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Abstract: Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gas-
trointestinal system. Omega-3 (w3) fatty acids are polyunsaturated fatty acids (PUFAs) that are
largely obtained from diet and have been speculated to decrease the inflammatory response that is
involved in IBD; however, the causality of this association has not been established. A two-sample
Mendelian randomization (MR) was used to assess genetic associations between 249 circulating
metabolites measured in the UK Biobank as exposures and IBD as the outcome. The genome-wide
association study summary level data for metabolite measurements and IBD were derived from
large European ancestry cohorts. We observed wj fatty acids as a significant protective association
with IBD, with multiple modes of MR evidence replicated in three IBD summary genetic datasets.
The instrumental variables that were involved in the causal association of wj fatty acids with IBD
highlighted an intronic SNP, rs174564, in FADS?2, a protein engaged in the first step of alpha-linolenic
acid desaturation leading to anti-inflammatory EPA and thence DHA production. A low ratio of
w3 to wg fatty acids was observed to be a causal risk factor, particularly for Crohn’s disease. w3
fatty acid supplementation may provide anti-inflammatory responses that are required to attenuate
inflammation that is involved in IBD.
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1. Introduction

The human metabolome gauges environmental factors and genetic influences that
can be indicative of abnormal biochemical and/or physiological health [1]. While IBD has
been previously thought to only impact the Western world, the occurrence is emerging in
developing countries, possibly due to modern environmental exposures [2]. Approximately
1.4 million Americans are impacted by IBD, which may be the result of environmental
exposures such as diet and smoking status [3]. Identification of environment-metabolite-
disease associations may aid in the discovery of diagnostic biomarkers or therapeutic
targets, including simple dietary interventions for conditions such as inflammatory bowel
disease (IBD), which is a complex gastrointestinal disease that is characterized by immune
dysregulation, microbiota alterations, and intestinal permeability. Metabolomic profiles
have been previously used to discriminate IBD patients from controls. It has also been
shown that the gut microbiome can impact metabolite levels, especially those of individuals
with IBD [3,4]. IBD has a complex pathogenesis with multiple genetically and phenotyp-
ically distinct subtypes, including Crohn’s disease (CD) and ulcerative colitis (UC). The
complexity of IBD pathogenesis also contributes to the multiplicity of possible treatment
options [5]. There are currently four classes of approved drugs with hundreds of molecules
undergoing various phases of the drug discovery process for IBD [6]. It has also been
realized that there are modifiable environmental factors such as diet that can benefit the
treatment and management of IBD [7,8].

Omega-3 (w3) fatty acids are a subtype of polyunsaturated fatty acids (PUFA) which
are fat molecules having more than one unsaturated carbon bond in the backbone of the
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structure. There are three notable forms of w3 fatty acids, alpha-linolenic acid (ALA),
eicosapentaenoic acid (EPA), and docasahexaenoic acid (DHA). Each type of wj3 fatty acid
differs slightly in its chemical structure and source; ALA is obtained mostly from plant oils
while EPA and DHA are obtained primarily from fish/seafood. ALA is not synthesized in
the human body and can only be obtained through diet. However, the body can convert
small amounts of ALA into EPA and then to DHA, in a series of steps catalyzed by the
FADS?2 and FADS1 desaturase enzymes [9]. An extensive literature has investigated the
association of wj3 fatty acids with health benefits [10,11] including a likely reduction of the
inflammatory responses that are seen in individuals with IBD, although the genetics and
causal relationship remain unclear [12,13].

To assess the possible causal associations between wj fatty acids and IBD, we herein
employ Mendelian randomization (MR) [14]. This approach takes advantage of the in-
variant nature of genotypes in individuals which can be used as instruments to assess
whether an exposure (such as a metabolite) mediates the condition. Essentially, we regress
genotypic disease effects on all highly significant metabolite effects that were obtained
from genome-wide association studies. MR is advantageous as there are multiple methods
for adjusting for confounding influences, and hence assessing causal associations, and one
can also assess the direction of effect of the relationship (protective or risk) [15]. A recent
MR study assessed the causal association between wyg fatty acids and IBD [16], concluding
that anti-inflammatory PUFAs downstream of FADST may be protective. Both pro- and
anti-inflammatory mechanisms have been linked with increased levels of various PUFAs;
however, such mechanisms remain challenging to unveil [17,18]. Our study focuses on the
causal relationship between w3 fatty acids and IBD, with implications regarding their effect
on other autoimmune diseases such as rheumatoid arthritis [19,20].

2. Results
2.1. Causal Association between Circulating w3 Fatty Acids and IBD

To evaluate whether wj3 fatty acids are likely to be causally involved in the patho-
genesis of IBD, we identified 31 IBD-associated SNPs in the Sample one IBD-Genetics
Consortium (GC) GWAS (Table S1), 38 SNPs in the Sample two IBD-GC GWAS (Table S2),
and subsequently 43 SNPs in the Sample three IBD-FinnGen GWAS (Table S3) as genetic
instruments. Using the 31 sample one SNPs, which had an average F-statistic of 10, im-
plying strong confidence as instrumental variables overall, it was observed that increased
circulating w3 fatty acids are likely to mediate decreased risk for IBD (IVW OR 0.87; 95%
CI: 0.82-0.92; p = 6.89 x 107°). The p-values for the other MR methods (i.e., MR-Egger,
weighted median, simple mode, and weighted mode), were all significant with p < 10~2 and
with ORs less than 1.0, also consistent with a protective role of wj fatty acids. Replicating
this result for the earlier release of the sample two IBD-GC GWAS weights as genetic
instruments, which had an average F-statistic of 7.4, it was further observed that w3 fatty
acids resulted in a decreased risk for IBD (IVW OR 0.79; 95% CI: 0.75-0.89; p = 7.42 x 107°).
The p-values for the other MR methods (i.e., MR-Egger, weighted median, simple mode,
and weighted mode), were consistently less than 0.01, and the ORs were less than 1.0. In
addition, the independent replication Sample 3 IBD GWAS from FinnGen, for which the
SNPs had an average F-statistic of 6.0, it was also observed that w3 fatty acids resulted in a
decreased risk for IBD (IVW OR 0.86; 95% CI: 0.77-0.96; p = 6.9 X 10_3). The ORs were less
than one across all methods with p-values < 0.01, except for the simple mode MR method.
The slopes representing the causal association of each MR method are shown in Figure 1
for w3 fatty acids in the Sample one and Sample two IBD-GC GWAS datasets.
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Figure 1. (A) Slopes representing the causal association for each MR method for wj fatty acids on the
Sample one IBD GWAS. (B) Slopes representing the causal association for each MR method for w3
fatty acids on the Sample two IBD GWAS. Each point is labeled with the SNP and nearby gene(s).
When removing the SNPs with an F-statistic < 10 in Sample one, the p-values remained
in the range of 107> < p < 10~2 with ORs less than 1.0. By Fisher’s method for combining
p-values from all three samples, all MR modes were significant at p < 0.0001, except for the
simple mode (p < 0.01). Full summary statistics of each MR method are shown in Table 1.
Table 1. MR results for w3 fatty acid IVs on IBD (Samples one, two, and three).
. MR-Egger
MR Method IBD GWAS Number b SE p-Value OR (95% CI)  Cochran’s Q Heterogeneity Intercept
of SNPs Test p-Value
p-Value
Sample one 31 —0.17 0.04 0.0005 085 30.87 0.37 0.37
p : : - (0.78,0.92) - - -
0.79
MR Egger Sample two 38 —0.24 0.06 0.0003 (0.70, 0.89) 42.02 0.23 0.34
0.79
Sample three 43 -0.24 0.08 0.003 0,68, 091) 33.00 0.80 0.09
- 0.85
Sample one 31 —0.16 0.04 14 x 1075 (0.79,0.92)
. . B s 0.80
Weighted median Sample two 38 0.22 0.05 1.6 x 10 (0.72,0.89)
0.83
Sample three 43 —0.19 0.07 0.008 (0.72, 0.95)
Sample one 31 ~0.14 0.03 69 x 1076 087 3176 038
P ' ' : (0.82,0.92) : -
Inverse variance - 0.82
weighted Sample two 38 —0.20 0.04 7.4 x 107° (0.75,0.89) 43.11 0.23
0.86
Sample three 43 —0.15 0.06 0.007 (0.77,0.96) 36.00 0.72
0.73
Sample one 31 —0.31 0.11 0.008 (059, 0.91)
. 0.76
Simple mode Sample two 38 —0.28 0.14 0.05 (0.58,0.99)
Sample three 43 -0.11 0.16 0.5 0-90

(0.66,1.23)
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Table 1. Cont.
. MR-Egger
Number o . Heterogeneit
MR Method IBD GWAS of SNPs b SE p-Value OR (95% CI)  Cochran’s Q Test p-%/alue y Intercept
p-Value
Sample one 31 ~0.15 0.04 0.0002 0-86
p : : : (0.80, 0.92)
i _ _5 0.81
Weighted mode Sample two 38 0.21 0.04 2.7 x 10 (0.74, 0.88)
0.83
Sample three 43 —0.19 0.07 0.007 (0.73,0.94)

Given the heterogeneity of ws fatty acid effect sizes, with one third of the SNPs show-
ing nominal effects in one of the samples in the opposite direction to the overall trend (that
is, with positive effects on disease) we performed multiple sensitivity analyses. However,
neither Cochran’s Q test p-value for the MR-Egger and IVW methods nor the MR-Egger
intercept p-value resulted in p > 0.05, indicating no strong evidence for horizontal pleiotropy
involving the genotypes that were used for either IBD GWAS dataset (Table 1). Similarly,
leave-one-out analysis indicated the same direction of effect of the causal association despite
removal of each genetic instrument for all three IBD GWAS datasets (Figure S1 showing the
result for Sample one IBD GWAS). These results imply that the inferred protective effect
of ws fatty acids for IBD is attributable to multiple variants, not just the major-effect SNP
in FADS2.

2.2. Regulatory Effects of the Genetic Instruments in Blood and Colon

To identify which tissue the effect may be mediated in, we examined the eQTL profiles
for all SNPs used as w3 fatty acid genetic IVs for the IBD GWAS. The regulatory effects
on gene expression, namely eQTLs, were extracted from the GTEx database for sigmoid
colon, transverse colon, and whole blood. There were some instances where a SNP had
multiple corresponding genes, but just nine of the SNPs that did not have an eQTL in any
of the specified tissues. Comparing the effect sizes of the eQTLs between the sigmoid and
transverse colon to whole blood, we observed consistent positive correlation (Figure 2),
implying that the genotypes are likely to have similar influences on wj3 fatty acid abundance
in all three tissues.
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Figure 2. (A) eQTL effect size comparisons between the sigmoid colon vs. whole blood. The color
of the points represent the —logl0(whole blood p-value (eQTL)) and size of the points represent
—log10(sigmoid colon p-value (eQTL)). (B) eQTL effect size comparisons between the transverse
colon vs. whole blood. The color of the points represent the —log10(whole blood p-value (eQTL))
and size of the points represent —logl0(transverse colon p-value (eQTL)). The grey boxes indicate
SNPs that generally have eQTL effects with p > 0.05 in both tissues.
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Notably, the largest eQTL effect sizes were consistently observed for FADS2, which
encodes a fatty acid desaturase, and showed the largest GWAS association with IBD. Since
FADS1 has also been implicated in IBD risk [16], we further contrasted the eQTL effects
of the lead GWAS variant at the FADS1/2 locus, rs174564, on both genes, finding a much
stronger association with FADS2 in blood and terminal ileum, and similar effect sizes but
in opposite directions in the colon (Table 54). Intriguingly, the sign of the regulatory effect
is also reversed in the liver, where FADS1 is more strongly influenced. Other consistently
large associations were observed for DOCK6 and DOCK7 (which are located on different
chromosomes), CATSPER2, INCENP, and ZMIZ2, the latter in the opposite direction with
respect to the effect of the alternate allele on expression. LPL (encoding lipoprotein lipase)
appears to be a blood-specific factor, whereas MAU2, DAGLA (encoding diacylglycerol
lipase alpha), and SIK3 may have opposite signs in the sigmoid and transverse colon. These
results suggest that further investigation of the role of some of these genes in fatty acid
metabolism may illuminate the mechanisms of association with IBD.

2.3. Causal Association of Additional Metabolites for IBD

MR screening of 249 metabolite measures as exposures revealed a total of five addi-
tional metabolite measures that have evidence for a causal association with IBD according
to the primary MR method, IVW. These were concordant at the multiple testing threshold
of 10~ in both the Sample one IBD GWAS and Sample two IBD GWAS datasets as shown
in the volcano plots in Figure 3A,B, respectively.

Association type

® Not significant
® Risk (OR > 1.0 & p—value < 0.0001)
® Protective (OR < 1.0 & p—value < 0.0001)
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Figure 3. (A) IVW method MR results of screening of 249 metabolites as exposures on IBD
(Sample one). (B) IVW method MR results of screening of 249 metabolites as exposures on IBD
(Sample two). Each point represents the causal relationship between a metabolite and the outcome.
Red points indicate that the metabolite is a risk factor for IBD, and blue points indicate that the
metabolite is protective for IBD. The dashed grey line represents the multiple testing p-value threshold
of 1.0 x 1074 (0.05/2 x 249).

The same measures were also the most significant in the FinnGen replication Sample
three, although only at the nominal p < 0.05 level. Of the five metabolite measures, four
were protective (OR < 1.0) and one was a risk factor (OR > 1.0). Notably, the concordant
protective associations all involve w3 fatty acids in some capacity: Docosahexaenoic acid
(DHA, the most unsaturated of the lipids), the ratio of DHA to total fatty acids, and the ratio
of w3 fatty acids to total fatty acids. The risk factor that is concordant with both the IBD
discovery and replication was the ratio of wg fatty acids to ws fatty acids, corroborating the
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protective role of ws fatty acids. One source of DHA is ghee, which has been previously
speculated to aid in the prevention of some diseases [21].

We also considered whether w3 fatty acids interact with genetic risk to influence IBD
prevalence in the UK Biobank. While wj fatty acid, and particularly DHA, levels are
significantly reduced in IBD cases relative to the controls, the difference is similar across
the spectrum of the IBD polygenic risk score (Figure 4). Similarly, we did not observe any
statistical interaction between rs174564 and DHA or wj fatty acids and IBD prevalence,
implying that genetic and dietary influences have additive effects on risk. It is noteworthy
that smoking status, type of bread consumption, and alcohol intake all do strongly interact
with polygenic risk, as does fresh fruit intake, but fish consumption does not [22].
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Figure 4. (A) Density plot comparing IBD case vs. control wj fatty acid levels. (B) Box plot comparing
IBD case vs. control wj fatty acid levels. The number above the boxes represents the Welch's t-test
p-value. (C) The prevalence vs. risk of IBD for high vs. low wj fatty acid levels. (D) Density plot
comparing IBD case vs. control DHA levels. (E) Box plot comparing IBD case vs. control DHA levels.
The number above the boxes represents the Welch'’s t-test p-value. (F) The prevalence vs. risk of IBD
for high vs. low DHA levels. (G) Density plot comparing IBD case vs. control wg fatty acid to w3
fatty acid ratio. (H) Box plot comparing IBD case vs. control wg fatty acid to w3 fatty acid ratio. The
number above the boxes represents the Welch's t-test p-value. (I) The prevalence vs. risk of IBD for
high vs. low wy fatty acid to w3 fatty acid ratio.

3. Discussion

The positive causal association between wj fatty acids and IBD was investigated. From
this, w3 fatty acids were identified as one of the most significant protective associations
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with IBD, with MR evidence in the range of 107° < p < 1072 across all five MR methods
in three IBD GWAS samples. This study enhances the findings in [16] regarding PUFA
involvement by establishing that it is w3 rather than wy fatty acids that are likely to be
protective, and implicating FADS2 over FADS]I as the key enzyme in the small bowel
specifically influencing Crohn’s disease risk. We did not find any evidence of a significant
bidirectional effect of IBD on w3 fatty acids.

Multiple lines of evidence support the robustness of our findings. First, the MR results
are replicated in two versions of the IBD-GC’s large-scale GWAS that produced different
SNP effect weights, and in the independent FinnGen IBD study. Second, five different
implementations of two-sample MR that each filter different SNPs based on certain criteria,
all support the inference that the wj fatty acid-associated genetic instruments jointly exert
protective effects. Third, the leave-one-out approach shows that the result is not driven
solely by the very strong effect of rs174564, since the exclusion of that variant reduces the
significance of the result but does not eliminate it. Also, the core result remains significant
when just the five SNPs with F-statistics greater than 10 are used. Fourth, individuals with
IBD have lower levels of w3 fatty acid levels and DHA levels than that of controls in the
UK BioBank.

The mechanism by which w3 fatty acids protect against IBD remains to be clarified.
They are generally thought to be anti-inflammatory, but some studies also indicate a pro-
inflammatory function, for example in rheumatoid arthritis joints [19]. It is thus important
to experimentally evaluate the effect of PUFAs on diverse immune cell subsets in the context
of tissue residency. Previous studies have shown that w3 fatty acids inhibit cyclooxygenase
(COX), which produce prostaglandin hormones that have pro-inflammatory effects [23].
This also indicates that w3 fatty acid-mediated COX inhibition resembles the mechanism of
action of aspirin [23]. Modification of hormone and cytokine production is also thought to
polarize lymphoid and myeloid subsets, which could have a variety of local and systemic
effects. The major genetic risk factor in African Americans [24] 2 PTGER4, the receptor
for prostaglandin e2, raising the possibility that dietary effects may be strongly mediated
through PUFAs to influence disease in this population.

This study implicates several IBD-associated loci as being involved in fatty acid
metabolism, but the molecular mechanisms remain to be elucidated. Of particular interest
are the pair of guanine nucleotide exchange factor-encoding genes, DOCK6 and DOCK?7,
which are better known for their roles in the regulation of cytokinesis in neurite outgrowth,
skin, and bone development. The genes are unlinked and hence are clearly independent
associations operating in similar directions with respect to w3 fatty acid abundance and
IBD risk. SIK3 encodes a kinase that is implicated in mTOR signaling, and ZMIZ2 is a
transcription factor that enhances androgen receptor signaling, but MAU? is engaged in
sister chromatid cohesion; these may not be the causal genes at the loci. Associations with
multiple lipoproteins also deserve further investigation.

One gene whose role in wj3 fatty acid production is more direct is the one that is
adjacent to the strongest genetic instrument, the intronic SNP, rs174564, in FADS2, a
desaturase protein engaged in the first desaturation step of alpha-linolenic acid metabolism
from C18:3 to C18:4. Decreased FADS?2 expression has been previously linked to the pro-
inflammatory response in IBD [11]. A recent MR study [18] showed that this SNP associates
with risk of rheumatoid arthritis and is mostly responsible for the inferred causal role of w3
fatty acids in promoting that autoimmune condition since it drove those MR results. We
also observed that FADS2 expression is elevated in both the blood and colon in individuals
with the IBD-protective variant, consistent with a key role for that enzyme in both tissue
compartments. Notably, rs174564 was identified as an eQTL for FADS1 as well, although
with different directions of effect in comparison to FADS2 for some tissues. In addition, we
found that the effect allele for rs174564 was attributed with decreased levels of w3 fatty
acid and DHA levels in the UKBB as shown in Figure S3. Further studies are needed to
elucidate the reasons for the inverted effects on IBD and RA, and to establish whether these
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also explain some of the reported negative health effects of taking an excess of wj3 fatty
acid supplements.

Despite the compelling evidence for a causal role of w3 fatty acid in protection against
IBD, our study has several limitations. First, although each of the genetic instruments is
genome-wide significant, and hence robustly associated with w3 fatty acid levels in the
UK Biobank study, it would be desirable to confirm these effects in more diverse cohorts,
particularly with extensive African, Asian, or Hispanic ancestry. Second, although we
see a strong correlation in eQTL effects between blood and colon, the study does not
establish which tissue type is the more important mediator. Since the protection against
ulcerative colitis appears to be much weaker than for Crohn’s disease, a specific colonic role
is implicated, but note that the metabolites were measured circulating in serum. The MR
results for w3 fatty acids and Crohn’s disease were significant prior to genetic instrument
outlier detection via IVW-radial, but not formally significant with outlier detection, and also
not significant for ulcerative colitis as shown in Supplementary Figure S2. Third, although
two-sample Mendelian randomization is a powerful discovery tool, one sample MR would
confirm the findings and allow for direct evaluation of confounders and covariates that
may contribute to pleiotropic influences. The inclusion of w3 fatty acid measurement in
ongoing IBD GWAS would facilitate such studies.

However, these limitations should not detract from the conclusion that dietary supple-
mentation of w3 fatty acids ought to be reconsidered as a therapeutic option. Our results
only directly inform the prevalence of the disease and should not be taken to imply that w3
fatty acid supplementation will be curative. It may, for example, need to be administered
for an extended period, or at a particular age, and likely only benefits a subset of patients.
Clear differences in FADS2 haplotypes across ancestries have been proposed to explain
variable results in clinical trials involving w3 fatty acid supplements [25], and dietary
shifts may feasibly contribute to population differences in the rates of increase in IBD
prevalence [26].

4. Materials and Methods
4.1. Study Design

A two-sample MR was employed to assess the causal associations between geneti-
cally predicted wj3 fatty acid levels as exposures and IBD as the outcome [27]. MR was
performed to evaluate the hypothesis that the selected genetic instruments, which predict
the modifiable exposure wj3 fatty acids, are causally associated with the exposure-related
outcome [28]. Stringent criteria for genetic instrument selection, as described in the Sup-
plemental Materials, were implemented in the open source 2SampleMR package in R [29],
also supplemented with additional controls. The study design is shown in Figure 5 and
includes two releases of the IBD-GC GWAS summary statistics [30,31] and an independent
FinnGen GWAS [32] for IBD associations, as well as metabolome GWAS summary statistics
from the UK Biobank.

We followed the STROBE-MR guidelines for performance and reporting of MR
studies [33,34]. Details on the summary statistics are provided in the Supplementary Methods
online, along with the criteria that was used for genetic instrument selection.

4.2. Statistical Analysis

There were three methods that were performed to assess the potential impact of
pleiotropy involving the selected w3 fatty acid genetic instruments [35]: Cochran’s Q
test [36], MR-Egger intercept test [37], and leave-one-out analysis [38], also explained
in more detail in the Supplement [39]. A total of five MR methods were used to assess
the causal relationship between metabolites and IBD. The IVW method was utilized as
the primary method as it assumes the validity of all genetic instruments, while the other
four (MR-Egger, weighted median, simple mode, and weighted mode) serve as sensitivity
checks [30]. The IVW-radial method was used for outlier detection and removal [40]. These
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ensure that the causal association is replicated across multiple MR methods despite their
differences in SNP selection for generating the regression [41].

Primary MR method: IVW

Exposure trait

on Sensitivity analyses: MR-Egger, weighted
Ho. &_OH ’ median, weighted mode, simple mode
¢ O Heterogeneity tests: Cochran’s Q test, MR-
| E: Egger intercept, leave-one-out
OR o

Instrumental
variables

g 8¢

w, fatty acids

SNPs associated
with exposure trait

————————————’

Outcome trait

Genetic instrument selection criteria

p-value < 5.0 x 108

LD clumping R2 < 0.001 within a 10 Mb interval

Palindromic SNPs w/intermediate allele removed
Proxy SNP with R? > 0.8
IVW-radial method used for outlier removal

Figure 5. Methodology depicting the MR study design for selecting w3 fatty acid genetic instruments
and assessing the causal relationship between circulating w3 fatty acids on IBD.

4.3. Gut vs. Blood eQTL Analysis

To further explore the possible functional impact of the genetic instruments determined
by MR to mediate the causal relationship between w3 fatty acids and IBD, whole blood,
transverse colon, and sigmoid colon eQTL normalized effect sizes and p-values were
extracted from the Genotype-Tissue Expression (GTEx) database for each of the gene-SNP
pairs using the GTEx eQTL calculator [42]. The nearby genes for each SNP were annotated
via ANNOVAR [43] Notably, some of the SNPs had an association with the expression of
multiple genes, in which case every possible pair was included to minimize bias. Whole
blood, gut, and liver eQTL normalized effect sizes were compared to assess the tissue
specificity of the lead FADS1/2 SNP.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/ijms232214380/s1.
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