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Abstract: One of the most abundant non-canonical bases widely occurring on various RNA molecules
is 5-methyluridine (m5U). Recent studies have revealed its influences on the development of breast
cancer, systemic lupus erythematosus, and the regulation of stress responses. The accurate identifica-
tion of m5U sites is crucial for understanding their biological functions. We propose RNADSN, the
first transfer learning deep neural network that learns common features between tRNA m5U and
mRNA m5U to enhance the prediction of mRNA m5U. Without seeing the experimentally detected
mRNA m5U sites, RNADSN has already outperformed the state-of-the-art method, m5UPred. Using
mRNA m5U classification as an additional layer of supervision, our model achieved another distinct
improvement and presented an average area under the receiver operating characteristic curve (AUC)
of 0.9422 and an average precision (AP) of 0.7855. The robust performance of RNADSN was also
verified by cross-technical and cross-cellular validation. The interpretation of RNADSN also revealed
the sequence motif of common features. Therefore, RNADSN should be a useful tool for studying
m5U modification.

Keywords: 5-methyluridine; deep neural network; transfer learning; RNA modification; site prediction

1. Introduction

It has been demonstrated that more than 170 post-transcriptional RNA modifications
are present within a diverse set of RNAs, most of which occur in the tRNA and rRNA [1].
These chemical modifications have been proven to be related to various biological functions,
such as early embryonic development [2], cancer stem-cell-fate decisions [3,4], and brain
neurodevelopment [5,6]. The accurate identification of RNA-modification sites is crucial
for an in-depth understanding of the regulatory circuitry of RNA life in all species.

The past few years have witnessed an increasing number of computational approaches
to predicting epigenetic RNA modifications that serve as useful alternatives to wet-laboratory
experiments. These include iRNA toolkits [7–10], SRAMP [11], M6APred-EL [12], Deep-
Promise [13], WHISTLE [14], Gene2vec [15], NmSEER [16], m7G-IFL [17], RF-PseU [18],
MultiRM [19], and DeepAc4C [20]. Special attention has also been paid to cross-species
prediction [21–24], tissue-specific prediction [25–27], and learning from low-resolution
data [28,29]. User-friendly databases [30,31], platforms [32–35], and tools [36,37] have
also been developed. Together, these works greatly have advanced our understanding of
RNA modifications.

Previous predictors focused solely on modifications from a single RNA type, while
the coordination of tRNA and mRNA modifications has recently been reported [38,39],
suggesting a new layer of regulation relationship that can be considered in the model-
ing. The tRNAs are prime targets for modification and have been extensively studied for
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decades. In recent years, mRNA molecules have also been shown to be heavily modified.
Some modifications were reported in both tRNA and mRNA. In particular, pseudouridine
(Ψ) and m6A were recently found to be potential common denominators between tRNA
and mRNA. Some tRNA pseudouridine synthases were also found to modify mRNA [40]
using similar RNA motifs [41]. A recent study showed that the ablation of the tRNA
methyltransferase, TRMT10A, could increase mRNA m6A methylation levels by interacting
with the m6A demethylase FTO. Unlike Ψ and m6A, which have been extensively stud-
ied, 5-methyluridine (m5U), another shared modification between tRNA and mRNA, is
underexplored due to the limited high-throughput profiling approaches. Only recently did
Carter et al. rely on the m5U-catalyzing enzyme, TRMT2A, to apply miCLIP and develop
FICC-seq to detect m5U in human RNAs. FICC-seq successfully identified tRNA sites in a
manner that was consistent with existing knowledge, while also revealing m5U sites on
mRNAs. However, the relatively small number of reported mRNA sites compared to tRNA
sites limits the development of computational models to predict sites from other conditions
or samples. Inspired by the potential coordination of tRNA and mRNA modifications, in
this study, we show that the computational identification of modifiable mRNA sites by
learning from common tRNA features could be a promising approach.

We propose the RNA domain separation network (RNADSN), the first transfer-
learning deep neural network to extract shared features between tRNA and mRNA m5U
modifications and learn to predict human mRNA m5U sites. Current m5U predictors
are constructed either for tRNA sites only [42] or for a mixture of tRNA and mRNA
sites [43] and, thus, cannot reflect the true performance on mRNA. Motivated by the
domain-separation network [44], RNADSN accepts both tRNA data and mRNA data and
utilizes three networks to capture tRNA m5U-specific, mRNA m5U-specific, and shared
features, respectively. Only these shared features are used, so that the model can capture
the tRNA features with the best generalizability to predict mRNA sites. RNADSN achieved
an area under a receiver operating characteristic curve (AUC) of 94.22% and an average
precision (AP) of 78.55% for identifying mRNA m5U sites at a positive–negative ratio
of 1:10, which was better than that of the baseline model m5UPred [43]. Cross-cellular
and cross-technical evaluations also validated the robustness of our model. Furthermore,
RNADSN allows motif mining through model interpretation to reveal captured shared-
sequence patterns. Therefore, RNADSN can serve as a useful tool to identify mRNA m5U
and study the coordination between tRNA and mRNA modifications.

2. Results and Discussion

2.1. RNADSN Allows Transfer Learning from tRNA m5U to mRNA m5U

RNADSN, as shown in Figure 1, predicts mRNA m5U modification sites using transfer
learning. The framework is enlightened by Domain Separation [44] and treats tRNA data
as the source domain and mRNA data as the target domain. RNA sequences from each
domain pass through a domain-specific private encoder and a shared encoder. For each
domain, the outputs of these two encoders are combined again and trained to reconstruct
the original input so that all the sequence features are split into the two encoders without
information loss. At the same time, the model is optimized to minimize the difference
between the two domain outputs in the shared encoder and maximize the difference
between the private encoder and the shared encoder for each domain.

For m5U prediction, only the hidden representations extracted by the shared encoder
are used to train the classifier. Since we had access to tRNA m5U data, both positive and
negative tRNA data were sent to the source-domain encoders and used to train a tRNA
m5U predictor so that the shared encoder could learn to capture m5U sequence patterns.
Initially, we only used mRNA-negative data to train the target domain, so that the model
only saw the mRNA sequence context and not the mRNA m5U-specific patterns. We
found that our model could already outperform the baseline model, in this case, m5UPred.
Since the FICC-seq provided the available mRNA sites, we used part of them as inputs in
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the target domain and trained an additional classifier for direct mRNA m5U prediction.
Therefore, RNADSN can provide two forms, according to different application scenarios.
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2.2. RNADSN Outperforms Baseline Models

The performance of a machine-learning model is greatly affected by the input infor-
mation. Therefore, in our case, the first step in the model evaluation as to determine the
optimal sequence length in the input. As the baseline model to be compared, m5UPred
used a 41-nanotesla-length RNA sequence with the target uridine centered. Therefore, we
tested whether longer sequences could improve the model performance. Specifically, in
addition to the support vector machine (SVM) used in m5UPred, we also chose Naive
Bayes, Logistic Regression, KNN, Random Forest, and XGBoost as additional baselines.
These are the most popular machine-learning classifiers in RNA modification and have
been widely adopted for various site predictions [10,13,19]. All of the baselines were run
with scikit-learn of version 1.0.2 (https://scikit-learn.org/, accessed on 1 July 2022) and
XGBoost Python Package of version 0.9.0 (https://xgboost.readthedocs.io/, accessed on
1 July 2022). Their parameters were delicately tuned to ensure their high performance. The
data from the source domain were used as the training data, while the test performance
on the target domain was reported for comparison. As shown in Table 1, increasing the
sequence length did not improve the model performance in most cases. Therefore, we also
used 41-nanotesla-length sequences in our model.

Table 1. Accuracy under different baseline models using different sequence lengths.

41-nt 51-nt 61-nt 71-nt

Naive Bayes 0.7808 0.7766 0.7873 0.7846
Logistic Regression 0.6157 0.6210 0.6254 0.6216

KNN 0.4466 0.4177 0.3871 0.3728
m5UPred (SVM) 0.8438 0.8401 0.8440 0.8313
Random Forest 0.9355 0.9334 0.9326 0.9310

XGBoost 0.8816 0.8796 0.8759 0.8783
Note: Bold text indicates the best performance of each model. All methods were evaluated on the same test and
training data (only data length varies) as the source-only case in Table 2.

https://scikit-learn.org/
https://xgboost.readthedocs.io/
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Table 2. Model performance using different training data.

Training Data Model Acc Spe F1 AUC AP

Source only

NB 0.7808 0.7930 0.6107 0.8070 0.3471

LR 0.6157 0.6212 0.4778 0.6378 0.1323

KNN 0.4466 0.4070 0.3945 0.6878 0.1577

m5UPred 0.8438 0.8602 0.6756 0.8603 0.4675

RF 0.9355 0.9814 0.7694 0.8983 0.6526

XGBoost 0.8816 0.8945 0.7342 0.9131 0.6473

mRNA only

NB 0.8325 0.8434 0.6707 0.8558 0.4266

LR 0.7141 0.7342 0.5348 0.6692 0.1679

KNN 0.4964 0.4842 0.4093 0.6256 0.1476

m5UPred 0.9091 0.9579 0.7038 0.8323 0.4105

RF 0.9163 0.9987 0.5613 0.8663 0.5771

XGBoost 0.9258 0.9724 0.7450 0.8767 0.5959

Source + mRNA
negative RNADSN 0.9392 0.9639 0.6748 0.9394 0.7670

Source + mRNA RNADSN 0.9527 0.9862 0.7019 0.9422 0.7855
Note: All methods were evaluated on the same test data with a positive–negative ratio of 1:10. The threshold for
accuracy, specificity, and F1 score was 0.5. Acc: accuracy; Spe: specificity; AP: average precision.

We designed three scenarios to demonstrate that our model is able to capture common
features and enhance mRNA m5U predictions from tRNA data. In the first case, the baseline
models were trained on source-domain data only and evaluated on mRNA data to show
the direct transfer performance from tRNA to mRNA. In the second case, the model was
trained and evaluated on mRNA data to avoid heterogeneity with the tRNA data. In the
last case, we used RNADSN to learn from both tRNA and mRNA data. As mentioned
in the framework section, RNADSN can have one classifier, which only processes source
data (only mRNA negative data were used as target domains to provide mRNA sequence
context), or two classifiers, which process source and target data, respectively. All the
performances were evaluated using 36-fold cross-validation, and the average results across
the folds were reported.

To simulate a real transcriptome context, in which only a small amount of uridine
was modified, a test dataset was constructed using a positive–negative ratio of 1:10. For
this imbalanced setting, we paid special attention to the average precision (AP), as it
does not affect the times at which the model only predicts true negatives. As shown in
Table 2, Random Forest and XGBoost showed promising performances when the model
was only trained on the source data without seeing the target domain, indicating a common
feature between tRNA m5U and mRNA m5U. Due to the limited data, the models trained
on the mRNA data performed worse than the models trained on the tRNA, illustrating
the need to leverage tRNA data. Using RNADSN, when only negative data for mRNA
were available, the model improved the average precision by 11.44%. This significant
improvement demonstrates the ability of RNADSN to separate the heterogeneity of tRNA
from the common features of m5U. When mRNA m5U-positive data were available and
used with mRNA-negative data in the target domain, the average precision was further
improved, by 1.85%.

To further assess the robustness of our newly proposed model, we further separated
the data according to their source techniques (miCLIP and FICC-seq) and source cell lines
(HEK293 and HAP1) and examined the cross-technical and cross-cellular performance.
As shown in Table 3, when tested by the independent dataset generated from another
technique or cell type, RNADSN achieved AUC of 0.8731, 0.8845, 0.9342, and 0.8765 and
AP of 0.5853, 0.5724, 0.7369, and 0.5679, respectively, indicating the effectiveness of our
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model. In addition, we also tested the performance of m5UPred for comparison, which
achieved AUC of 0.7910, 0.7654, 0.7983, and 0.7300 and AP of 0.3142, 0.2569, 0.3127, and
0.2498, respectively, by the independent dataset generated from different techniques and
cell types. RNADSN therefore outperforms m5UPred in every metric.

Table 3. Model performances using different training data.

Training Testing Acc Spe F1 AUC AP

RNADSN

FICC-seq miCLIP 0.9282 0.9732 0.5476 0.8731 0.5853

miCLIP FICC-seq 0.8909 0.9174 0.5105 0.8845 0.5724

HEK293 HAP1 0.9408 0.9632 0.6873 0.9342 0.7369

HAP1 HEK293 0.9262 0.9722 0.5343 0.8765 0.5679

m5UPred

FICC-seq miCLIP 0.9011 0.9668 0.6282 0.791 0.3142

miCLIP FICC-seq 0.7991 0.8231 0.6088 0.7654 0.2569

HEK293 HAP1 0.8592 0.9019 0.6396 0.7983 0.3127

HAP1 HEK293 0.9031 0.9763 0.596 0.73 0.2498

Note: All methods were evaluated on test data with a positive–negative ratio of 1:10 to ensure consistency with
previous tests. The threshold for accuracy, specificity, and F1 score was 0.5. Acc: accuracy; Spe: specificity; AP:
average precision.

2.3. Interpretation of RNADSN Allows Motif Mining

The previous sections underscored the performance of RNADSN. To gain insight into
the driving features behind these performances and predictions, we applied the Integrated
Gradients (IG) [45] method to obtain a contribution score for each input. TF-MoDISco [46]
was used to integrate the model preferences for the k-mers in each tested RNA sequence. TF-
MoDISco first extracted high-weight k-mers, and then performed clustering and sequence
alignment on similar patterns to obtain global motifs.

As shown in Figure 2, the motifs captured by RNADSN were similar, but not identical,
to the tRNA m5U modification motifs reported in the source paper, indicating that our
model successfully learned the common features of the two domains rather than tRNA-
specific patterns.
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3. Materials and Methods
3.1. Benchmark Dataset

The experimentally detected m5U sites were collected from the recently published base-
resolution m5U sequencing data. The sequencing results were obtained by two technologies
(CLIP-Seq and FICC-Seq) on two cells (HEK293 and HAP1). Data were downloaded from
Gene Expression Omnibus (GEO), with the accession number GSE109183.

We divided data into three groups, according to their annotation from UCSC human
reference (GRCh37), i.e., mRNA, tRNA, and other RNAs. In total, we obtained 457 sites
on mRNA, 1076 sites on tRNA, and 2163 sites from other RNAs. In practice, data from
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tRNAs and other RNAs were merged into the source domain, while mRNA data were
treated as the target domain. Negative data were sampled from the same transcript as the
experimentally detected sites. For mRNA and other RNAs, the positive–negative ratio was
set to 1:10 to mimic the natural distribution of modifications. For tRNA, all experimentally
undetected uridines were used as negative data, and the positive–negative ratio was about
1:3. We also separated the collected m5U data in terms of their cells (HEK293 and HAP1)
and technologies (miCLIP and FICC-Seq) for cross-technical and cross-cellular validation.

3.2. Data Processing

Input sequences of varying lengths, from 41 nt to 71 nt, were considered with the
target uridine in the center. The input RNA sequences were transformed into numeric
vectors through one-hot encoding. That is, A was encoded as (1,0,0,0), C was encoded as
(0,1,0,0), G was encoded as (0,0,1,0), and U was encoded as (0,0,0,1).

Since we were interested in the predictive power of the model for mRNA, we split
the collected mRNA data evenly into six folds. We fixed one fold of the mRNA data as
the test data for all cases (train only on source domain, train only on mRNA data, and
transfer learning). The remaining five folds were used as training data in the latter two
cases. To avoid training bias caused by imbalanced training data, we further upsampled
the positive data in each group to the same amount of negative data. For RNADSN, each
time the model receives a source datum, it needs to have a target datum at the same time to
learn common features between domains. Therefore, we further upsampled the data in the
target domain (mRNA-negative only or upsampled positive with negative) to the same
amount as the data in the source domain.

We used cross-validation to avoid the effects of randomness in data partitioning.
Specifically, we divided the positive and negative mRNA data into six groups, respectively.
Each time, one positive group and one of the six negative groups were taken as test data,
and the remaining positive and negative groups were used in training. This yielded 36
combinations, allowing 36-fold validation.

3.3. Model-Architecture Design

Our model, RNADSN, borrows and modifies the Domain Separation Network (DSN)
framework originally used for image classification, enabling it to generalize for RNA
sequence classification. Specifically, we replaced the three encoder modules in DSN with
our own networks, which are proven to have the ability to effectively extract features by
blending some well-known layers from the 1D convolutional neural network (CNN) and
Long Short-Term Memory (LSTM). Thus, given a labeled dataset in the source domain and
an unlabeled dataset in a target domain, we can train a classifier on data from the source
domain that generalizes to the target domain.

DSN is equipped with models for both private and shared components of the domain
representations. The private component of the domain representations is generated for only
a single domain, and the shared components are employed for both domains. As shown in
Figure 1, DSN has a private target encoder Et

p
(
x; θp

)
learning to capture components of

representation ht
c specific to target data xt, a private source encoder Es

p
(
x; θp

)
learning to

capture components of representation hs
c specific to source data xs, and a shared encoder

Ec(x; θc) learning to capture common features from both source domain and target domain.
For each domain, a decoder is trained to reconstruct input samples using private and shared
representations so that the input features are separated into the two encoders without loss
of information. Only the hidden representations from the shared encoder were used to
train the classifier. Two modes of RNADSN were proposed. When mRNA-modification
data are not available, RNADSN uses only one source classifier to force the network to
learn shared representations capable of distinguishing modifications from experimentally
undetected nucleotides. In this case, only mRNA negative data were used in training to
provide mRNA-sequence context. When experimentally reported mRNA sites were used
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in training, we added a target classifier to provide an additional layer of supervision to the
model so that the network could also learn mRNA-modification patterns from limited data.

The model was trained by minimizing its overall loss. The loss functions among the
outputs of three encoders were employed to supervise the individuality and independence
of these three encoders. Specifically, the private- and shared-representation components
were pushed apart with soft subspace orthogonality constraints Ldi f f erence, whereas the
shared representation components were kept similar, with a similarity loss Lsimilarity. More-
over, to further ensure the validity of the private representations and to add generalizability
to the whole model, there was also a reconstruction loss Lrecon for each decoder. Lastly,
we also aimed to minimize the negative log-likelihood of the ground truth class Ltarget
and Lsource for each sample to correctly predict the labels of target and source samples.
Combining them together, the final loss function is:

L = αLrecon + βLdifference + γLsimilarity + Lsource + δLtarget

where α, β, γ, and δ are weights that control the interaction of the loss terms. These weights
were fine-tuned during training and the optimized weights are given in the next section.

3.4. Model Training

The first step in model training was to find the optimized hyperparameters for the
network. Since RNADSN is a relatively large and complex model architecture, we first
trained a simplified network with only one encoder and one classifier by taking all the
source domains as training data and the target domain as test data. The layers in the
encoder and classifier were the same as those used in RNADSN. After tuning, the final
network architecture consisted of one CNN layer with a kernel size of (2, 1) and padding
size of 2, one LSTM layer with a hidden size of 8, two BatchNorm layers, and dense layers.

With optimized network hyperparameters, we also tested different weights for loss
terms and learning rates when training RNADSN. In our case, we found that learning rate
of 0.005, learning rate decay step of 600, step decay weight of 0.9, Alpha weight of 0.02,
Beta weight of 0.075, and Gamma weight of 0.25 provided the best performance.

Finally, we performed cross-validation using the training settings determined from
the above evaluation. For each fold, we trained for 20 epochs and kept the best model. The
reported performance of RNADSN was the average of all fold-evaluation metrics.

3.5. Model Interpretation

The above model designs prove and validate the precise performance of RNADSN in
predicting mRNA m5U sites. Interpreting the logic behind the model’s prediction could
shed more light on the mechanisms of the model and further demonstrate its performance.
Thus, the Integrated Gradients (IG) method was employed to visually explain what our
model values most when making different predictions and obtain the most nucleotides that
make the most significant contributions when making positive predictions. By computing
the gradient of an output neuron relative to its input, gradient-based attribution methods
can reflect the extent to which input features contribute to a particular output through
the network. Specifically, the target neuron of interest is each modified classification layer.
IG computes the average gradient of output neurons as the input changes along a linear
path from the baseline or reference input. It measures the contribution of each input to
modification prediction and assigns higher scores to significant nucleotides in the input
sequence. To integrate the model preferences of each nucleotide in every single test, the
general pipeline carries out high-weight k-mers selection, clustering of similar patterns,
and multiple sequence alignment. TF-MoDISco was applied to extract consensus motif
from instances with higher-than-average weights.

3.6. Evaluation Metrics

Classification performance was evaluated by the area under the ROC (Receiver Oper-
ating Characteristic) curve (AUC) and average precision (AP). These two metrics integrate
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the performance of models under all thresholds (true-positive rate vs. false-positive rate
and precision vs. recall, respectively) and can thus more robustly reflect the model’s ability
to discriminate between m5U and uridine. Widely adopted evaluation metrics, including
precision (Pre), specificity (Sp), accuracy (Acc), and F1 score (F1), were also implemented to
evaluate predictive performance.

Pre =
TP

TP + FP

Sp =
TN

TN + FP

Acc =
TN + TP

TN + TP + FN + FP

F1 =
2× Precision× Recall

Precision + Recall
where TP represents true-positive samples, TN represents true-negative samples, FP rep-
resents false-positive samples, and FN represents false-negative samples. Generally, the
higher the evaluation metrics, the better the model’s performance. However, it is worth
noting that when there are far more negative data than positive data (as in our case), the
model can achieve a high AUC as long as it can predict sufficient negative data. In such
cases, the detection capability of positive data is mainly reflected in the AP.

4. Conclusions

In this paper, we introduced a transfer-learning model for predicting mRNA m5U data
by learning common features from tRNA m5U data. The proposed RNADSN architecture
treated m5U sites from tRNA and other RNAs as the source domain and m5U sites from
mRNA as the target domain. The network first learns to capture source-specific, domain-
specific, and shared representations of the input data and then uses the shared features to
perform classification. Specifically, we showed that when only negative mRNA data were
given to provide mRNA-sequence-context information, RNADSN already demonstrated
a promising performance and outperformed the state-of-the-art method, m5UPred. The
performance was further improved when additional supervision was provided using the
available mRNA data. We further demonstrated that RNADSN achieved satisfactory
results through cross-cellular and cross-technical validation. Moreover, a sequence motif
was obtained through the model interpretation and the patterns of the learned common
features were revealed. Future work will include applying RNADSN to other biological
data for cross-RNA analysis.
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