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Abstract: Bromodomain-containing protein 9 (BRD9), a member of the bromodomain and extra
terminal domain (BET) protein family, works as an epigenetic reader. BRD9 has been considered
an essential drug target for cancer, inflammatory diseases, and metabolic disorders. Due to its high
similarity among other isoforms, no effective treatment of BRD9-associated disorders is available.
For the first time, we performed a detailed comparative analysis among BRD9, BRD7, and BRD4. The
results indicate that residues His42, Gly43, Ala46, Ala54, Val105, and Leu109 can confer the BRD9
isoform selectivity. The predicted crucial residues were further studied. The pharmacophore model’s
features were precisely mapped with some key residues including, Gly43, Phe44, Phe45, Asn100,
and Tyr106, all of which play a crucial role in BRD9 inhibition. Docking-based virtual screening was
utilized with the consideration of the conserved water network in the binding cavity to identify the
potential inhibitors of BRD9. In this workflow, 714 compounds were shortlisted. To attain selectivity,
109 compounds were re-docked to BRD7 for negative selection. Finally, four compounds were selected
for molecular dynamics studies. Our studies pave the way for the identification of new compounds
and their role in causing noticeable, functional differences in isoforms and between orthologues.

Keywords: BRD9; cancer; structure-based pharmacophore; molecular docking; molecular dynamic
simulation; MM-GBSA

1. Introduction

Post-translational modification of histone proteins has a significant contribution to
the epigenetic mechanisms. These modifications are dynamic and reversible, coordi-
nated by signaling pathways and directed by several enzymes [1], affecting many nuclear
processes, including gene transcription and regulation. The most common PTM is the
acetylation of histone proteins, which generally occurs on highly conserved lysine (K)
residues. The presence of the acetyl group on histone lowers its net positive charge by
one, consequently reducing the electrostatic interaction between negatively charged DNA
and positively charged histones, resulting in a more relaxed and transcriptionally active
chromatin [2]. A single lysine modification on histone proteins considerably affects cel-
lular homeostasis by regulating various transcription factors, molecular chaperones, and
cellular metabolism [3]. It has now been established that histone acetylation modulates
gene transcription in response to physiological and environmental factors by manipulat-
ing chromatin structure [4]. Besides the manipulation of chromatin structure, the lysine
acetylation (Kac) modulates gene transcription via engaging the bromodomains (BRDs)
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present in bromodomain-containing proteins (BCPs). The BRDs are evolutionarily con-
served protein–protein interaction modules [5] often found in a broad range of chromatin
and other transcription-associated proteins.

Of all the BRDs, BRD of the BRD9 is a non-BET BCP that has been reported in patholo-
gies of various cancer types, including bladder cancer, lung adenocarcinoma, esophageal
carcinoma, ovarian cancer [6], cervical cancer, hepatocellular carcinoma [7], papillary thy-
roid carcinoma [8], etc., whereas pharmacological inhibition or genetic knockdown of
BRD9 proves to be promising in switching the malignant phenotypes. Furthermore, BRD9
has been inseparably associated with inflammation and Type 2 diabetes owing to β-cell
dysfunction [9,10].

Research on BRD9 has been accelerated due to its potential role in diseases. In the last
few years, since 2015, the chemical probe landscape of the BRD7/9 was very well estab-
lished with multiple dual BRD7/9 inhibitors. LP99 is the first reported selective BRD7/9
inhibitor, based on a methylquinolinone scaffold, that effectively inhibits the binding of
BRD7/9 to acetylated histones in vivo and in vitro [11]. Other BRD9 inhibitors notably, BI-
7273 and BI-9564, used to investigate the biological functions of BRD9 in vivo and in vitro,
were demonstrated to be non-toxic by fragment-based screening. The compounds were
mainly achieved following a structure-guided chemical optimization that led to the intro-
duction of 2-methyl-2,7-naphthyridin-1-one as an anchor region binder [12]. Subsequently,
based on the structural design, GSK in collaboration with the University of Strathclyde
reported I-BRD9, a thienopyridone derivative. It has been identified as a selective cytochem-
ical probe for BRD9. In addition, I-BRD9 downregulates cancer and immunology-related
genes [13]. Another reported BRD9 inhibitors is a ketone “compound 28” developed from
a keto-indolizine BAZ2A/B chemical probe; the compound is potent and selective toward
BRD9, and BRD7 showed cellular activity at 1 µM in a fluorescence recovery after pho-
tobleaching (FRAP) assay [14]. Despite the presence of many inhibitors, none of these
inhibitors has reached clinical trials because most of the inhibitors reported to date are pan
or dual inhibitors, liable for many off-target effects [15].

Therefore, there is a strong need to design highly selective BRD9 inhibitors to avoid
off-target effects associated with inhibition of other homologous proteins.

Considering the therapeutic potential of BRD9, and lack of selective inhibitors due
to the structural resemblance of BRD9 with other BCPs, we aimed to design selective
inhibitors against BRD9.

Bromodomain-containing protein 9 is a subunit of SWItch/Sucrose Non-Fermentable
Non-Canonical Bromodomain Associated Factor (SWI/SNF ncBAF), a nucleosome remod-
eling complex. It has 597 amino acids comprised of two domains, DUF123 and BRD. The
BRD of BRD9 is composed of 110 amino acids, assembled into four highly conserved
left-handed alpha helices (αZ, αA, αB, αC) linked via two highly flexible loop regions. This
arrangement forms a lysine-binding hydrophobic pocket between the ZA and BC loops
(Figure 1). Acetyl lysine binding pockets have two conserved residues, Asn (BC loop) and
Tyr (ZA loop). The carbonyl group of Asn forms a direct and Tyr forms a water-mediated
hydrogen bond (H-bond) with the acetyl group of lysine, playing a crucial role in the
recognition of acetyl marks on lysine residues. Another conserved trait observed in the
BRDs is the set of water molecules present in the binding pocket. These water molecules
serve as an essential feature in virtual screening and designing inhibitors for BRDs as they
serve as a bridge between the ligand and binding pocket residues [16].

To investigate the similarities, differences, and binding mode of BRD inhibitors, a com-
prehensive literature review was carried out along with an exploration of the binding
site. The sequence alignment of the three closely related proteins BRD9, BRD7, and BRD4
showed that most residues forming the active sites are located in loops, suggesting that the
entry channel is reasonably flexible. By considering those differences, a structure-based
pharmacophore model was generated for screening the zinc database to retrieve the po-
tential hits. Designing selective small molecules against BRD of BRD9 offers a powerful
tool to comprehend the contributions of this “reader” domain in regulating epigenetic
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processes. The information revealed by the selective binding of such compounds to BRD9
will certainly resolve many complex mechanisms and their involvement in the regulation
of transcription.
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helices (αA, αB, αC, αZ) and loop regions (ZA and BC) forming an acetyl binding pocket with
conserved water molecules (red sphere).

2. Results and Discussion
2.1. Structural Characterization

To achieve improved selectivity, we mainly focused on the crucial and differentiat-
ing residues of BRD9. The following differences were observed in the binding site of
the isoforms.

In BRD4, adjacent to the BC loop, a WPF shelf composed of Trp, Pro, and Phe is
present, while in BRD9, this shelf is made up of Gly and two Phe residues, referred to as
the GPP shelf [18] (Figure 2). Moreover, Phe45 in BRD9 is observed to be deflected back to
accommodate larger ligands, but this is not the case for Phe83, present at a similar position
in the BRD of BRD4 [19]. The other difference is the presence of distinct gatekeeper residues
that act as a selectivity filter, present at the starting point of αC helix that was found to
interact with the aliphatic region and acetyl group of the acetyl–lysine side-chain, making
a wall of the binding pocket [5]. In the case of BRD4, it is Ile, which Tyr replaces in BRD9.
As a result, BRD9 has a slightly larger pocket in contrast to BRD4, where the pocket size is
restricted by the β-chain of Ile.

BRD7 is a paralog of BRD9 with an overall structure similarity of 36% [20] and 85%
in their BRDs [13]. In the present study, the RMSD of the binding pocket was found to
be 0.77 Å. To characterize the binding pockets, co-crystal structures of BRD9 and BRD7
were studied. Although there is high sequence similarity, some differentiating residues are
present in the binding site (Figure 3), identified by superposition and some experimental
investigations [13,21]. These differences were mainly focused on during pharmacophore
modeling and docking-based virtual screening.
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Figure 3. Differences between the acetyl binding pocket of BRD9 (cyan) and BRD7 (gray) were
rendered through Chimera [17].

2.2. Pharmacophore Modeling

The pharmacophore model was created by using four co-crystallized structures of
BRD9 with known inhibitors, BI-7273, I-BRD9, LP99, and Indolizine-28 (PDB ID; 5EU1 [12],
4UIW [13], 5IGN [11] and 5E9V [14], respectively. Initially, H-bonds, cation–π interactions,
π–π interactions and water bridging of the reported structures with His42, Gly43, Phe44
Phe45, Asn100 and Tyr106 were observed in the binding site of BRD9. We also highlighted
the differences in the binding site of BRD9 and its isoform, BRD7. Based on crucial and
differentiating residues, a pharmacophore model was generated, comprising two aromatic
(F1 and F3),one hydrophobic (F4), one H-bond acceptor (HBA) (F2), one H-bond donor
(HBD) (F5), and one hydrophobic-aromatic feature (F6). The pharmacophore model’s
features were precisely mapped with key residues such as, Asn100, Phe44, Tyr106, and
Gly43, all of which play important roles in BRD9 inhibition. In particular, the HBD feature
was mapped on the Gly43, which is selectively present in the BRD9 pocket, while the HBA
feature was mapped onto the conserved Asn100 residue. The two aromatic features with
the projected point were Tyr106, Phe44 and Phe45. A single exclusion volume was also
applied to direct the inaccessible areas for any potential ligand and increase steric selectivity
(Figure 4).
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Figure 4. The selected structure-based pharmacophore model generated via MOE 2018 [22] com-
posed of six key features involving donor and acceptor features towards Gly and Asn, respectively,
a hydrophobic feature near Tyr106 and two aromatic features near Phe44 and Tyr106.

2.3. Statistical Validation

To assess the discriminating power of the pharmacophore model between true positive
and true negative, a test set of 13, 041 compounds including (i) active (<500 nM) and inactive
(>500 nM) compounds, (iii) BRD4 inhibitors with experimental activity values [11–14] and
a decoy dataset, was utilized.

The hit rate is given in Table 1.

Table 1. Pharmacophore hit-rates of different data sets.

Dataset No. of Compounds Hit Rate

Actives 17 13 (76.4)

Inactives 8 1 (12.5)

BRD4 Inhibitors 25 0 (0.0)

Decoys 12,991 154 (1.8)

The pharmacophore model was validated by multiple statistical parameters, including
sensitivity (Se), specificity and area under curve (AUC).

Sensitivity is the rate of the true positive compounds retrieved from the database.

Se = Tp/Tp + Fn (1)

Fn is the number of false negatives, and Tp is the total number of actives.
Specificity denotes the percentage of rejected inactives by the particular virtual screen-

ing workflow.
Sp = Tn/Tn + Fn (2)

Tn is the number of true negatives; Fp is the number of false positives.
A ROC curve was plotted by setting the score of the active molecule as the first

threshold. In a ROC curve, the values lie in the range of 0–1. The curve being closer to
1 or a left-handed hyperbolic indicates an accurate ranking, representing the systematic
distribution of actives. Considering the above criteria, the generated pharmacophore model
with an AUC of 0.81 (Figure 5) was considered a reliable model for virtual screening.
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false positives.

2.4. Pharmacophore-Based Virtual Screening

After validating the pharmacophore model, it was used as a 3D query for the virtual
screening of four ZINC database subsets (Section 3.2.1). Overall, 714 compounds were
recognized as lead compounds and subsequently subjected to molecular docking studies
to refine the results. Screening results are mentioned in Table 2.

Table 2. Pharmacophore-based virtual screening hits obtained from each subset of the ZINC database.

Database Total Compounds Lead Compounds

Predicted-BRD9 Compounds 25,532 596

FDA approved Drugs 1466 11

In-Trials Compounds 6799 101

Epigenetic Compounds 471 6

2.5. Docking-Based Virtual Screening

After benchmarking, docking and interaction analyses of screened compounds were
performed to select the BRD9 from the pharmacophore-based virtual screening result. The
acetyl binding site of BRD9 is predominantly composed of His42, Phe44, Phe45, Phe47,
Val49, Ile53, Asn100, and Tyr106. BRD9 holds a hydrophobic active site; therefore, the
hydrophobic interactions cannot be ignored as they play a part in the positioning of the
ligand in the active site. Among the active class of inhibitors, BI-7273 was selected as
a reference compound as it shows 3-fold and 50-fold more selectivity towards BRD9 as
compared to BRD7 and BRD4, respectively.

In terms of interaction patterns, π–π stacking was observed with Tyr106 in the BRD9
anchor region. The ligand was further stabilized by a π interaction with Ile53, and T-
stacking with Phe44 in the acetyl binding site. A hydrogen bond was observed between
the carboxyl groups at the 8th position of the naphthyridinone rings with the carbonyl
side chain of Asn100 at a distance of 1.9 Å. The dimethoxyphenyl ring of BI-7273 formed
another H-bond with the amine group of Gly43 at a 2.4 Å distance (Figure 6).
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Figure 6. 3D representation of various electrostatic and hydrophobic interactions of the reference
compound with BRD9 (cyan) and BRD7 (gray) binding pocket residues.

To achieve selectivity for BRD9, a scaffold could form interactions with selective
residues including Gly43, His42, and Ala54 while occupying the hydrophobic pocket,
defined by the Phe44, Phe45, and gatekeeper Tyr106. By considering the above criteria,
after binding mode analysis and protein–ligand interaction fingerprints (PLIF) [23] in
MOE, 109 compounds shortlisted from all the four databases were further docked to BRD7.
This decisive step allowed us to classify the compounds into two groups demonstrating
favorable interactions with the binding pocket of BRD7 or BRD9 (Scheme 1). Finally, we
ended up with four compounds (Table 3) that showed good interactions with the crucial
residues of BRD9 only.
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Table 3. Summary of the four shortlisted compounds with binding energy kcal/mol.

S.no Name Score Structure

1 ZINC433599781 −7.3
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After PLIF analysis, all four compounds were visually examined to observe their bind-
ing modes. Since the binding pocket is hydrophobic, all the compounds exhibited multiple
hydrophobic and π–π interactions. Molecular visualization of the BRD9–ZINC433599781
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complex revealed that the thioamide group of 2-fluorobenzene interacted with carbonyl
from the amide group of selective Gly43 by forming an H-bond at a distance of 2.3 Å.
The compound was further stabilized by an H-bond with Tyr106 and conserved Asn100
through its thioamide group at a distance of 3.3 Å and the oxygen of carboxyl adjacent to
methoxypropoxy phenyl group at 2.2 Å. Moreover, ZINC433599781 was further stabilized
by multiple hydrophobic interactions with Phe44, Phe45, Val49, Ala54, Ala96, Tyr99, and
Tyr106, as well as by water bridging with Tyr106 (Figure 7).
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The binding mode analysis of ZINC28232750, ZINC2036848, and ZINC95589781 with
BRD9 revealed that they all fit well into the protein’s binding site. ZINC28232750, an FDA-
approved drug, binds in the active site of BRD9 (Figure 8) by forming an H-bond with
selective His42 at a distance of 2.1 Å through the carbonyl oxygen of the anthracene ring
present at the sixth position. Additionally, the compound is occupied in the pocket by
hydrophobic interactions with Phe44, Val49, Thr50, Ile53, Ala54, Tyr99, and conserved
Tyr106. Besides these interactions, another important factor contributing to ligand stability
is water bridging with Tyr106 and Thr50.
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distances, respectively. The pteridine ring established an H-bond with Phe47, and the
terminal hydroxyl group of the tetrahydropentyl moiety at the fifth position formed two H-
bonds with the amide group of Asn100 at 2.1 and 3.0 Å distance. The complex formation
was further derived by the hydrophobic interactions with Phe44 and Ile53 (Figure 9).
Similar to the FDA-approved drug, ZINC2036848 was also stabilized by water bridging
with Thr50 and Tyr106.
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The binding of ZINC95589781, which can be seen in Figure 10, indicates that it has
formed multiple H-bonds with active site residues. The amine group of the methypi-
valamide moiety attached to the piperidine ring formed an H-bond with selective Gly43
at 2.2 Å distance. The amine and carboxyl groups of the carboxamide were involved in
H-bond interactions with Phe44 and conserved Asn100 at a distance of 2.8 and 2.3 Å,
respectively. The side-chain hydroxyl group of conserved Tyr106 established an H-bond
at a distance of 2.9 Å with the nitrogen atom of the pyrimidine moiety. Similar to other
compounds, ZINC95589781 was also stabilized by hydrophobic interactions with Phe44,
Phe47, and Tyr106, as well as by water bridges with Tyr57.
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2.6. Molecular Dynamic (MD) Simulation

To acquire detailed information of the complex regarding the stability and the dynamic
behavior of the molecular interactions of the top four compounds inside the binding pocket,
an MD simulation was performed. In this regard, different parameters such as RMSD,
RMSF, RoG and interaction profile were analyzed.

2.6.1. Root Mean Square Deviation (RMSD)

The root mean square deviation (RMSD) is one of the key parameters used to probe
the dynamic stability of the complex by evaluating the deviation of protein backbone atoms
with respect to time.

The RMSD of the backbone atoms of the protein revealed that the Apo-form of BRD9
was stable with an average RMSD value of 2.9 ± 0.3 Å (Figure 11). On the other hand, the
resulting complexes fluctuated slightly for 10 ns. These variations appear to be related,
primarily with the release of minor unfavorable ligand–protein steric interactions. After
10 ns, the trajectory frames show a plateau in the RMSD graph, indicating the attainment of
the equilibration state of all the complex structures. It states that all complexes adopt a sta-
ble binding mode and exhibit relatively small, infrequent fluctuations during the course
of the MD trajectory. The average RMSD for the reference compounds, ZINC433599781,
ZINC28232750, ZINC2036848, and ZINC95589781, was found to be 3.7 ± 0.3, 3.6 ± 0.4,
3.9 ± 0.4, 4.4 ± 0.5, 3.6 ± 0.3 Å, respectively. The deviation was higher as compared to
the Apo form. It might be attributable to the binding of the inhibitor, which increases the
conformational flexibility of the binding pocket formed by the two loop regions (ZA and
BC), which underwent large changes. The detailed structural differences of the system
before and after MD simulation were examined. It was observed that the loop is rearranged
and tends to open up a little bit during the course of 100 ns MD simulation to accommodate
the ligand inside the pocket. The obtained results suggested that ZINC433599781 and
ZINC95589781 were more stable and exhibited fewer fluctuations throughout the simula-
tion period. The overall RMSD profiles suggested that all the complexes were stable and
that the results are reliable for further studies.
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2.6.2. Root Mean Square Fluctuations

Root mean square fluctuation (RMSF) is one of the key parameters used to probe the
mean fluctuations of the dynamic system residues/atoms.
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It represents flexibility in reference to the average position of residues in the protein–
ligand complexes over time. As expected, the protein with the alpha helix was observed
to experience fewer fluctuations than the loop domains. The RMSF graph (Figure 12) of
ZINC95589781 exhibited similar fluctuation patterns to Apo, indicating that it does not
significantly influence the backbone of the protein.
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Finding the reason behind the fluctuation pattern, it was worthwhile to observe the
interaction of the cavity’s key residue. All the compounds changed their orientations to get
inside the cavity, resulting in the fluctuation of active site residues. These include Phe44,
Phe45 and the gatekeeper residue Tyr106, which deflected from their original positions to
accommodate the ligands (Figures 13–17).
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2.6.3. Radius of Gyration

The radius of gyration illustrates the size and the compactness of proteins by mea-
suring the distribution of atoms around its axis. The lowest RoG represents the tightest
packing, characteristic of α-helices and β-sheets of the proteins. In contrast, loop regions of
proteins correspond to a larger value of RoG.

The trend in RoG of the protein backbone of each MD simulation is shown in Figure 18.
The decrease in average values of RoG from 15.5 to 14.6 Å for all the systems during 100 ns
MD simulation proposes that all of the systems attained a well-converged state with time.
In addition, it also suggested the conformational transition of the protein into a more
structured form when the ligand stably occupied the binding site. The stable conformation
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achieved by the target protein after binding to the compounds is attributed to hydrogen
bonds and hydrophobic interactions.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 15 of 24 
 

 

 
Figure 17. Deflection of Phe44, Phe45 and Tyr106 to accommodate ZINC95589781 deeper inside the 
pocket [17]. 

2.6.3. Radius of Gyration 
The radius of gyration illustrates the size and the compactness of proteins by meas-

uring the distribution of atoms around its axis. The lowest RoG represents the tightest 
packing, characteristic of α-helices and β-sheets of the proteins. In contrast, loop regions 
of proteins correspond to a larger value of RoG. 

The trend in RoG of the protein backbone of each MD simulation is shown in Figure 
18. The decrease in average values of RoG from 15.5 to 14.6 Å for all the systems during 
100 ns MD simulation proposes that all of the systems attained a well-converged state 
with time. In addition, it also suggested the conformational transition of the protein into 
a more structured form when the ligand stably occupied the binding site. The stable con-
formation achieved by the target protein after binding to the compounds is attributed to 
hydrogen bonds and hydrophobic interactions. 

 
Figure 18. Radius of gyration plots of BRD9, Apo (black); Reference (red); ZINC433599781; 
ZINC28223750 (blue); ZINC2036848 (cyan); ZINC95589781 (purple). 
Figure 18. Radius of gyration plots of BRD9, Apo (black); Reference (red); ZINC433599781; ZINC28223750
(blue); ZINC2036848 (cyan); ZINC95589781 (purple).

2.6.4. Interaction Pattern of Ligand–Protein Complexes

The simulated binding mode of the reference compound is depicted in Figure 19A.
The result indicated the formation of H-bonds between Asn100 and the carboxyl group
of the naphthyridine ring. Interestingly, the same bond was also observed in the docking
pose and remained persistent within the range of H-bonds, but the distance increased
from 1.9 to 2.3 Å. On the other hand, due to the movement of the ligand deeper inside
the pocket, H-bonds with Gly43 and π–π-interactions with Tyr106 did not persist. Simi-
larly, the H-bond with His42 has been replaced by π–π interactions with Phe44. Besides
this, the compound was stabilized by Ile53 and Tyr106 through hydrophobic interactions
(Figure 19A). Overall, no drastic change was observed in the reference compound’s pre-
and post-MD conformation and the binding pocket.

On the other hand, all four inhibitors underwent significant conformational changes
upon binding to BRD9. In-depth analysis of the KAc sites in the pre- and post-MD states
indicated significant movement of Tyr106, Phe44 and Phe45 to accommodate the ligand in
the binding site. The superposition of the two states revealed very different positionings of
the inhibitor in BRD9.

During MD simulation, some new inter-molecular interactions were formed between
ZINC433599781 and BRD9, predominantly responsible for forming a stable complex
(Figure 19B). We found that the amide group attached to 2-fluorophenyl forms an H-
bond with Asn100 at a distance of 1.7 Å, initially bonded to Gly43. However, Ile53, Tyr106,
and Arg101 were involved in hydrophobic interactions, π-stacking and water bridging,
respectively. This change in binding mode was due to the flipping of the compound inside
the binding pocket. Initially, the aromatic ring of fluorobenzene sulfonamide was in the
vicinity of Gly43, which was switched towards Arg101 during MD.
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ZINC28232750 is an FDA-approved drug selected for MD simulation on the basis of
H-bond interactions with the selective residue His42 of the target protein. During trajectory
analysis, it was observed that compound flipped its orientation to 90◦ and moved inside the
binding pocket. As a result, primary interactions were replaced by new ones and multiple
H-bonds stabilized the compound. The amide group of ZINC28232750 formed H-bonds
with the side chain hydroxyl group of Asp51 at a distance of 2.7 Å. The other H-bond was
formed between Ile53 and the carboxyl moiety of the compound with a distance of 1.8 Å.
Similarly, methoxy and RCOOR of the compound were involved in an H-bond with the
hydroxyl group of Tyr99 and Tyr106 at a distance of 2.8 Å and 1.6 Å, respectively. Moreover,
due to the drift of the compound inside the pocket, Asn100 was able to form a water bridge
with the hydroxyl group of the drug. In addition to this, the compound was also observed
to form multiple hydrophobic interactions with Phe44, Phe45 and Tyr99 (Figure 19C).

ZINC2036848 was stabilized by forming multiple H-bonds within the binding pocket.
At a 2.1 Å distance, the pyrazine ring’s amino group forms an H-bond with the hydroxyl
group of Phe47. In addition, the hydroxyl and amine groups of Asn100 established H-bonds
at a distance of 2.3 and 1.6 Å, respectively, with the hydroxyl groups of the tetrahydropentyl
moiety of the compound. One new H-bond was formed during MD simulation between
the OH group at fourth position of the same moiety and Asn100 (Figure 19D). The water
bridge of the compound with Thr50 and Tyr106 was replaced by Ile53.

ZINC95589781 was stabilized in the binding pocket by forming two H-bonds. The
amide group and carboxyl group of carboxyamide next to the thieno pyrimidine ring
formed an H-bond with Phe47 and Tyr57 at a distance of 1.9 and 3.1 Å, respectively. This
compound was also engaged in multiple hydrophobic interactions with Val49, Tyr85,
Leu109, as well as water bridging with Asn100 (Figure 19E).

2.7. Molecular Mechanics/Generalized Born Surface Area

In a 100 ns MD simulation study, the average interaction energy ranged from −30.3
to −22.1 kcal/mol, which indicates the favorable and stable complex formation. The total
binding free energy was decomposed into various energy components to investigate the
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chief driving force in complex formation. It was noted that ∆EvdW varies between −35.1
and −39.5 kcal/mol, while ∆Eele varies between −10 kcal/mol to −29.3 kcal/mol for all
complexes (Figure 20). It suggests that the higher MM-GBSA values (∆Gbind) in the case
of these complexes were mostly contributed to by the van der Waals and hydrophobic
interactions. Among all screened compounds, ZINC2036848 binds more strongly, as it
exhibited the most favorable values for ∆EvdW (−39.5 kcal/mol). The overall net po-
lar contributions (∆Eele + ∆Gpol) for ZINC433599781, ZINC28232750, ZINC2036848 and
ZINC95589781 were found to be nearly close and unfavorable, being 8.9, 16.6, 9.3, and
9.2 kcal/mol respectively. However, for all complexes, the overall non-polar contribu-
tions (∆EvdW + ∆Gnp) were found to be −100.6 −47.7, −89.1, and −84.5 kcal/mol for
ZINC433599781, ZINC28232750, ZINC2036848 and ZINC95589781, respectively. Con-
versely, the polar solvation energy (∆Gpol) opposed the complex formation for all the
compounds except for ZINC28232750, which exhibited −12.7 kcal/mol. This suggests
that the higher binding affinity for the complexes was due to more favorable non-polar
components compared to the polar energy components.
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2.8. Pharmacokinetics Analysis

Analysis revealed that the molecular weight (MW) of all the compounds except
ZINC28232750 (FDA approved) was less than 500 Kdal, which suggests that all the com-
pounds may easily be transported, diffused and absorbed inside the body. The number
of H-bond donors ranged from two to five, and the number of H-bond acceptors was
in the range from four to eight for all compounds except for ZINC28232750, which is in
accordance with Lipinski’s rules of five. The bio availability score of all the hits was found
to be 0.55, indicating good bioavailability of these compounds, excluding ZINC28232750.
Transport processes, including membrane permeability and distribution to different tissues
and organs, are closely predicted by LogP0/w. A general guide for good oral bioavailability
(good permeability and solubility) is to have a moderate LogP0/w (0 < log P < 3) [24]. For
our compounds, the predicted values of LogP0/w ranged from 1.6 to 3.6. In addition, all the
compounds were confirmed to be blood–brain barrier [BBB] non-permeable, suggesting no
expected neurological side effects. However, pharmacokinetics analysis indicated the low
GI absorption of ZINC433599781, ZINC28232750 and ZINC2036848, suggesting the need
for derivatization of these compounds to improve their ADME profile. An ADME profile
of all the compounds is compiled in Table 4.



Int. J. Mol. Sci. 2022, 23, 13513 18 of 24

Table 4. ADME analysis of top four hits using Swiss ADME.

Compound ID ZINC433599781 ZINC28232750 ZINC2036848 ZINC95589781

MW (g/mol) 423.4 723.6 376.6 375.4

LogP0/w 2.25 3.68 1.63 2.46

Log (ESOL) Soluble Moderately Soluble Very soluble Soluble

GI absorption Low Low Low High

Bioavailability 0.55 0.17 0.55 0.55

BBB No No No No

H-bond acceptor 7 16 8 4

H-bond donor 2 5 5 2

Lipinski’s Rule of Five Yes Yes Yes Yes

MW = Molecular weight; LogP0/w = Octanol Partition Coefficient; LogS = Aqueous Solubility; GI = Gastrointestinal
Absorption.

3. Materials and Methods
3.1. Protein Preparation

To date, more than 40 crystal structures of BRD9 have been deposited in the protein
data bank (PDB) repository. In total, four different structures of BRD9, co-crystallized with
BI7273, LP99, I-BRD9, and Indolizine comp-28, were retrieved. The selection was based on
the optimal resolution (<2 Å) and IC50 (<500 nM) of the cognate ligand. The heteroatoms
and crystal water (except the conserved ones) were eliminated, followed by the protonation
at 300 K temperature with pH 7.0. The energy minimization and subsequent application of
partial charges was done using AMBER 10: EHT force field in MOE 2018 [22].

3.2. Pharmacophore-Based Virtual Screening
3.2.1. Dataset Preparation

Three data sets were prepared.

1. Test Set: Actives (IC50 < 500 nM) and inactives (IC50 > 500 nM) of BRD9, and actives
of BRD4 (Supplementary Information Figures S1, S2, and S3, respectively).

2. Screening dataset: Four subsets; Predicted BRD9, FDA-approved, In-trial, and Epige-
netic were downloaded from ZINC database.

3. Decoys: The ZINC database was used to extract the decoy dataset, which contains
compounds that share the same physical properties as BRD9 actives but differ in
topology. The final decoy database was composed of 12, 991 entries.

ChemDraw Bioultra 14.0 [25] was used for drawing the 2D structures of active and
inactive compounds. All ligands were imported to MOE 2018, where partial charges were
assigned, followed by energy minimization according to the MMFF94x force-field [26] to
remove steric clashes.

3.2.2. Pharmacophore Modeling

For the generation of a structure-based pharmacophore model, the essential step
is to explore the complementary chemical features and crucial residue of the binding
site [27,28]. The four crystal structures of BRD9 reported in Section 2.1 were selected to
map the pharmacophoric features (Table 5). All the four crystal structures were aligned by
the backbones of amino acids using MOE 2018. The molecular visualization and protein–
ligand interaction profile (PLIF) module evaluated the identification of binding mode and
inter-molecular interaction patterns. The unified annotation scheme was used to generate
pharmacophore models [29].
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Table 5. List of BRD9 inhibitors that have been used in the development of the pharmacophore
model, along with their PDB IDs, resolutions and IC50/Kd (nM) values.

PDB ID Resolution Cognate Ligand IC50 (nM)

4UIW 1.7 Å I-BRD9 50

5IGN 1.7 Å LP99 325

5EU1 1.6 Å BI-7273 19

5E9V 1.8 Å Indolizine com28 68

The initially developed pharmacophore model was first optimized to enhance the
model’s predictive performance. The validation was carried out by screening the model
against training and decoy datasets to ensure the capabilities of the generated pharma-
cophore model to differentiate between true and false positive. The model was further
refined by changing the radii of some pharmacophoric features and by applying an exclu-
sion volume.

3.2.3. Statistical Validation

The capability of the pharmacophore model to recognize the maximum number of
active hits and reject of inactive ones reflects its efficacy. Therefore, the quality of the
developed 3D pharmacophore model was assessed by the two fundamental metrics, i.e.,
sensitivity and specificity. Further, the correlation between sensitivity and specificity was
determined by the receiver operating characteristic (ROC) curve [30,31].

3.2.4. Virtual Screening

The validated structure-based pharmacophore model was used as a 3D query for
pharmacophore-based virtual screening of commercially available diverse subsets of the
ZINC database (screening dataset mentioned in Section 3.2.1). Database searching was
carried out using MOE software’s best per conformation generation tool. The molecules in
the databases that optimally satisfied the pharmacophore model’s applied features were
retained as hits and further subjected to molecular docking.

3.3. Docking Simulation
3.3.1. Benchmarking of Docking Software

To validate the reproducibility of the docking software, a co-crystallized ligand (BI-
7273) of BRD9 was extracted, prepared, energetically minimized (mentioned in Section 3.2.1),
and redocked to the binding site by using the induced fit method from the Dock module
implemented in MOE 2018. The Triangle Matcher placement method and the London dG
scoring function was used to generate the docking poses of the ligand and their binding
free energy. However, the generated poses were further refined using the GBVI/WSA dG
scoring function [32]. The results shown in Figure 21 indicate the very good superposition
of the co-crystalized and re-docked pose of BI-7273 in the binding pocket, with an RMSD
of 0.12 Å. This value is lower than the standard acceptable level of 2.0 Å, thus the tested
docking protocol was used to perform molecular docking of the obtained hits from the
subsequent step [33].
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3.3.2. Docking-Based Virtual Screening

To predict the orientation into the binding cavity of the targeted protein and fur-
ther filter the compounds based on relative binding affinities, the virtual hits from the
pharmacophore-based screening were docked into the acetyl binding site of the receptor.
The docking was performed utilizing the same protocol mentioned in Section 3.3.1.

3.3.3. Post Docking Assessment

Docking was followed by protein–ligand interaction profile analysis and molecular
visualization of all ligand–receptor complexes’ top-ranked pose (lowest binding energy).
The selection was based on the interaction of compounds with crucial and selective residues
of the target protein.

Furthermore, to confirm the selectivity of the shortlisted compounds with BRD9 over
other isoforms, redocking was performed against BRD7 (PDB: ID 5MQ1) [34] by using
the same docking protocol as mentioned earlier. Finally, only those compounds which
selectively interacted with the crucial and selective residues of the binding pocket of BRD9
were subjected to atomistic level simulation studies.

3.4. Molecular Dynamic Simulation

The shortlisted hits (ZINC433599781, ZINC28232750, ZINC2036848, ZINC95589781)
from molecular docking and the reference compound were subjected to MD simulation to
capture their dynamic behavior at the atom level while gaining further insights regarding
the nature of interactions for a given time.

To execute MD simulations on all the prepared complexes, the AMBER 18 package
was used, using the graphics processing unit (GPU)-accelerated version of partial mesh
Ewald molecular dynamics (PMEMD) simulations [35].

The LEaP module of the AMBER18 package was used to add all the missing hydrogen
atoms [36]. The appropriate parameters for the protein atoms were applied using the
standard Amberff14SB force field [37], while the small molecules were parameterized
with the general amber force field (GAFF) using the Antechamber program [38]. It was
followed by the placement of the generated complexes in a periodic rectangular box
filled with three-point transferable intermolecular potential (TIP3P) water molecules [39]
with a distance cutoff of 8 Å in the vicinity of the complex. Further, chloride ions were
added to maintain the neutrality of the systems. The bad contacts and steric clashes were
removed by subjecting the complexes to the initial cycle of (2500 steps) of steepest descent
minimization followed by energy minimization using the conjugate gradient algorithms
(comprising 5000 steps) [40]. All systems were then gradually heated from 0 to 300 ◦K.
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Minimization was followed by equilibration, which was carried out at 300 ◦K to attain a
stable system. Subsequently, the NPT equilibration for the unrestrained system was carried
out at a constant pressure and temperature (1 atm and 300 ◦K, respectively).

The energy-minimized and well-equilibrated systems were submitted for a 100 ns
production run [41]. During the simulations, periodic boundary conditions were applied at
a constant temperature and pressure. Long-range electrostatic interactions were evaluated
by the particle-mesh Ewald (PME) method [42]. For all simulations, a 10.0 Å cutoff was set
for non-bonded interactions. The SHAKE algorithm was used to constrain the bond lengths
of all atoms, including hydrogen atoms [43]. Simulation results were elucidated based on
statistical parameters including root mean square deviation (RMSD), root mean square
fluctuation (RMSF), the radius of gyration (RoG), and molecular interactions. Trajectory
analysis was carried out by using the CPPTRAJ [44], and visualization was performed by
VMD [45].

3.5. Molecular Mechanics/Generalized Born Surface Area

Molecular mechanics/generalized born surface area (MMGBSA) was used to calculate
protein and small-molecule complexes. It has been effectively used to refine the results of
virtual screening, docking, and to confirm the experimental findings [46,47].

We applied this method for the most-equilibrated MD trajectories. To calculate binding
free energies, a python script, MMGBSA.py, was used.

In particular, the energy is calculated for the complex, the ligand, and the protein,
and their energies are estimated with the generalized born implicit solvent model by the
following equation:

∆Gbind = GComplex − (Gligand + Greceptor) (3)

where the energy term [G] is estimated as:

∆Ggas = Evdw + Eele + Eint (4)

∆Gsol = GB + GSA (5)

Evdw, Eele, Eint as the van der Waals forces, electrostatic interactions, and internal
energy (bond, angle, and dihedral energies), respectively.

∆GB is the electrostatic contribution to the solvation free energy calculated by the
generalized Boltzmann method and GSA is a nonpolar contribution to the solvation free
energy calculated by SASA (solvent accessible surface area).

3.6. Pharmacokinetic Properties Analysis

Swiss ADME [48], an online software, was used to predict pharmacokinetic properties
of the hit compounds. Absorption, distribution, metabolism, and excretion parameters
were mainly examined.

4. Conclusions

Bromodomain-containing protein 9 has piqued the interest of drug developers as
a biomarker and therapeutic target for different types of cancer and metabolic disorders.
Given the medicinal relevance, the discovery and development of selective inhibitors
for BRD9 have been under continuous efforts. In the present study, we identified small
molecules that selectively target BRD9. In this regard, the structure-based pharmacophore
model was designed to screen four subsets of the ZINC database to obtain novel leads.
The leads were further refined by docking and focusing on its interaction with selective
residues of BRD9 binding pocket. Four compounds (ZINC433599781, ZINC282232750,
ZINC2036848, and ZINC9558978) were identified. Further, the determination of stability
was performed via molecular dynamics simulation. The results of RMSD, RMSF, and
RoG confirm the stability and compactness of all the complexes. Hydrogen bonding,
hydrophobic interactions, π–π interactions and water bridges with conserved and selective
residues such as His42, Gly43, Phe44, Phe45, Asn100 and Tyr106 of BRD9 contribute to
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the stability and binding of all the compounds. Moreover, the binding energy for the
formation of all the complexes was calculated using MM-GBSA, which was found to be
negative and represents the strong binding of the ligand with the BRD9. Additionally, the
results obtained from docking (−7.1 kcal/mol), MM-GBSA (−30.2 Kcal/mol) and post-MD
analysis demonstrated movement of the molecule in the center of the cavity. Moreover,
BRD9–ZINC2036848 complex interactions were reasserted during 100 ns MD simulation,
which indicated that ZINC2036848 might be used as a potent antagonist towards BRD9 in
cancer therapeutics.

In view of the fact that so far no treatment has been devised for BRD9 mediated
disorders, the data presented here could be helpful in the future for in vitro and in vivo
studies and could be used for further expansion in the chemical space.
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