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Abstract: Neuroblastoma (NB) is an extracranial solid tumor in children with poor prognosis in high-
risk patients and its pathogenesis and prognostic markers urgently need to be explored. This study
aimed to explore potential biomarkers related to NB from the aspect of lipid metabolism. Fifty-eight
lipid metabolism-related differentially expressed genes between high-risk NB and non-high-risk NB
in the GSE49710 dataset were analyzed using bioinformatics, including 45 down-regulated genes and
13 up-regulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis identified steroid hormone biosynthesis as an abnormal metabolic pathway in high-risk
NB. Survival analysis established a three-gene prognostic model, including ACHE, GDPD5 and
PIK3R1. In the test data, the AUCs of the established prognostic models used to predict patient
survival at 1, 3 and 5 years were 0.84, 0.90 and 0.91, respectively. Finally, in the SH-SY5Y cell line, it
was verified that overexpression of GDPD5 can inhibit cell proliferation and migration, as well as
affect the lipid metabolism of SH-SY5Y, but not the sugar metabolism. hsa-miR-592 was predicted
to be a potential target miRNA of GDPD5 by bioinformatics. In conclusion, this study develops a
lipid-metabolism-related gene-based prognostic model for NB and demonstrates that GDPD5 inhibits
SH-SY5Y proliferation and migration and may be targeted by hsa-miR-592 and inhibit SH-SY5Y fat
synthesis.

Keywords: GDPD5; lipid metabolism; biomarker; neuroblastoma

1. Introduction

Neuroblastoma (NB) is a malignant childhood solid tumor derived from neuroec-
todermal cells of the sympathetic nervous system and is the leading cause of childhood
cancer-related death [1]. Even when high-risk NB patients, especially those with metastases,
are treated comprehensively, the prognosis remains poor. Thanks to various new patient
stratification, new therapies and new drugs, the five-year survival rate for metastatic NB
has improved dramatically over the past few decades [2]. Currently, the clinical outcome of
NB is mainly predicted based on age, tumor stage, mitotic nuclear rupture index, MYCN
(Neuroblastoma MYC Oncogene) amplification and ALK (Anaplastic Lymphoma Kinase)
expression [3,4]. However, limitations remain in the risk stratification of NB patients.
Therefore, there is an urgent need to explore new prognostic markers.

Recent studies have shown that lipid metabolism may be one of the important differ-
ences between cancer cells and normal cells and lipid metabolites may be important cancer
markers. The growth, proliferation, invasion and metastasis of cancer cells can be affected
by metabolic reprogramming, such as changes in lipid metabolism. This has been shown to
occur in tumor cells and the tumor microenvironment [5–7]. Positron emission tomography
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in cancer patients has shown that NB tumors have high glucose uptake and high lactate
production rates [8]. Moreover, inhibition of fatty acid synthesis results in increased neural
differentiation and reduced tumor burden in NB xenograft experiments [9]. Rugolo et al.
showed that very long-chain fatty acid protein 4 (ELOVL4) positively regulates neuronal
differentiation and lipid droplet accumulation in NB cells and that high ELOVL4 expression
is a marker of better overall clinical survival [10]. However, the roles and prognostic value
of lipid-metabolism-related genes in NB remain to be elucidated, as the lack of a large-scale
NB sample cohort limits the reliability and validity of previous findings. However, in the
era of big data, the emergence of genome sequencing technology and data may help tumor
diagnosis and prognosis prediction [11,12].

GDPD5 is a glycerophosphocholine phosphodiesterase identified in a family of bacte-
rial genes [13], which is expressed in neurons, terminally differentiated oligodendrocyte
subsets and vascular endothelium [14–16] and is critical for neuronal differentiation [17],
growth and survival [18]. Recent studies have shown that GDPD5 promotes NB differentia-
tion by releasing glypican [19].

In this study, the expression profiles of lipid-metabolism-related genes in the Gene
Expression Omnibus (GEO) database (GSE49710 dataset) were downloaded and analyzed
to identify differentially expressed genes in high-risk versus non-high-risk NBs. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed
that genes were mainly involved in steroid hormone biosynthesis. Next, using the Least
Absolute Shrinkage and Selection Operator (LASSO) and the multivariate Cox algorithm,
we developed a risk score for predicting the prognosis of NB patients using the GSE49710
dataset. Finally, we validated the correlation of GDPD5 in risk scoring models with lipid
metabolism in tumor cells and tumor malignancy through biological experiments. In
conclusion, we built a three-gene trait model that can be used as a predictor of NB survival.
In addition, the effects of GDPD5 on lipid metabolism, proliferation and migration of NB
were verified by biological experiments.

2. Results
2.1. Identification of Differentially Expressed Genes Related to Lipid Metabolism between
High-Risk Groups and Non-High-Risk Groups and Patient Survival in Neuroblastoma (NB)

According to the method of Zheng et al., human lipid-metabolism-related pathways
were downloaded from the molecular signature database (version 7.0). Herein, a total of
776 lipid metabolism genes was sorted out from the six lipid metabolism pathways from
the databases KEGG and Reactome [20]. We obtained a total of 776 lipid metabolism genes
(Table S1). We then explored differentially expressed genes between high-risk and non-
high-risk NB samples in dataset GSE49710. The cohort and clinicopathological information
in the 498 NB samples of the GSE49710 dataset are shown in Table 1. We found 58 lipid-
metabolism-related genes that were significantly associated with NB risk and survival
(Figure 1A,B), of which 13 were up-regulated and 45 were down-regulated. GO analysis
showed that these genes were mainly involved in a cellular lipid metabolic process and
lipid metabolic process, most of which were located in the endomembrane system and
were associated with catalytic activity and anion binding (Figure 1C). KEGG analysis
showed that these genes were mainly involved in metabolic pathways, steroid hormone
biosynthesis and arachidonic acid metabolism (Figure 1D). The protein interaction network
also showed complex correlations among these 58 genes (Figure 1E). These results suggest
that lipid metabolism biological processes play an important role in high-risk NB.
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Table 1. Clinical pathological parameters of NB patients in the training set.

Features Number (%)
Sex

Female 211 (42.4%)
Male 287 (57.6%)

Age
≤18 months 300 (60.2%)
>18 months 198 (39.8%)

MYCN amplification
No 401 (80.5%)
Unknown 5 (1.0%)
Yes 92 (18.5%)

INSS stage
St1 121 (24.3%)
St2 78 (15.7%)
St3 63 (12.7%)
St4 183 (36.7%)
St4S 53 (10.6%)

Clinical risk
High 176 (35.3%)
Low 322 (64.7%)

Class label
Favorable 181 (36.3%)
Unfavorable 91 (18.3%)
Unknown 226 (45.4%)

Progression
No 315 (63.3%)
Yes 183 (36.7%)

Death from disease
No 393 (78.9%)
Yes 105 (21.1%)
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Figure 1. Discovery of differentially expressed genes and aberrant metabolic pathways in high-risk 
neuroblastoma. (A) Volcano plots of differentially expressed genes (DEGs) in the GSE49710 dataset. 
The x-axis represents fold change in gene expression and the y-axis represents FDR. The red and 
green dots in the graph represent statistically significant up- and down-regulated genes. (B) Venn 
diagrams of DEG, lipid-metabolism-related genes and genes screened by univariate CCox. (C) Gene 
ontology (GO) analysis of 58 genes. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) analy-
sis of 58 genes. (E) Protein–protein interaction (PPI) network of 58 genes. 
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Figure 1. Discovery of differentially expressed genes and aberrant metabolic pathways in high-risk
neuroblastoma. (A) Volcano plots of differentially expressed genes (DEGs) in the GSE49710 dataset.
The x-axis represents fold change in gene expression and the y-axis represents FDR. The red and
green dots in the graph represent statistically significant up- and down-regulated genes. (B) Venn
diagrams of DEG, lipid-metabolism-related genes and genes screened by univariate CCox. (C) Gene
ontology (GO) analysis of 58 genes. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
of 58 genes. (E) Protein–protein interaction (PPI) network of 58 genes.
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2.2. Construction of a Prognostic Model for Lipid-Metabolism-Related Genes

Difference analysis and survival analysis showed that these lipid-metabolism-related
genes were significantly associated with NB risk (Figure A1A) and overall survival time
(Figure A1B). Next, we performed LASSO Cox regression analysis to integrate survival
time, survival status and gene expression data to obtain the optimal survival prediction
model (Figure 2A–C). Finally, when the Lambda value is 0.120812060485213, the model
formula constructed by six genes is obtained:

Risk Score = −a*ACHE−b*CROT−c*GDPD5−d*HSD17B3−e*PIK3R1−f*PRKACB. (1)

where:
a = 0.0345687415492563
b = 0.0489503629082964
c = 0.302176914910914
d = 0.0321116010448932
e = 0.0978743044989993
f = 0.0915003516148756.
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the 1−SE standard, respectively. (C) Expression heatmap of six signature genes, risk score distribu-
tion and survival status of patients. (D) Kaplan−Meier analysis of 6−gene risk scores. (E) ROC curve 
analysis of 6−gene risk score.  
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of 58 prognosis−related lipid metabolism genes from the Discovery (GSE49710 microarray) dataset.
(B) Partial likelihood bias of the variable revealed by the Lasso regression model. The red dots
represent the partial likelihood of deviated values, the grey line represents the standard error (SE)
and the left and right vertical dashed lines represent the minimum standard and the best value for the
1−SE standard, respectively. (C) Expression heatmap of six signature genes, risk score distribution
and survival status of patients. (D) Kaplan−Meier analysis of 6−gene risk scores. (E) ROC curve
analysis of 6−gene risk score.

Kaplan–Meier analysis showed that the risk score could effectively distinguish patients
with better and worse prognosis (Figure 2D). ROC curve analysis (Figure 2E) showed that
the area under the curve (AUC) values for the 1-, 3- and 5-year OS of the risk score were
higher than those of individual genes (Figure A2), indicating that the prognostic power of
risk score was better than that of individual genes alone.

2.3. Further Refinement of the Prognostic Model

To further optimize the prognostic model, we performed multivariate Cox analysis
on the six genes (ACHE, CROT, GDPD5, HSD17B3, PIK3R1, PRKACB) in the risk score
formula. The results showed that ACHE, GDPD5 and PIK3R1 were independent prognostic
factors (Figure 3A). We then constructed a new risk score using these three genes:

Risk Score = ACHE*0.862854240578636 + GDPD5*0.777001638391889 + PIK3R1*0.646763659363925. (2)

where:
a = 0.862854240578636
b = 0.777001638391889
c = *0.646763659363925.
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Figure 3. Further optimization of wind direction score. (A) Multivariate Cox regression analysis of
6 genes. (B) Kaplan–Meier analysis of novel 3-gene prognostic risk scores. (C) ROC curve analysis
of novel 3-gene prognostic risk scores. (D–F) Kaplan–Meier analysis of ACHE (D), GDPD5 (E) and
PIK3R1 (F).

Interestingly, the ROC curve of the new scoring formula, composed of ACHE, GDPD5
and PIK3R1 (Figure 3B), was similar to the ROC curve composed of the previous six genes
(Figure 2E) and better than the ROC curve of any single gene among them (Figure A2). In
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addition, the new scoring formula and ACHE, GDPD5 and PIK3R1 as independent prog-
nostic factors can effectively distinguish populations with different prognosis (Figure 3C–F).
This allows us to reduce the number of genes without affecting the AUC value, resulting in
better clinical applicability.

Further, we investigated the optimal cutoff (Table 2) and median cutoff (Table 3) to
evaluate the accuracy of risk score in distinguishing high-risk or non-high-risk (low and
medium risk) children, respectively. The results showed that the optimal cut-off value
grouping method had an accuracy of 85.23% and 93.48% in identifying children in the
high-risk group and the non-high-risk group, respectively. The median stage grouping
methods were 95.45% and 74.84%, respectively. The median grouping method was better
at identifying high-risk children, but lower than the optimal cut-off grouping method at
identifying non-high-risk children.

Table 2. Accuracy evaluation of risk score formula grouping (optimal cutoff).

Low Risk Score High Risk Score Accuracy

COG (High) 26 150 85.23%
COG (Low and medium) 301 21 93.48%

Total 327 171 498 (100%)

Table 3. Risk score formula grouping accuracy assessment (median).

Low Risk Score High Risk Score Accuracy

COG (High) 8 168 95.45%
COG (Low and medium) 241 81 74.84%

Total 327 171 498 (100%)

2.4. Independent Prognostic Factor GDPD5 Is Associated with Immune Infiltration

Among three important independent prognostic genes (ACHE, GDPD5, PIK3R1),
GDPD5 caught our attention. GDPD5 was previously shown to promote neurogenesis and
it was recently shown to promote NB cell differentiation in an autonomous manner [19].
We first examined oncological signatures and KEGG signaling pathways associated with
GDPD5 expression. The results showed that samples with high GDPD5 expression were
enriched in cysteine and methionine metabolism and nucleotide excision repair (Figure 4A),
as well as two oncological features (Figure 4B). It is generally believed that the degree of
immune cell infiltration is related to the occurrence, development, treatment and clinical
prognosis of tumors [21,22]. The tumor microenvironment that constitutes various immune
cell subsets influences the antitumor effect of immunotherapy [23]. Therefore, it is necessary
to observe whether the expression of GDPD5 correlates with the immune infiltration of NB.
Our results showed that GDPD5 was not only associated with stromal score (Figure 4C),
immune score (Figure 4D) and estimate score (Figure 4E), but also with the majority of
immune cell infiltration (Figure A3). These results suggest that GDPD5 is not only related
to lipid metabolism in NB, but also to its immune status.
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Figure 4. Gene Set Enrichment Analysis (GSEA) and immune infiltration analysis of GDPD5. (A) Two
KEGG pathways enriched in samples with high GDPD5 expression. (B) Two KEGG oncology
signatures enriched in samples with high GDPD5 expression. (C–E) The relationship between the
expression of GDPD5 and stromal score (C), immune score (D) and estimate score (E). The horizontal
axis represents the expression of GDPD5 and the vertical axis represents the score.

2.5. Hsa-miR-592 Is a Potential Target miRNA of GDPD5

MicroRNAs (miRNAs) are small noncoding RNAs that broadly regulate gene ex-
pression in animals, plants and protozoa. miRNAs typically act post-transcriptionally by
base-pairing to the 3′-untranslated region of mRNA to inhibit protein synthesis through
a mechanism that is not fully understood [24]. First, we predicted GDPD5-targeted miR-
NAs in the miRSystem system (Table S2) and then identified 193 differentially expressed
miRNAs (DEMs) in GSE121513 between patients in the high-risk group and non-high-risk
group and obtained 2 miRNAs after taking the intersection upregulated DEM (hsa-miR-107,
hsa-miR-592) and 2 downregulated (DEM) (hsa-miR-604, hsa-miR-636) (Figure 5A). Then,
Kaplan–Meier analysis showed that hsa-miR-592 could effectively distinguish high-risk and
low-risk groups (Figure 5B), but not hsa-miR-604 (Figure 5C). GDPD5 was down-regulated
in high-risk patients, whereas miRNA-silencing mRNAs were generally expressed in the
opposite manner. That is to say, the two down-regulated DEMs (hsa-miR-604 and hsa-miR-
636) are not target miRNAs of GDPD5.
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2.6. Overexpression of GDPD5 Affects Lipid Metabolism, Migration and Proliferation of SH-SY5Y
Cell Line

SH-SY5Y cells were established in 1970 and are often used as a cell model of neu-
roblastoma [25]. To further explore the biological function of GDPD5, we overexpressed
GDPD5 in the human SH-SY5Y cell line (Figure 6A) and then examined the changes in its
metabolism, as well as the migration and proliferation behavior of cancer cells. ACC, ACLY,
HADH and PPARA are energy and lipid enzymes [26–28] and our Western blot results
indicated that overexpression of GDPD5 resulted in a reduction in ACC (acetyl-coenzyme
A carboxylase), a key enzyme in fat synthesis, but not the other (Figure 6B). Meanwhile, we
detected changes in the glucose metabolism of SH-SY5Y by detecting PFKFB3, ALDOA,
ENO2, HK2 and LDHA [29–33]. The results showed that overexpression of GDPD5 hardly
affected the changes in SH-SY5Y glucose-metabolism-related markers (Figure 6C). Further-
more, overexpression of GDPD5 inhibited the migration and proliferation of SH-SY5Y cells
(Figure 7). This suggests that GDPD5 may affect the lipid synthesis of the SH-SY5Y cell line
by reducing ACC, thereby inhibiting the migration and proliferation of SH-SY5Y.
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3. Discussion

According to the Children’s Oncology Group (COG) risk stratification, neuroblastoma
(NB) can be divided into three grades: low, intermediate and high [34]. The five-year
survival rate for low- and intermediate-risk patients is higher than 90%, while the long-
term survival rate for high-risk patients is less than 50%, even after multiple approaches [35].
Therefore, it is necessary to explore new prognostic indicators to improve the prognosis of
high-risk NB patients. The arrival of second-generation sequencing technology and the
era of big data have provided new ideas for the prognosis evaluation of NB patients. Risk
profiles related to MYCN [36,37], immunity [38] and glycosyltransferases are emerging [39].
Numerous studies have shown that lipid metabolism is related to cancer progression,
metastasis and treatment and has the potential to become a new biomarker [40–42]. Risk
scores of lipid-metabolism-related genes have been constructed to predict the survival rate
of colon adenocarcinoma [43], lung adenocarcinoma [44], bladder cancer [5] and serous
ovarian carcinomas [20]. However, the association between lipid-metabolism-related risk
models and prognosis in NB patients remains unknown. To our knowledge, this study is
the first to identify lipid-metabolism-related genes associated with NB prognosis using
a bioinformatic approach. In this study, we identified 58 differentially expressed genes
associated with risk stratification in NB patients in the GEO dataset (GSE49710). In addition,
these genes were mainly enriched in steroid hormone biosynthesis and arachidonic acid
metabolism. We identified a risk score, including ACHE, GDPD5 and PIK3R1, using LASSO
and multivariate Cox regression analysis. Interestingly, GDPD5 was also included in the
Nomogram constructed by Xia et al. [37]. However, the AUC values of our risk score ROC
curves at 1, 3 and 5 years were 0.84, 0.90 and 0.91, respectively, which were higher than
those of Xia et al. (0.754, 0.815, 0.795). This means that our three-gene risk score has better
prognostic power.

GDPD5 maps to chromosome 11q13 and frequently shows loss of heterozygosity in
high-risk NB [45], often associated with later stages and worse outcomes in NB [46]. GDPD5
induces NB cell differentiation and inhibits its motility through multiple mechanisms [19].
In this study, based on bioinformatics predictions, we identified hsa-miR-592 as a potential
target miRNA of GDPD5. Our biological experiments showed that overexpression of
GDPD5 would inhibit the expression of Acetyl-CoA Carboxylase Alpha (ACC, a key
rate-limiting enzyme in lipid synthesis) in the human NB cell line SH-SY5Y, without
affecting the expression of glucose-metabolism-related genes. In addition, overexpression
of GDPD5 also inhibited the migration and proliferation of SH-SY5Y. Based on these results,
GDPD5 will qualify as a potential tumor-suppressor gene. However, this study also has
several shortcomings. First, the constructed risk scoring formula was not validated with
a large sample. Second, the regulation of GDPD5 by hsa-miR-592 was not verified by
biological experiments. Collectively, the findings of this study provide new insights into the
occurrence and development of NB from the perspective of lipid metabolism. A prognostic
model based on three lipid-metabolism-related genes can effectively predict the prognosis
of NB patients. In addition, simple biological experiments suggest that GDPD5 affects
the lipid metabolism, migration and proliferation of NB and is a potential biomarker for
high-risk NB.

4. Materials and Methods
4.1. Data Extraction from Online Databases

The gene expression data and clinical information of GSE49710 and GSE121513 were
downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/geo/ (accessed on
23 May 2022)), based on the GPL16876 and GPL25696 platforms, respectively. GSE49710
has a total of 498 NB samples, including RNA-seq and clinical information (sex, age,
International Neuroblastoma Staging System (INSS) stage, MYCN amplification status and
overall survival) [47]. GSE121513 contains 117 samples with COG risk stratification and
overall survival. Ensemble IDs were converted to corresponding gene symbols using the

https://www.ncbi.nlm.nih.gov/geo/
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clusterProfiler R package. These gene expression matrices were then quantile normalized
and log2 transformed for subsequent analysis.

4.2. Screening of Differentially Expressed miRNAs and Lipid Metabolism Genes

Differential expression analysis was performed on the gene expression matrix after
GSE121513 and GSE49710 treatment to screen genes for differentially expressed miRNAs
(DEMs) and lipid metabolism genes between high-risk and non-high-risk groups. The
“limma” [48] R package was utilized and genes were identified as significant DEGs if
|log2FC| value > 1 and false-discovery rate (FDR) < 0.05. Next, univariate Cox regression
analysis was applied to identify DEGs associated with prognosis in NB patients.

4.3. Functional Enrichment Analysis and Protein–Protein Interaction Network Construction

This study used David (v.6.8, https://david.ncifcrf.gov/ (accessed on 23 May 2022))
to complete the enrichment analysis of DEGs, aiming to initially understand the biological
functions of these genes. p < 0.05 and FDR < 25% were determined to be significant. The
STRING (v 11.0, https://string-db.org (accessed on 23 May 2022)) database was used to
construct protein–protein interaction (PPI) networks. Next, the networks were visualized
using Cytoscape software (version 3.8.2).

4.4. Construction of a Prognostic Score for Lipid-metabolism-related Genes

LASSO is a shrinkage estimation method whose basic premise is to obtain a shrinkage
subset by limiting the coefficients of some features to zero to minimize the residual sum
of squares under the constraints. In this study, the LASSO Cox regression model in the
“glmnet” R package was applied to identify DEGs associated with overall survival. Next,
we obtain the beta coefficient risk score of each gene at the optimal λ value. The risk score
is equal to the sum of the expression levels of each gene multiplied by the corresponding
beta coefficients. Patients were divided into high-risk and low-risk groups according to
the median cut-off value of risk score. The prognostic power of risk score was assessed by
Kaplan–Meier analysis and ROC curve.

4.5. Gene Set Enrichment Analysis (GSEA) and miRNA Prediction

We performed GSEA on gene expression profiles based on high- and low-GDPD5
groups (https://www.gsea-msigdb.org/gsea (accessed on 23 May 2022)) [49]. First, we
download a subset of c2.cp.kegg.v7.4.symbols.gmt to evaluate relevant pathways and
molecular mechanisms. Then, we ranked by normalized enrichment score (NES) and
visualize the results. p < 0.01, FDR < 0.25 was considered significant. MiRSystem (http:
//mirsystem.cgm.ntu.edu.tw/ (accessed on 23 May 2022)) was used to predict target
miRNAs of GDPD5 [50].

4.6. Immune Infiltration and Immune Microenvironment Assessment

CIBERSORT (https://cibersortx.stanford.edu/ (accessed on 23 May 2022)) was used
to assess the relationship between GDPD5 and the immune microenvironment [51]. ES-
TIMATE (https://sourceforge.net/projects/estimateproject/ (accessed on 23 May 2022))
was used to evaluate the relationship between GDPD5 and tumor immune infiltration [52].
EPIC (Immune Cell http://epic.gfellerlab.org/ (accessed on 23 May 2022)) was used to
evaluate the relationship between GDPD5 and tumor immune cell content [53].

4.7. Plasmids Construction and Cell Culture Transfection

The GDPD5 (NM_001351167.2) coding sequences (CDS) were amplified with poly-
merase chain reaction (PCR) in vitro from the cDNA of HEK293T cells and were cloned into
the CMV-flag vector by using restriction enzyme EcoRI and XhoI. The CMV-flag-GDPD5
plasmid was sequenced and aligned to confirm the DNA sequence was completely cloned
(BGI, Chongqing, China).

https://david.ncifcrf.gov/
https://string-db.org
https://www.gsea-msigdb.org/gsea
http://mirsystem.cgm.ntu.edu.tw/
http://mirsystem.cgm.ntu.edu.tw/
https://cibersortx.stanford.edu/
https://sourceforge.net/projects/estimateproject/
http://epic.gfellerlab.org/


Int. J. Mol. Sci. 2022, 23, 13740 11 of 16

The SH-SY5Y cell was grown in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco,
Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (Gibco, Carlsbad, CA,
USA) and 1% penicillin/streptomycin (PS) (Invitrogen, Grand Island, NY, USA). The cell
was maintained at 37 ◦C in a 5% CO2 incubator. The Flag-CTL or Flag-GDPD5 plasmids
were transfected into SH-SY5Y cells with Neofect™ DNA transfection reagent (Neofect
biotech, Beijing, China), according to manufacturer’s protocol. Briefly, culture the SH-SY5Y
cells with complete medium in 35 mm dish, dilute 2 µg DNA in Opti-MEM, add 2 µL
Neofect™ gentle mixing, then incubate 25 min at RT and, finally, add transfection mix to
plate and incubate at 37 ◦C in a 5% CO2.

4.8. Western Blot Analysis

The Flag-CTL and Flag-GDPD5 plasmids were transfected into SH-SY5Y cells with
Neofect™ DNA transfection reagent. After cells were transfected for 48 h, the cells were
lysed by 1% SDS lysing buffer containing Protease Inhibitor Cocktail and Phosphatase
Inhibitor Cocktail (Apexbio, Houston, TX, USA) for Western blot analysis. The protein
concentration was determined by a BCA protein assay reagent kit (Thermo Scientific,
Waltham, MA, USA). All blots were, respectively, incubated with primary anti-bodies anti-
flag (1:1000, ABclonal, Wuhan, China), anti-p-ACC, anti-ACC, Anti-p-ACLY, anti-ACLY,
anti-PFKFB3, anti-HK2 and anti-LDHA (1:1000, Cell Signaling Technology, MA, USA), anti-
ALDOA, anti-ENO2, anti-HADH and anti-PPARA (1:1000, proteintech, Wuhan, China), as
well as anti-β-Tubulin (1:5000, TRANSGEN, Beijing, China). Bands were visualized with
ECL Reagents (Smart-Lifesciences, Changzhou, China).

4.9. Transwell Assay

To confirm the effect of GDPD5 on SH-SY5Y cell migration, the Flag-CTL and Flag-
GDPD5 plasmids were transfected into SH-SY5Y cells with Neofect™ DNA transfection
reagent. After the cells were transfected for 48 h, a total of 1 × 104 cells diluted in DMEM
medium without FBS was plated into transwell chamber (Corning, NYS, USA), then the
chamber was plated in 24-well plate supplemented with complete medium. After 24 h, the
membrane was fixed with 4% paraformaldehyde for 30 min, washed with PBS for 5 min × 3,
then the membrane was stained with 0.1% crystal violet (Sangon Biotech, Shanghai, China).
Finally, the eight fields were captured randomly under a microscope (DMI8, Leica, Wetzlar,
Germany). The quantitative analysis for migration was analyzed by Image J software
(National Institutes of Health, Bethesda, MD, USA).

4.10. Cell Viability Assay

After cells were transfected for 48 h, the cell counting kit-8 (CCK-8) assay kits (Med-
Chem Express, NJ, USA) were used for cell viability analyze. The Flag-CTL or Flag-GDPD5
cells were seeded in 96-well plates at a density of 2 × 104 cells per well and cultured for
0 h, 6 h and 12 h. Then the DMEM medium (100 µL) and CCK8 solution (10 µL) were
added to each well and incubated for 1 h. Finally, the absorbance of each well was mea-
sured at 450 nm using a microplate reader (Thermo Scientific, Waltham, MA, USA). A
two-tailed paired or unpaired t-test statistical analysis was performed using GraphPad
Prism 8 software (GraphPad, San Diego, CA, USA).

4.11. Statistical Analysis

R 4.0.2 was used for statistical analysis. The relationship between risk score or GDPD5
expression level and immune score, immune infiltration and immune cells was calculated
using Spearman or Pearson correlation analysis. Kaplan–Meier analysis can compare
survival status between groups. ROC curve analysis can test the predictive ability of the
model. Unless otherwise stated, p < 0.05 was considered statistically significant.
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5. Conclusions

Through various bioinformatic analyses of high-throughput sequencing datasets,
we systematically assessed lipid-metabolism-related molecular features and prognostic
value in NB and constructed a risk score composed of lipid-metabolism-related genes
that independently predicted the prognosis of NB. It is biologically proved that GDPD5 is
involved in lipid metabolism, migration and proliferation of NB, providing preliminary
evidence for the complex biological function and immune regulation of GDPD5 involved in
lipid metabolism in neuroblastoma. Our findings will help reveal the pathogenesis of NB
and identify novel biomarkers and provide a basis for developing therapeutic strategies
targeting lipid metabolism.
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