$ ./KARAJ.sh -f [1/2/3]
The list of URLs, PMCIDs or accession numbers can be passed to KARAJ as a file

with the option -f. The value 1 corresponds to a file named “PMCIDS.txt” in the working
directory containing a list of URLs for several articles. The value 2 corresponds to a
file named “ACCESSIONS.txt” in the working directory containing a list of accession
numbers. The value 3 corresponds to a file named “URLS.txt” in the working directory
containing a list of URLs for several articles. Each line in “PMCIDS.txt”, “URLS.txt” and
“ACCESSIONS.txt” must contain only one entity.

$ ./KARAJ.sh -t [bam/vcf/fasta/fastq]
With the -t option, the user can filter the selected accession numbers for those with

specific file formats (bam, vcf, fasta or fastq). By default, KARAJ downloads all datasets
corresponding to the passed accession numbers. This option must be used along with
one of the options -p, -l or -f.

$ ./KARAJ.sh -o /directory/output
The directory to save downloaded datasets can be specified using the -o option. By

default, the current working directory is designated to save downloaded datasets.

https://github.com/GTP-programmers/KARAJ
https://github.com/GTP-programmers/KARAJ
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$ ./KARAJ.sh -s [0/1]
The Supplementary Data attached to the articles can be obtained using the -s option.

By passing 1, only supplementary tables will be downloaded. The value 0 for this option
ignores downloading supplementary tables. This option must be used along with one of
the options -p, -l or -f.

$ ./KARAJ.sh -u
This option prints the usage instruction and examples.
$ ./KARAJ.sh -m [0/1]
Using this option, the metadata of selected accession numbers can be retrieved. By

passing 1, only (not any other data linked to the corresponding accession numbers) the
metadata table will be downloaded. The value 0 for this option ignores downloading
metadata tables. This option must be used along with one of the options -p, -l or -f.

$ ./KARAJ.sh -n [0/1]
Using this option, the processed data of selected accession numbers can be retrieved.

By passing 1, only the processed data will be downloaded. The default value is 0, which
ignores downloading processed data. This option must be used along with one of the
options -p, -l or -f.

$ ./KARAJ.sh -h
This option prints the list of all available options of KARAJ tool.

5. Usage Examples

The practical application of KARAJ in automation and streamlining the process of
querying and downloading various types of sequence data files has been assessed using
the following case studies.

5.1. Scenario 1

We evaluated the performance of KARAJ in rapid downloading transcriptomic se-
quence data through accession numbers published by multiple number of articles [27,31–34].
KARAJ saves these files in separate directories named by the accession numbers for ease of
performing downstream analyses. KARAJ also generates a summary table named info.txt
containing PubMed URL, Title, Abstract, accession numbers used/published and PMID
for article(s) corresponding to PMCID(s)/URL(s) of articles passed to KARAJ.

Command for downloading sequence data of one accession number:
$ ./KARAJ.sh -i GSE126379
Command for downloading sequence data of multiple accession numbers:
$ ./KARAJ.sh -i GSE126379 GSE92521 PRJNA427709 SRR10668798 GSE115469
Command for downloading sequence data of a list of accession numbers:
First, make a file in the working directory entitled “ACCESSIONS.txt” containing the

list of accession numbers. Then, run the following command.
$ ./KARAJ.sh -f 1

5.2. Scenario 2

Using KARAJ, we mined the text of several scientific articles [27,34–43] for accession
numbers using PMCID of these articles. KARAJ saves downloaded files in separate directo-
ries named by the accession numbers for ease of performing downstream analyses. Passing
value 0 to the option -s, halts downloading supplementary tables attached to the article(s)
corresponding to the passed PMCID(s).

Command for mining the text of an article for accession numbers and downloading se-
quence data corresponding to them—using PMCID of the article (see Supplementary Figure S1):

$ ./KARAJ.sh -p PMC6492329 -s 0
Command for mining the text of multiple articles for accession numbers and download-

ing the sequence data corresponding to them—using PMCID of the articles
(see Supplementary Figure S2):
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$ ./KARAJ.sh -p PMC7182534 PMC6492329 PMC8000127 PMC6957475 PMC8455923
PMC8844275 PMC8426200 PMC7789210 -s 0

Command for mining a list of articles for accession numbers and downloading the
sequence data corresponding to them—using PMCID of the articles:

First, make a file in the working directory entitled “PMCIDS.txt” containing the list of
article PMCIDs. Then, run the following command.

$ ./KARAJ.sh -f 2 -s 0

5.3. Scenario 3

Using KARAJ, we mined the text of several scientific articles [27,35–37] for accession
numbers using URL of these articles. KARAJ saves downloaded files in separate directories
named by the accession numbers for ease of performing downstream analyses. Passing
value 0 to the option -s, halts downloading supplementary tables attached to the article(s)
respective to the passed URL(s).

Command for mining the text of an article for accession numbers and downloading
sequence data corresponding to them—using URL of the article:

$ ./KARAJ.sh -l https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492329/ (ac-
cessed on 12 August 2022) -s 0

Command for mining the text of multiple articles for accession numbers and down-
loading the sequence data corresponding to them—using URL of the articles:

$ ./KARAJ.sh -l https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492329/ (ac-
cessed on 12 August 2022) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182534/
(accessed on 12 August 2022) -s 0

Command for mining the text of a list of articles for accession numbers and download-
ing the sequence data corresponding to them—using the article URLs: First, make a file in
the working directory entitled “URLS.txt” containing the list of article URLs. Then, run the
following command.

$ ./KARAJ.sh -f 3 -s 0

5.4. Scenario 4

We here show a practical example of using KARAJ in retrieving the supplementary
tables attached to several articles [27,34,35,37–42] using the PMCID and URL of these
articles. KARAJ saves retrieved the supplementary tables in separate directories named by
the PMCID.

Command for downloading supplementary tables using article URL:
$ ./KARAJ_V1.sh -l https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492329/ (ac-

cessed on 12 August 2022) -s 1
Command for downloading supplementary tables using article PMCID

(see Supplementary Figure S3):
$ ./KARAJ.sh -p PMC6492329 -s 1
Command for downloading supplementary tables of multiple articles using PMCID:
$ ./KARAJ.sh -p PMC7182534 PMC6492329 PMC8000127 PMC6957475 PMC8455923

PMC8844275 PMC8426200 PMC7789210 -s 1
Command for downloading supplementary tables of a list of articles using PMCID:
First, make a text file in the working directory entitled “PMCIDS.txt” containing the

list of article PMCIDs. Then, run the following command.
$ ./KARAJ.sh -f 2 -s 1
Command for downloading supplementary tables of a list of articles using article URL:
First, make a file in the working directory entitled “URLS.txt” containing the list of

article URLs. Then, run the following command.
$ ./KARAJ.sh -f 3 -s 1

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492329/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492329/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182534/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492329/
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5.5. Scenario 5

We evaluated the performance of the memory check module of KARAJ using data
generated by MacParland, et al. [36]. Since the size of this sequence data (277 GB) is larger
than the free space available in the local disk (7.6 GB), KARAJ halts the downloading
process and prints an error of memory size limitation (see Supplementary Figure S4).

$ ./KARAJ.sh -p PMC6197289 -s 0

5.6. Scenario 6

Here, we retrieved the metadata table for sequence data of the GSE126379 accession
number. KARAJ saves metadata tables in separate directories named by the respective
accession numbers.

$ ./KARAJ.sh -i GSE126379 -s 0 -m 1

6. Conclusions

KARAJ provides a much-needed user-friendly framework to automate and streamline
genomic and transcriptomic sequence data downloads. KARAJ allows users to automat-
ically search for accession numbers in a list of research articles and rapidly download
sequence data corresponding to these accession numbers. In addition, KARAJ allows
users to retrieve processed data published as supplementary tables attached to research
articles automatically. KARAJ reduces the querying and downloading time greatly due to
its parallel downloading framework powered by Aspera, which speeds up the process of
analyzing raw genomic data as well as downstream analyses. In addition, these superior
features allow the computational resources allocated to bioinformatics laboratories to be
used more efficiently.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms232214418/s1.
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