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Abstract: The SQUAMOSA promoter binding proteins (SBPs) gene family plays important roles
in plant growth and development. The SBP gene family has been identified and reported in many
species, but it has not been well studied in passion fruit. In this study, a total of 14 SBP genes
were identified in passion fruit and named from PeSBP1 to PeSBP14 based on their chromosomal
distribution. The phylogenetic tree, gene structure, conserved motifs, collinearity analysis, and
expression patterns of the identified SBP members were analyzed. We classified the PeSBP genes
into eight groups (I to VIII) according to the phylogenetic tree, gene structure, and conserved motifs.
Synteny analysis found that 5 homologous gene pairs existed in PeSBP genes and 11 orthologous
gene pairs existed between passion fruit and Arabidopsis. Synonymous nucleotide substitution
analysis showed that the PeSBP genes were under strong negative selection. The expression pattern
of PeSBP genes in seed, root, leaf, and flower showed that nine of the PeSBP genes displayed high
expression in the leaf and the flower. The expression patterns of PeSBP3/6/8/9/10 were further
detected by qRT-PCR. In addition, differences in the expression levels occurred for each gene in
the different flower organs and at the different developmental stages. There were large differences
among SBPs based on transcriptional levels under cold, heat, salt, and osmotic stress conditions.
Altogether, this study provides an overview of SBP genes in passion fruit and lays the foundation for
further functional analysis.

Keywords: passion fruit; SBP; synteny; plant growth; stress

1. Introduction

Transcriptional regulation is an important part of eukaryotic gene expression regula-
tion, and transcription factors (TFs) play pivotal roles in plant growth and development
processes [1]. TFs, including DNA binding domains, transcriptional activation domains,
nuclear localization signals, and oligomerization sites [2], function by binding to corre-
sponding gene promoters, thus activating or inhibiting the transcription of target genes [3].
TFs can be divided into different families based on their DNA binding domains [4]. In
plants, 64 TF families have been identified [5].

The SQUAMOSA promoter binding (like) proteins (SBPs/SPLs) gene family is part of
a class of important transcription factor families that regulates the growth and the develop-
ment of green plants under stress. The SBP TFs have a conserved SBP domain containing
about 79 amino acid residues that are highly conserved [6]. The SBP domain includes two
typical zinc-binding sites (Cys-Cys-Cys-His, Zn1 and Cys-Cys-His-Cys, Zn2) and a highly
conserved nuclear localization signal (NLS) at the C-terminal partially overlapping with the
Zn2 zinc finger structural sequence [7]. The SBP protein localizes in the nucleus with the
nuclear localization signal serving as a guide to regulate the transcriptional expression of
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downstream genes [8]. The first SBP gene was discovered in inflorescences of Antirrhinum
majus L. in 1995 [9]. Since then, SBP genes have been found in a variety of plants, such as
Arabidopsis [10], rice [6], soybean [11], grape [8], sorghum [12], Populus [13], pepper [14],
maize [15], and tomato, amongst others [16]. SBP is a unique transcription factor in green
plants which plays a very important role in a series of plant development processes. In
Arabidopsis, the first SBP gene has been identified as ATSPL3, which regulates flowering
under long photoperiod [10,17]. ATSPL8 is a local regulator involved in the regulation of mi-
crosporogenesis and megasporogenesis [18]. TaSPL20 and TaSPL21 were highly expressed
in the panicle of early wheat, and the ectopic expression of TaSPL20 and TaSPL21 in rice
has similar functions in promoting panicle development [19]. Inhibition of the expression
of SlSPL13 in tomato increases the number of inflorescences on vegetative branches and
side branches, reduced the number of flowers and fruits, and reduced fruit size and yield.
SlSPL13 directly binds to the promoter region of the tomato inflorescence-related SFT gene
and positively regulates its expression, thereby controlling the development of inflores-
cence [20]. The high expression of OsSPL14 in the reproductive stage of rice promotes the
increase of panicle branch and thus the yield [21], and OsSPL16 promotes the cell division
of rice and changes the size and shape of grain [22]. NaCl stress can induce the expression
of BpSPL9 in birch roots and leaves, and enhanced expression of BpSPL9 promotes reactive
oxygen scavenging under stress [23]. These studies have shown that SBP genes play an
important role in plant microsporogenesis, flowering, yield, and stress resistance. Therefore,
identifying important genes in the SBP gene family is of great importance for identifying
candidate genes for the genetic improvement of economic species.

Passion fruit (Passiflora edulis Sims) belongs to the Passifloraceae family and the
Malpighiales order with more than 520 species in the world. It is one of the most eco-
nomically important genera in the Passifloraceae family [24,25]. Passion fruit is native to
subtropical regions of North and South America [26]. It is widely cultivated in tropical and
subtropical regions because of its value as an easy-to-manage edible, medicinal, and orna-
mental crop [27]. The genome sequence of passion fruit has been published recently [28,29]
which enables us to study the function and characteristics of passion fruit genes.

SBP genes play a critical role in plant growth and development. However, genome-
wide characterization and functional analysis of SBP transcription factors in passion fruit
have not yet been carried out. In this study, a total of 14 SBP genes were identified in the
passion fruit genome and divided into eight groups. The gene structure, conserved motifs,
synteny analysis, and expression analyses were presented. In addition, the expression
patterns of PeSBP genes in various stress responses were studied. The systematic analysis
provided a foundation for further functional characterization of SBP genes in passion fruit.

2. Results
2.1. Identification and Characterization of SBP Genes in Passion Fruit

To identify PeSBP genes in passion fruit, HMMER software and CDD online tools were
used. A total of 14 SBP gene sequences were identified and named from PeSBP1 to PeSBP14
according to the location of the genes on the chromosomes (Supplementary Materials Table
S1). Sequence alignment was performed with 14 SBP proteins in passion fruit to predict the
SBP domain. The results showed that all PeSBP proteins had typical characteristics of the
SBP domain, including two zinc domains (Zn1 and Zn2) and a nuclear localization signal
(NLS) (Figure 1). With CDS ranging from 552 to 2943 bp, the full length of the 14 PeSBP
proteins varied from 183 (PeSBP2) to 981 (PeSBP7) amino acid residues, with the molecular
mass ranging from 20.57 (PeSBP4) to 108.28 (PeSBP5) kDa and isoelectric points ranging
from 5.93 (PeSBP5) to 9.64 (PeSBP4). The total average hydrophilicity (GRAVY) values
were all negative, indicating that all PeSBPs are hydrophilic. The subcellular localization
results showed that thirteen of the fourteen PeSBP proteins were located in the nucleus
(Supplementary Materials Table S1), while the PeSBP12 was located in the chloroplast.
That may be because the nuclear localization sequence of chloroplast localization proteins
will be removed after the protein enters the chloroplast. So, the protein will not move
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to the nucleus from the chloroplast. Furthermore, we identified the orthologous gene of
PeSBPs in Arabidopsis. The orthologous gene and the function in Arabidopsis are shown in
Supplementary Materials Table S1.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 17 
 

 

with the molecular mass ranging from 20.57 (PeSBP4) to 108.28 (PeSBP5) kDa and isoelec-
tric points ranging from 5.93 (PeSBP5) to 9.64 (PeSBP4). The total average hydrophilicity 
(GRAVY) values were all negative, indicating that all PeSBPs are hydrophilic. The subcel-
lular localization results showed that thirteen of the fourteen PeSBP proteins were located 
in the nucleus (Supplementary Materials Table S1), while the PeSBP12 was located in the 
chloroplast. That may be because the nuclear localization sequence of chloroplast locali-
zation proteins will be removed after the protein enters the chloroplast. So, the protein 
will not move to the nucleus from the chloroplast. Furthermore, we identified the orthol-
ogous gene of PeSBPs in Arabidopsis. The orthologous gene and the function in Arabidopsis 
are shown in Supplementary Materials Table S1. 

 
Figure 1. Multiple sequence alignment of SBP domains of PeSBP proteins. The darkblue, purple, 
and lightblue backgrounds indicate entire conservative residues, 75% conservative residues, and 
50% conservative residues respectively. 

2.2. Phylogenetic Analysis of Passion Fruit SBP Gene Family 
To analyze the phylogeny of the SBP gene family, a total of 301 SBP homologs were 

selected from 18 representative plants from seven green plant families. Among these 
plants, the soybean had the maximum number of SBP genes, with 46 members. However, 
only one SBP gene in group I was found in Ostrecocus lucimarinus and Ostrecocus sp. rcc809 
(Figure 2). To further understand the phylogenetic relationship of the PeSBP gene family, 
a phylogenetic tree was constructed using SBP proteins of passion fruit, Arabidopsis, grape, 
sorghum, and rice. Among them, passion fruit, Arabidopsis, and grape belong to eudicots, 
while sorghum and rice belong to monocots. According to the unrooted phylogenetic tree, 
14 PeSBPs could be divided into 8 groups (I to VIII). Four PeSBPs belonged to group II, 
while none belonged to group III. There was only one member of PeSBP in groups I, V, 
and VIII. The homology between the PeSBPs gene and the VvSBPs was relatively high, 
and the similarity between their protein sequences indicates that the SBP gene of these 
two species may have similar biological functions (Figure 3). 

Figure 1. Multiple sequence alignment of SBP domains of PeSBP proteins. The darkblue, purple, and
lightblue backgrounds indicate entire conservative residues, 75% conservative residues, and 50%
conservative residues respectively.

2.2. Phylogenetic Analysis of Passion Fruit SBP Gene Family

To analyze the phylogeny of the SBP gene family, a total of 301 SBP homologs were
selected from 18 representative plants from seven green plant families. Among these plants,
the soybean had the maximum number of SBP genes, with 46 members. However, only
one SBP gene in group I was found in Ostrecocus lucimarinus and Ostrecocus sp. rcc809
(Figure 2). To further understand the phylogenetic relationship of the PeSBP gene family, a
phylogenetic tree was constructed using SBP proteins of passion fruit, Arabidopsis, grape,
sorghum, and rice. Among them, passion fruit, Arabidopsis, and grape belong to eudicots,
while sorghum and rice belong to monocots. According to the unrooted phylogenetic tree,
14 PeSBPs could be divided into 8 groups (I to VIII). Four PeSBPs belonged to group II,
while none belonged to group III. There was only one member of PeSBP in groups I, V, and
VIII. The homology between the PeSBPs gene and the VvSBPs was relatively high, and the
similarity between their protein sequences indicates that the SBP gene of these two species
may have similar biological functions (Figure 3).
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2.3. Gene Structure and Conserved Motif Analysis of SBP Genes in Passion Fruit

The structure of each gene, especially the number and distribution of exon and intron,
may be closely related to evolution. To better understand the diversity of PeSBP gene
structure, the coding sequence of each gene was compared with its corresponding genomic
sequence. The number of exons varied from 2 to 12. The number of introns in group II was
the maximum, while all PeSBP genes in group VI only contained 1 intron, which was the
lowest number. Group VII contained two to five introns, and group V contained 4 introns
(Figure 4). In group II, PeSBP5, PeSBP7, PeSBP 11, and PeSBP14 in the evolutionary tree
may have been cleaved and polymerized during the evolutionary process. The results
showed that the number of exons and introns was highly variable in different groups, while
the number of exons was nearly consistent in the same group.

The number and types of conserved motifs contained in each protein sequence are
different, which may reveal the different functions of each gene. A total of 10 motifs
were identified in the PeSBP proteins and named motifs 1 to 10 (Supplementary Materials
Figure S1). The results showed that all SBP members contained Motif 1 and Motif 2,
suggesting that Motif 1 and Motif 2 constituted the conserved SBP domain (Supplementary
Materials Table S2). PeSBP members in group II contained the maximum number of
conservative motifs. PeSBP proteins clustered in the same group tended to have similar
motif numbers. In contrast, some motifs were specific in some groups of PeSBP proteins—
Motif 8, Motif 10, Motif 6, Motif 5, Motif 9, and Motif 7 were only found in group II, and
Motif 4 was only found in PeSBP10, suggesting that some proteins may have specific
biological functions under specific conditions (Figure 5). The majority within the same
group exhibited similarity in motif compositions. Besides, the exon–intron structure of
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SBP proteins supported the phylogenetic analysis of SBP family genes, and the differences
among the different groups indicate their diverse functions.
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2.4. Synteny Analysis of PeSBP Genes

The distribution analysis of PeSBP genes on the chromosomes indicated that 13 PeSBP
genes map to seven chromosomes, except LG2 and LG8, while PeSBP14 was located on
P_eduliaContig 140022932.g. Since the passion fruit chromosome assembly and anchoring
rate was only 96.07%, the PeSBP14 (P_ eduliaContig140022932.g) was not anchored to
any chromosome but was assembled to Contig14. Among them, LG1 had the maximum
number of PeSBP genes, including 5 PeSBP members. LG4 and LG5 chromosomes contain
2 PeSBP genes. The remaining four chromosomes had only 1 PeSBP gene (Figure 6).
MCScanX software was used to analyze the collinearity of SBP genes between passion fruit
and Arabidopsis. The blue line represents the collinearity of SBP genes between passion
fruit and Arabidopsis, and the red line represents the synteny gene pairs of SBP genes
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between different chromosomes of passion fruit. A total of 16 pairs of collinear genes
were identified, including 5 pairs of collinear genes within passion fruit and 11 pairs of
synteny gene pairs between passion fruit and Arabidopsis. It can also be seen from the
chromosome distribution diagram that there is still a collinearity relationship between
PeSBP14 and other genes on chromosomes. However, PeSBP14 was located on the contig
rather than the chromosome (Figure 6). It indicated that segmental duplication events
might play a more important role in the evolution of the passion fruit SBP gene family.
To further understand the evolutionary relationship of the SBP genes, we calculated Ka
and Ks values to predict selection pressure for synteny gene pairs. Ka/Ks = 1 indicates
neutral selection for homologous genes, Ka/Ks > 1 indicates that these genes evolved under
positive selection, and Ka/Ks < 1 indicates that these genes had purification selection [30].
The results showed that the Ka/Ks values of all the SBP homogenous gene pairs within
passion fruit and between passion fruit and Arabidopsis were less than 1, indicating that
they may play a role in purification selection in the evolutionary process (Supplementary
Materials Table S3).
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2.5. Expression Profiles of PeSBP Genes in Different Tissues

Recent studies in various species have indicated that the SBP gene plays an important
regulatory role in processes associated with plant flowering and inflorescence develop-
ment [31]. To investigate the tissue-specific expression pattern of PeSBP genes in passion
fruit flower development, we analyzed RNA-sequencing data from NGCB to determine
the tissue-specific expression patterns of different passion fruit flower tissues (including
the mixed flower, bract, sepal, petal, corona filament, stamen, stigma, and ovule at different
development processes) and vegetative tissues (including the seed, root, and leaf).

According to their expression patterns, we found that the PeSBP genes showed a
tissue-specific expression pattern. For instance, PeSBP13 had high expression during pollen
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development, while PeSBP9 had specifically high expression in the stigma, and PeSBP4
had increased expression in the sepal and early stigma stages (Figure 7A, Supplementary
Materials Table S4). The expression level of PeSBP6, PeSBP8, and PeSBP13 genes were
higher in flowers and leaves but lower in seeds and roots (Figure 7B, Supplementary
Materials Table S4), suggesting that these three genes may play an important role in passion
fruit flower and leaf development. The expression levels of PeSBP7, PeSBP10, PeSBP11,
and PeSBP12 were high in all tissues, indicating that they might be involved in various
physiological processes of passion fruit flower development. Strangely, the expression
levels of PeSBP3 in all tissues were significantly lower than in other genes. These results
suggest that diverse PeSBPs might be involved in the different floral tissues of passion fruit.
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cis-elements were found in PeSBPs promoter regions, including stress responsiveness, 
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The distribution of cis-elements in PeSBP genes is different, indicating that the expression 
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plementary Materials Table S5). These results indicated that various types of cis-element 
in the same type of PeSBP genes might have different functions. ABRE is involved in 

Figure 7. The expression pattern and qRT-PCR results of SBP genes in passion fruit. (A) Expression
patterns of SBP genes in different tissues and different development stages based on the transcriptome
data. br, bract; se, sepal; pe, petal; ca, corona filament; st, stamen; sg, stigma; and ov, ovule. The
number represents different stages: 1 and 2 represent early stage, while 7 and 8 represent late stage.
(B) Expression patterns of SBP genes in different tissues in the seed, root, leaf, and flower. The
red color bar indicates high expression patterns, and the blue color bar indicates low expression.
(C) Validation of 5 randomly selected PeSBP genes by qRT-PCR. The yellow line indicates the
expression trend in four tissues.

Furthermore, to validate the expression patterns of the PeSBP genes in the root, leaf,
seed, and flower tissues, five PeSBP genes (PeSBP3, PeSBP6, PeSBP8, PeSBP9, and PeSBP10)
were randomly selected to test their expression level in these four tissues by qRT-PCR. The
qRT-PCR results were consistent with our RNA-sequencing results (Figure 7C), suggesting
that all the PeSBP gene expression patterns in different tissues are reliable.
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2.6. In Silico Promoter Analysis and Expression Profiles of PeSBP Genes in Response to
Abiotic Stresses

To explore the mechanisms of PeSBPs in response to various stresses, we analyzed
cis-elements of PeSBPs promoters. Two kb upstream genomic DNA sequences with tran-
scriptional start site (ATG) from 14 PeSBP genes were analyzed. Four different classes of
cis-elements were found in PeSBPs promoter regions, including stress responsiveness, light
responsiveness, growth and development, and hormone responsiveness (Figure 8). The dis-
tribution of cis-elements in PeSBP genes is different, indicating that the expression of PeSBPs
may vary in stressful, developmental, and hormonal contexts. Most PeSBP genes contained
regulatory elements ABRE, ERE, CGTCA-motif, MBS, and W-box (Supplementary Materi-
als Table S5). These results indicated that various types of cis-element in the same type of
PeSBP genes might have different functions. ABRE is involved in abscisic acid responsive-
ness [32], while CGTCA-motif is involved in MeJA-responsiveness, and MBS (MYB binding
site) is involved in drought inducibility. W-box is an important class of cis-element found in
the promoter of plant defence response-related genes [33]. Gene ontology (GO) enrichment
analysis of the PeSBPs was performed to understand their possible functions at the molecu-
lar level, i.e., molecular function (MF), biological process (BP), cellular component (CC).
In MF class, PeSBPs enrichment in DNA binding, transcription regulator activity, nucleic
acid binding, and so on (Supplementary Materials Figure S2). Five terms were identified as
belonging to the CC class (Supplementary Materials Figure S2). Most promoters of PeSBPs
genes were significantly enriched in the binding sites of transcription factors involved in
the BP class in terms of regulation of nucleic acid-templated transcription, regulation of
DNA-templated transcription, and regulation of gene expression (Supplementary Materials
Figure S2). The information regarding the enrichment annotation results of GO terms for
MF, CC, and BP is provided in Supplementary Materials Table S6. These results show that
SBP gene family members may play an important role in different regulations.
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To further confirm whether different abiotic stresses influence the expression of PeSBP
genes, qRT-PCR experiments were performed to analyze the SBP gene expression patterns
in response to different treatments, including cold, heat, and osmotic stress. As shown
in Figure 9, seven SBP genes were selected for transcription-level detection. Under cold
treatment, five genes (PeSBP6/7/8/9/10) had similar expression patterns that initially de-
creased and subsequently increased during the course of the treatment, while the relative
expression level PeSBP3/12 first increased and then decreased with the treatment time.
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During the heat treatment, three genes (PeSBP3/6/8) showed a continuous decrease with
the treatment time, and the other four genes (PeSBP7/9/10/12) first decreased and then
increased their expression with the treatment time.
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The cis-elements in promoter regions are essential for regulating the gene expression
of different stress response pathways. As shown above, we found some low-temperature
responsiveness elements (LTR) in the promoter of PeSBP6, PeSBP7, and PeSBP8 (Figure 8).
Additionally, the qRT-PCR results showed that the LTR regulates the expression of PeSBP6,
PeSBP7, and PeSBP8 in response to temperature stress. Similarly, the MYB binding site
involved in drought-inducibility was found in the PeSBP3/8/10/12 promoter region. After
osmotic stress, the transcription of PeSBP8/12 continuously decreased with the treatment
time, while the expression of PeSBP3/10 first showed an increase and then decreased with
the treatment time. It indicates that the MBS is important as it participates in regulating
the expression of PeSBP3/8/10/12 response to osmotic stress. After salt treatment, the
expression level of PeSBP8/9/10 increased gradually, while the expression of PeSBP6/7/12
was repressed, and the expression of PeSBP3 increased within 24 h and then decreased 48 h
after treatment. Altogether, different SBP genes display differential expression patterns after
stress treatment, indicating that these genes might function in response to abiotic stresses.

3. Discussion

The SBP gene family is a plant-specific transcription factor family widely found in
green plants, and it plays a crucial role in plant growth and development, physiological
and biochemical activities, and environmental response [34]. Passion fruit is a famous
tropical and subtropical crop which has extensive economic value [35]. However, only a
few studies on the SBP gene family in passion fruit exist. In this study, a total of 14 SBP
genes were identified from the passion fruit genome via the bioinformatics method, which
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was similar in number to other eudicot plants, like Arabidopsis thaliana (16), Arabidopsis
lyrata (15), and Vitis vinifera (17), but fewer in number than Glycine max (46) and Populus
trichocarpa (28), suggesting that SBP genes in different eudicot species underwent different
gene duplication events [36]. There was only one SBP gene in Ostrecocus lucimarinus and
Ostrecocus sp. rcc809 in group I, leading us to speculate that the SBP gene of group I might
be their ancestor. We found that the number of SBP genes increased in terrestrial plants, and
gene expansion was intensified strongly in angiosperms, which may reflect the flowering
plants’ effectiveness in adapting to the different unstable environmental conditions [37].
According to phylogenetic tree analysis, the SBP gene family of passion fruit could be
divided into eight groups. This result is consistent with previous SBP gene studies in other
plants [30]. No PeSBP gene belonging to group III was identified. Whether these genes
were lost in the evolution of passion fruit remains to be explored. Most PeSBP genes were
clustered closely with the SBP family genes of grape and Arabidopsis but were far away
from the SBP genes of rice. This finding is consistent with the fact that passion fruit, grape,
and Arabidopsis are eudicot plants. Compared with the lineage that led to the formation of
monocots, it is closer to the divergence in evolution from a common ancestor.

The isoelectric points of PeSBPs were between 5.93–9.64, indicating that most PeSBP
proteins are rich in basic amino acids, and they may play a role in an acidic subcellular
environment. Genes clustered in an evolutionary clade may have similar genetic structures
and functions and often have closer relationships [38]. The gene structure of PeSBPs was
relatively simple, and the number of exons ranged from 2 to 12. Most PeSBP genes in
the same group shared a similar exon–intron structure. The exon –intron structure varied
significantly among different groups, suggesting that the gene structure is closely related to
the function. Motif identification is particularly important to explore new members of the
gene family. Conserved motif analysis results showed that all PeSBP proteins contained
motif 1 and motif 2, suggesting that motif 1 and motif 2 constitute the SBP domain. There
were some differences in the number of motifs among different groups, with group II
possessing ten motifs and groups V, VI, IV, and VII only having two motifs (motif 1 and
motif 2). In general, gene structure and conserved motif analysis can support the grouping
of evolutionary trees and are associated with specific biological functions [39].

Gene duplication events (segmental and tandem) are the major driving forces for find-
ing novel genes and gene family expansion which can support the adaptation of organisms
to different complex environments [40]. Collinearity analysis mainly evaluates the remain-
ing and lost duplication genes through homology comparison. It can provide an important
basis for studying the evolutionary history of genes by comparing the homologous gene
sequences of different plant genomes [41]. Colinear analysis revealed the evolutionary
relationship between homologous gene pairs within passion fruit and between passion fruit
and Arabidopsis. A total of 5 segmental duplication events of collinear genes were found
within passion fruit, and 11 duplication synteny gene pairs were found between passion
fruit and Arabidopsis, indicating segmental duplication events produced the diversity of
PeSBPs. The Ka/Ks values of SBP collinearity gene pairs in all identified homologous gene
pairs were less than 1, suggesting that SBP collinearity gene pairs underwent purification
selection in the evolution process with no functional change.

Plant SBP transcription factors play an important role in plant development, including
flower development [42], fruit development [36], plant hormone signal transduction [43],
and vegetative to reproductive phase transition [44,45]. An analysis of cis-acting elements
of the PeSBP gene promoters showed that the promoters of SBP genes contained multiple
cis-acting regulatory elements, which regulate multiple different growth and development
and stress tolerance processes. The regulatory elements of different SBP genes in passion
fruit were different, which might be closely related to the functional diversity of SBP
genes. In Arabidopsis, AtSPL6 is a positive regulator of defence gene expression [46]. The
phylogenetic tree results showed that AtSPL6 are orthologous to PeSBP1 and PeSBP10 in
group IV. Interestingly, the cis-element analysis showed that PeSBP1 and PeSBP10 contain
multiple defence and stress-responsive elements, such as plant defence response, defence
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and stress responsiveness, and the MYB binding site involved in drought-inducibility.
We speculate that PeSBP1 and PeSBP10 might also be positive regulators of defence gene
expression in passion fruit. However, the role of cis-elements in the PeSBP gene promoter
regions in stress response requires further investigation. To further understand the possible
role of PeSBP genes, we examined the expression levels of 14 SBP genes in different tissues
of passion fruit. The results showed tissue-specific SBP gene expression during the growth
and development of passion fruit, and the expression levels of the same gene were different
in different tissues. In addition, most PeSBP genes were highly expressed in leaf and
flower tissues. These results were similar to SBP genes of other species and were highly
expressed in the shoot development, apical buds inflorescences, and flower buds [47]. For
instance, PeSBP8 in group V was orthologous to AtSPL2, AtSPL10, and AtSPL11 [48] and
expressed highly in the passion fruit leaves, suggesting that PeSBP8 plays an important role
in the regulation of leaf development. The mutant of AtSPL1 and AtSPL12 inflorescences
displayed hypersensitivity to heat stress, whereas the overexpression of AtSPL1 or AtSPL12
enhanced the thermotolerance in Arabidopsis [49]. PeSBP5, PeSBP7, and PeSBP14 were
orthologous to AtSPL1 and AtSPL12, expressed highly in the passion fruit ovule and
flower stages. The cis-element analysis also showed that PeSBP5, PeSBP7, and PeSBP14
promoters contained many growth, development, and stress response related elements,
such as binding sites for transcription factors involved in the regulation of endosperm
expression, meristem expression, LTR, and defence and stress responsiveness (Figure 8,
Supplementary Materials Table S5). These results may improve the cognition of PeSBPs
and furnish potential clues for further studies of SBP family genes in passion fruit.

4. Materials and Methods
4.1. Plant Materials

Two-month-old plants were used for different treatments. Passion fruit cultivar Tain-
ong No. 1 seeds were germinated in the greenhouse at 30 ± 1 ◦C, with a relative humidity
of 70%, and a 16-h light/8-h dark photoperiod. At two true leaves stages, the seedlings
were transferred to the growth chamber and grown for an additional two months. The
materials were provided by the passion fruit breeding group at Fujian Agriculture and
Forestry University.

4.2. Identification and Characterization Analysis of SBP Genes in Passion Fruit

First, SBP protein sequences were downloaded from National Genomics Data Center
(NGDC) (accession number GWHAZTM00000000). A hidden Markov model (HMM) map
of the SBP gene family (PF03110) was obtained from the Pfam database [50]. SBP genes were
identified from the whole genome of passion fruit using HMMER (v3.2.1, http://hmmer.org/
(accessed on 22 November 2021)) software and the BLAST program (v2.12.0, ftp://ftp.ncbi.
nlm.nih.gov/blast/executables/blast+/2.12.0/ (accessed on 22 November 2021)), and the
candidate genes were further confirmed by containing SBP domain using CDD (https:
//www.ncbi.nlm.nih.gov/cdd/, (accessed on 22 November 2021)) and SMART server (http:
//smart.embl.de/, (accessed on 22 November 2021)) online tools, and sequences without
complete SBP domains were deleted. Finally, DNAMAN software (v8, LynnonBiosoft,
USA) was used to perform multiple sequence alignments on all candidate genes to ensure
that they contained the SBP domain. Meanwhile, ExPASy Server (https://web.expasy.
org/protparam/ (accessed on 9 December 2021)) [51] was used to calculate the isoelectric
point (pI) and the molecular weight (MW), and the length of the amino acids, introns,
exons, and open reading frames (ORF) were also calculated. Subcellular localization of SBP
protein was predicted using BaCelLo (Balanced Subcellular Localization Predictor) software
(http://gpcr2.biocomp.unibo.it/bacello/index.htm, (accessed on 9 December 2021)) [52].

4.3. Sequence Alignments and Phylogenetic Analysis

MUSCLE software was used to compare the amino acid sequences of the SBP gene
family. To study the evolutionary relationship of SBP genes, a phylogenetic tree was
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constructed among passion fruit, Arabidopsis, grape, sorghum, and rice using MEGA (v6.0,
Tokyo Metropolitan University, Hachioji, Tokyo, Japan) with the maximum likelihood
method. The following parameters were used: JTT model, pairwise deletion, and the
bootstrap test, which were replicated 1000 times. The phylogenetic tree was imported into
the Interactive tree of life (iTOL, https://itol.embl.de/ (accessed on 12 December 2021)) [53].

4.4. Gene Structure and Conserved Motif Analysis

The Gene Structure Display Server (GSDS, http://gsds.gao-lab.org/https://itol.embl.
de/ (accessed on 15 December 2021)) was used to determine the exon–intron structure of
passion fruit SBP genes based on their genome DNA sequence and CDS sequence [54].
Then, the protein sequence of the passion fruit SBP gene family was submitted to the
MEME online tool (https://meme-suite.org/meme https://itol.embl.de/ (accessed on
15 December 2021)) [55] for conserved motif prediction, and the number of motif discovery
was set to 10 with default parameters. TBtools was used to visualize the prediction motif
results of the SBP gene family in passion fruit [56].

4.5. Chromosomal Locations and Synteny Analysis

The 14 passion fruit SBP family genes were located on the chromosomes using the
information annotated in the passion fruit genome. The physical location of PeSBPs
on the chromosomes was visualized using Circos software (v0.69, http://www.circos.
ca/ (accessed on 19 December 2021)). A synteny analysis of the SBP gene family in
the passion fruit genome was conducted using MCScanX software (http://chibba.pgml.
uga.edu/mcscan2 (accessed on 19 December 2021)). Circos software also was used to
visually map synteny genes. The easy_Kaks calculation program (https://github.com/
tangerzhang/FAFU-cgb/tree/master/easy_KaKs (accessed on 19 December 2021)) was
used to calculate the non-synonymous (Ka), synonymous (Ks), and Ka/Ks substitution
ratios of the homologous gene pairs of passion fruit and Arabidopsis to estimate the selection
and substitution rates.

4.6. Cis-Elements Analysis of PeSBPs Promoters

The promoter sequence of PeSBP genes was 2 kb upstream of the transcriptional start
site (ATG). The cis-elements of the promoter of the PeSBP genes were predicted using the
Plant Cis-Acting Regulatory Element (PlantCARE, http://bioinformatics.psb.ugent.be/
webtools/plantcare/html/ (accessed on 19 December 2021)) [57].

4.7. Expression Patterns Analysis

The RNA-sequencing data of the different floral tissues, including bract, sepal, corona
filament, petal, stamen, stigma, and ovule, were obtained from China National Gen-
Bank (CNGB) (accession number CNP0002747), and the RNA-sequencing results of the
root, flower, leaf, and seed tissues were downloaded from (https://ngdc.cncb.ac.cn/gsa/
browse/CRA003773 (accessed on 19 December 2021)). The heatmap was then constructed
using the pheatmap package of R software.

4.8. RNA Extraction and Quantitative Real-Time PCR

High-quality RNA was extracted using plant total RNA extraction kits (Omega Bio-Tek,
Shanghai, China) and then reverse-transcribed into cDNA using a reverse transcription kit
(TaKaRa, Beijing, China). A SYBR Premix Ex Taq kit (TaKaRa, Beijing, China) was used for
qRT-PCR to verify the expression levels of each sample. Three replicates were designed for
each sample, and the EF1a gene was used as a reference to calculate the relative expression
levels of SBP genes in various tissues. Primers were designed to amplify sequences in
PrimerQuest tools (Supplementary Materials Table S7).
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4.9. PeSBPs Response to the Abiotic Stresses

Two-month-old passion fruit plants (variety in Tainong No. 1) in soil were analyzed in
response to the abiotic stress treatment. For cold (4 ◦C) and heat (45 ◦C) stress, seedlings
in soil were transferred to the incubator at 16/8 h, day/night. For salt and osmotic stress
treatment, the passion fruit plants were first grown in the liquid 1

2 MS medium for 7 days
and then transferred to fresh liquid 1

2 MS medium with 200 mM NaCl or 200 mM mannitol
for stress treatment. Leaves were collected from at least three independent plants at
12 h, 24 h, and 48 h after treatment, and the controls were not subjected to any stress
treatments. Three replicates were performed for each treatment. The collected samples
were immediately stored in liquid nitrogen before total RNA extraction. The expression
profiles of PeSBPs were detected using qRT-PCR.

4.10. Gene Ontology (GO) Enrichment Analysis

GO enrichment analysis was carried out using AgriGO (http://bioinfo.cau.edu.cn/
agriGO/ (accessed on 1 November 2022)), and the result was visualized using R software
(https://cran.r-project.org/web/packages/pheatmap/index.html (accessed on
1 November 2022)).

5. Conclusions

In the present study, a total of 14 SBP genes were identified in passion fruit. Based on
the phylogenetic, gene structure, and conserved motifs analysis, all PeSBPs were classified
into eight groups. The major gene expansion of the PeSBP gene family was segmental
duplication and under negative selection. Cis-element analyses showed that PeSBPs re-
sponded to different stresses and plant hormones. In addition, the study of expression
patterns under various stress types suggested that PeSBPs function across multiple stress
responses. Taken together, our comprehensive analyses are helpful in selecting candidate
SBP genes to further understand the classification and function of the SBP gene family in
passion fruit.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms232214153/s1.
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