
Citation: Todd, J.N.A.;

Carreón-Anguiano, K.G.; Islas-Flores,

I.; Canto-Canché, B. Fungal

Effectoromics: A World in Constant

Evolution. Int. J. Mol. Sci. 2022, 23,

13433. https://doi.org/10.3390/

ijms232113433

Academic Editor: Makoto Kimura

Received: 28 September 2022

Accepted: 31 October 2022

Published: 3 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Fungal Effectoromics: A World in Constant Evolution
Jewel Nicole Anna Todd 1 , Karla Gisel Carreón-Anguiano 1 , Ignacio Islas-Flores 2

and Blondy Canto-Canché 1,*

1 Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34,
Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico

2 Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C.,
Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico

* Correspondence: cantocanche@cicy.mx; Tel.: +52-999-942-8330

Abstract: Effectors are small, secreted molecules that mediate the establishment of interactions in
nature. While some concepts of effector biology have stood the test of time, this area of study is
ever-evolving as new effectors and associated characteristics are being revealed. In the present
review, the different characteristics that underly effector classifications are discussed, contrasting past
and present knowledge regarding these molecules to foster a more comprehensive understanding
of effectors for the reader. Research gaps in effector identification and perspectives for effector
application in plant disease management are also presented, with a focus on fungal effectors in the
plant-microbe interaction and interactions beyond the plant host. In summary, the review provides
an amenable yet thorough introduction to fungal effector biology, presenting noteworthy examples
of effectors and effector studies that have shaped our present understanding of the field.
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1. Introduction

Effectors are molecules that provide an evolutive advantage to organisms as they com-
plete their life cycles and thrive in their respective niches. Effectors are traditionally defined
as molecules that manipulate host cell structure and function, thereby facilitating infection
(virulence factors or toxins) and/or triggering defense responses (avirulence factors or
elicitors) [1]. We define effectors as molecules of diverse functionality and molecular nature
that influence organisms’ interactions with each other, usually to the benefit of the organism
using them. The effector gene products are produced by one organism but they mainly
function in another, resulting in the alteration of host cell structure and function [1–3].
Effectors were first discovered in the pathogen-plant interaction between a biotrophic
fungus and its plant host but have since been widely described in different pathosystems
involving biotrophic, hemibiotrophic, and necrotrophic fungi [4–6]. Biotrophic organisms
require live hosts to complete their life cycle, and their effectors allow them to stealthily
enter and remain in the host while avoiding recognition and suppressing the host’s de-
fenses [7–9]. Necrotrophs, which are heavily dependent on cell wall-degrading enzymes
and phytotoxins to infect hosts also use effector molecules [10–12].

In each ecological interaction, communication exists between effectors and receptors
that shape the outcome of the interaction. Although widely associated with pathogenicity,
effectors have been discovered in plant-beneficial organisms such as mutualist mycorrhizal
species and endophytes [13–16] and the study of their roles in microbe-microbe interactions
is gaining traction in the field of effector biology [17,18]. These molecules are ubiquitous
in microorganisms, and the effectorome complement of each organism is highly special-
ized and greatly affects its lifestyle, as both gene gain and loss of certain effectors have
implications for pathogen virulence and host adaptation [19–22]. Effectors have even shed
their “microbial” association and have been identified in larger organisms [23–26] and are
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also defense molecules used by plants in their interactions with invaders [27,28]. It is now
more evident than ever before that effectors participate in diverse associations between
organisms that transcend the boundaries of taxonomic kingdoms and lifestyles, making
them cornerstones of biological interactions.

Effectors can be classified in many ways: according to their molecular nature, effector
molecules can be proteins [29,30], secondary metabolites [31–33], or small RNAs [34,35].
Apart from their molecular nature, effectors can be classified based on their site of action in
the host plant i.e., apoplastic (extracellular) or intracellular; the latter comprising effectors
targeting host proteins in the cytoplasm and cell organelles [1,36–38]. Some effectors may
also be race-specific i.e., only found in some strains or isolates of a species [39,40] while
other effectors are common to the genomes of different closely or distantly related species
and are termed “core effectors” [41,42]. Another type of classification for effectors is based
on their interactions with organisms or host specificity [43] since effectors participate
in more than one type of interaction, e.g., in both plant-microbe and microbe-microbe
interactions, while other effectors are interaction-specific.

Since the hypothesis of pathogen Avr genes by Flor in 1942, our knowledge of these
molecules has greatly expanded, with various models produced to explain effector interac-
tions with their receptors and the application of molecular biology techniques to elucidate
the functions of chosen microbial effectors (Figure 1), but the study of effectors is far from
black and white. The present review gives a comprehensive summary of the pioneering
literature as well as, disruptive findings regarding effector molecular nature, localization,
taxonomic distribution, and the types of interactions involving effectors. The associated
changes that have occurred within effector identification methods over the years and novel
bioinformatic tools are also briefly discussed. Remarkable effector reviews that summarized
significant findings regarding effector identification, evolution, effector functions, host
targets, and Avr-R interactions were published in 2009 [3,30,44] followed by noteworthy
publications in the last decade that, in large part, have explored newly discovered effector
functions and how they undermine plant defense [4,5,36,37,45,46]. To our knowledge, this
review is the first of its kind to present recent updates in effector biology and demonstrate
how they may differ from previously established dogmas in the field. Furthermore, a
wider range of effector topics is addressed than in previous publications, and interesting
findings are organized according to each theme. Finally, a comprehensive table compares
the “past versus present” ideas surrounding these themes. In summary, the objective of the
review was to demonstrate how effector concepts have evolved over the last three decades,
challenging the initial definition of an effector.
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Figure 1. A timeline of some noteworthy milestones that shaped Effector Biology.

2. Fundamentals of Effector Biology

Effectors were first called ‘avirulence factors’ as described by the botanist Flor in the
1940s [47]; genes called Avr were used by pathogens for which a cognate ‘R’ or resistance
gene existed in plants resistant to the particular pathogen. This was dubbed the ‘gene-
for-gene hypothesis and in Flor’s work, it was applied to the fungus Melampsora lini and
the plant host, the flax plant, Linum usitatissimum. Though the original discovery was
made between these two organisms it was found to apply to other pathogens in interaction
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with their plant hosts, although it is unlikely that the gene-for-gene interaction is the most
common interaction found between effectors and targets [48]. Resistant plants evolved
with resistance gene products to recognize pathogen Avrs and curtail the infection; this
phenomenon is discussed later in this section. Conversely, gene products belonging to the
host which promote the infection are encoded by susceptibility (S) genes, where negative
regulators of plant immunity can be found [49]. Triggering susceptibility is fundamental
for the compatible pathogen-host interaction, ultimately resulting in the development of
disease. Most effectors characterized to date, target positive regulators of host immunity,
interfering with their functionality in host defense [46].

Regarding plant immunity, MAMPs and effectors are the major elicitors of host de-
fense; conserved molecules called MAMPs are the elicitors of host defense mechanisms
(deposition of callose, induction of pathogenicity-related proteins, oxidative burst) that
are collectively referred to as MAMP-triggered immunity (MTI). MTI is induced upon the
recognition of MAMPs by plasma membrane-localized pattern recognition receptors (PRRs).
These mechanisms are also induced and potentiated during another defense tier called
Effector-triggered immunity (ETI) which is based on a unique protein-protein interaction:
the recognition of the ‘Avr’ protein of the pathogen by the ‘R’ protein of the host. Many R
proteins are intracellular and belong to the family of nucleotide-binding and leucine-rich re-
peat domain (NLR) proteins [50,51]. Regarding the pathogen, microbes most likely evolved
with effectors to overcome the basal immunity response of the plant; when PTI and ETI are
compromised in the host due to effector deployment, this phenomenon is referred to as
“Effector-triggered susceptibility” [50,52,53]. The defining characteristic of ETI is a form of
programmed cell death induced in the plant called the hypersensitive response (HR) and
the induction of systemic acquired resistance (SAR), which prevents further propagation of
the pathogen. ETI induced by the Avr-R protein interaction is essential to the incompatible
pathogen-host interaction, where the pathogen fails to cause disease. Pathogen Avr genes
have virulence functions that aid in disease development, e.g., the Cladosporium fulvum
Avr effectors Avr2 [54] and Avr4 [55] which suppress MTI. Avr-Pik is another example of
a fungal Avr whose virulence function is known; Avr-Pik binds and stabilizes the host
protein OsHIPP20, a product of a susceptibility gene that promotes Magnaporthe oryzae
infection [56]. Some Avrs suppress ETI mediated by other Avrs, like the AvrLm4-7 effector
of Leptoshaeria maculans that suppresses the AvrLm3-Rlm3 mediated resistance response in
Brassica napus [57]. The virulence functions of most Avrs remain unknown.

The Avr and R genes of pathogens and plants are under high selective pressure to
evolve; mutations and/or gene losses and gains of the Avr allow pathogens to evade
recognition while the plant (at a much slower rate) evolves new R genes to maintain the
ability to recognize the Avrs in order to protect itself [50]. The direct interaction between
Avr-R is one of a few types of effector-target interactions in the plant. The guard hypothesis
suggests that R genes exist that guard many possible targets [58], while in the decoy
model the Avr protein has an indirect target, a decoy, and the R protein is alerted by this
interaction [59]. The integrated decoy model explains how some R proteins (NLR receptors)
have evolved to integrate additional decoy domains that act as a sensor or bait for Avrs;
in this interaction, the bait binds to the effector, and another receptor interacting with the
bait triggers defense signaling [60,61]. In another effector interaction theory, not every
molecule that an effector will interact with is its true target; effector ‘helpers’ exist which
aid in signal transduction or signal amplification like “helper” NLRs which interact with
true “sensor” NLRs [62,63]. Other helpers may be cofactors, chaperones that aid in protein
folding, or transporters, among other functions, that ultimately aid in host susceptibility or
defense [64,65].

The strict separation of the MTI-ETI dichotomy and the zig-zag model has been
challenged for various reasons: (1) the zig-zag model was established for biotrophic
pathogens, (2) some effectors are broadly conserved and can therefore be considered
MAMPs, and (3) the stages of MTI and ETI are not static [66]. A more inclusive model
called the “invasion model” was therefore proposed to rename the players involved. All
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immunogenic molecules (effectors and elicitors/MAMPs) are described as invasion patterns
(IPs) perceived by plant IP receptors (IPRs), leading to an IP-triggered response (IPTR) [66].
The more recent “iceberg model” suggests that both resistance (R) and susceptibility (S)
targets are monitored by NLRs that act in “interaction units”; the majority of interaction
units are silent (due to effectors that suppress host immunity) and make up the larger
portion of the iceberg which is under the surface and unseen, while the visible tip of the
iceberg consists of those interaction units (effector and receptor interactions) that are able
to induce host defense resulting in the resistant phenotype [53].

The latest developments in effector biology revolve around the MTI-ETI dichotomy as
it is now clearer than ever that the two are more interrelated than they are distinct. MTI
and ETI share many of the same components; recently it was observed that TIR signaling
mutants (domains found in NLR resistance proteins involved in ETI) displayed compro-
mised MTI and overexpression of TIR genes amplified the MTI defense response [67]. In
the same vein, another study found that ETI’s hypersensitive response is enhanced by MTI
PRRs and that effective host resistance is mediated by MTI and ETI working in concert [68].

3. Effector Identification: Past and Present

The first 80 years of effectoromics were challenge-ridden due to the lack of homology
present among effector molecules and also due to discrepancies in effector identification
methods. Certain criteria have been established to identify effector candidates; researchers
either prepare in-house tailored pipelines for effector identification or use already estab-
lished programs that are based on common effector characteristics. Effector candidature
is usually determined based on sequence length ≤ 300 amino acids; cysteine richness
(>2% cysteine content or >4 cys residues), presence of a secretory signal peptide; absence of
transmembrane domains; higher expression in interaction with the host; limited taxonomic
distribution with no or limited sequence similarity to other organisms and encoded by genes
with long intergenic regions or in gene-sparse, repeat-rich chromosomes [30,36,69–71].

The number of validated effectors in recent times has increased from 96 in 2018 to more
than 300 in 2022 [69,72–74]. This has occurred due to advances in ‘omics’ studies and the de-
velopment of bioinformatic tools. Bioinformatic tools used for the prediction of effector char-
acteristics include SignalP (https://services.healthtech.dtu.dk/service.php?SignalP-5.0;
[75]), for the detection of signal peptides; TargetP (https://services.healthtech.dtu.dk/
service.php?TargetP-2.0; [76]), LOCALIZER (http://localizer.csiro.au/; [77]), and WoLF
PSORT (https://wolfpsort.hgc.jp/; [78]) for the determination of effector localization and
DeepTMHMM (https://dtu.biolib.com/DeepTMHMM; [79]), for the prediction of trans-
membrane domains where the absence of said domains is preferred. Databases of experi-
mentally validated proteins with roles in pathogen virulence have been especially useful
for effector prediction. The database PHI-base which has a compendium of genes involved
in plant-pathogen interactions allows users to compare their effector candidates with those
homologs in the database using PHI-BLAST (http://phi-blast.phi-base.org/; [80]). These
bioinformatic prediction tools and databases have supported effector predictions on high,
medium, and low-throughput screenings for effectors. In the last decade, a turning-point
for effector prediction came with the creation of software based on machine-learning (ML)
methods that predict effectors based on sequence characteristics shared among experi-
mentally validated effectors. Notably, Sperschneider and colleagues created the EffectorP
series, the most commonly used machine learning algorithm for fungal effector predic-
tion [74,81,82].

EffectorP 1.0 is a Naïve Bayes machine learning predictor that was trained with
58 true fungal effectors from 16 fungal species. The negative dataset (14,143 proteins) was
constructed based on the secretomes (total set of secreted proteins) of 16 fungal species,
filtering the known effectors and homologs. Although EffectorP 1.0 improved fungal
effector prediction from secretomes, it was trained with a negative dataset including
both undiscovered effectors and non-effectors [81]. EffectorP 2.0 was then trained with
94 secreted true effectors from 23 fungal species and the negative dataset (21,840 proteins)
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was constructed initially as it was for EffectorP 1.0, but with 23 fungal pathogen secretomes,
after which EffectorP 1.0 was applied to exclude potentially undiscovered effectors. To this
output, the secretomes from 27 non-pathogenic saprophytes, and 10 animal-pathogenic
fungal secretomes were added. As a result, the updated EffectorP 2.0 was successful in
decreasing by 40% the number of effector candidates from the negative set that was from
fungal plant symbionts and saprophytes vs. EffectorP 1.0 [82]. EffectorP 2.0 has been the
most frequently used fungal effector predictor in recent years. However, reports about
effectors in non-pathogenic fungi are ever increasing [83,84], and these effectors may be
excluded during effector mining, even by EffectorP 2.0. The latest EffectorP algorithm,
version 3.0, classifies effectors according to apoplastic and cytoplasmic localization [74].

Another recent predictor of fungal effectors, Effhunter, is a pipeline written in Perl/Bioperl
language that retrieves effector candidates that strictly meet the canonical or conventional
effector criteria: secreted (signal peptide presence), small size (<400 amino acids), cysteine-
rich (>4 residues) and no transmembrane domain [69]. Effhunter is a suitable effector
predictor, possessing the highest F1 score for identifiers of canonical fungal effectors. Re-
garding oomycetes, the ML algorithm EffectorO identifies proteins unique to one species or
genus of oomycetes and was able to predict larger effectoromes than previously estimated
for Bremia lactucae and Phytophthora infestans [73].

Many effectors evade the current predictors because of their non-conventional nature;
these effectors called non-canonical effectors (NCEs) constitute approximately 90% of an
organism’s effectorome according to WideEffHunter (Carreón-Anguiano et al. submit-
ted). Since some effectors do not meet all the criteria used to define them, researchers
in effectoromics face a great challenge during in silico effector identification. To help re-
searchers prioritize the most important criteria for selecting or ranking effectors, authors of
WideEffHunter in silico characterized 314 true (validated) fungal and oomycete effectors.
The ranking of the criteria was as follows: the absence of glycosylphosphatidylinositol
anchors (GPI), 96.5%; the absence of transmembrane domains (TMD), 91.1%; sequence
length < 400 amino acids, 89.4%; the presence of a signal peptide, 85%; extracellular local-
ization, 71.6%; >4% Cys content, 54.4%. The determination of the importance or weight
of each of these effector criteria will be beneficial for future effector predictions and the
selection of candidates for further characterization in the lab.

NCE characteristics have been shown to vary across proteins; some are larger than
400 amino acids (Ace1: [85]), lack a signal peptide (VdIsc1: [86]), have low cysteine con-
tents (AvrLm1: [87]) while others show high similarity to other effector sequences or are
conserved among species e.g., ceratoplatanins [88], the latter being easier to recognize
by pipelines that integrate homology as one of the effector identification characteristics.
These non-conventional effectors require creative strategies for their identification, like
the use of effector-related motifs. The motifs RXLR, LFLAK, Y/F/WxC, and CRN motifs
are commonly used for identifying effectors in oomycetes, but recently, Zhao et al., (2020)
used this strategy on the fungus Puccinia graminis and found 719 RXLR, 19 CRN, and
138 Y/F/WxC new effector candidates [89]. Recently, the Predector [90] pipeline, which
was created for ranking effector candidates, was able to identify MoCDIP8, a non-canonical
Magnaporthe oryzae effector with two predicted transmembrane domains and no signal
peptide; the predictors EffHunter, EffectorP 1.0 or EffectorP 2.0 fail to recognize this protein
as an effector. Predector also recognizes MoCDIP13 which is retrieved by EffectorP 1.0 but
not by Effhunter and EffectorP 2.0.

Admittedly, it would be difficult for any singular algorithm to correctly identify all
the effectors of an organism’s effectorome, but this is an exciting era where improvements
in the current algorithms and newer algorithms are increasing the number of true effectors
identified per organism. Hundreds of effector candidates are being identified from omics
projects, necessitating strategies for prioritizing candidates for functional analysis.
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4. Effector Conservation: Effectors Shedding the “Species-Specific” Label

The genes that encode effectors are commonly referred to as “compartmentalized”
in gene-sparse, repeat-rich regions of the accessory chromosomes of the genome which
facilitate their “high-speed” evolution. These regions are characterized by high muta-
tion rates and chromosomal rearrangements [71,91–93]. A “two-speed” genome model
proposes that genome organization could be broadly divided into two parts: the core
genome which holds essential genes that are protected from high rates of mutation while
the accessory genome has the effectors which require rapid evolution [92,94,95]. This
two-speed genome arrangement has been documented, for example, in the fungi Verti-
cillium dahliae [96], Leptosphaeria maculans [97], and Colletotrichum higginsianum [98]. The
accessory or “dispensable” chromosomes are not found in all races or strains of a pathogen;
they are referred to as strain- or pathotype-specific chromosomes [99]. However, not all
genomes exhibit compartmentalization of virulence genes, and gene distribution is rather
homogenous in “one-speed” genomes [100,101].

Effectors were once commonly referred to as race-specific or lineage-specific, taking
part in interactions that are unique to one host or a limited host range [40,102,103]. Some
effectors are more conserved than others and can be found among all the strains of a
pathogen and are referred to as “core” effectors [41,104]. The term has been extended
to those effectors that are also found in related species of a taxonomic family [42]. It
is hypothesized that effector genes that are conserved among pathogens and reside in
core genome regions are most likely to hold indispensable virulence functions. As such,
they are not under the same rate of diversifying selection as their race-specific effector
counterparts [105]. Various core effectors have been identified from the biotrophic fungus,
Ustilago maydis. The Pep1 effector that was found in species across the Ustilaginaceae family
including Sporisorium reilianum, S. scitamineum, Melanopsichium pennsylvanicum, and other
Ustilago species (45.76–62.36% identity with the U. maydis Pep1) [106]. Pep1 is indispensable
for pathogen virulence and is an inhibitor of apoplastic plant peroxidases, suppressing the
oxidative burst. Cce1 is another core effector of Ustilago maydis of unknown functionality
that is indispensable for infection; Cce1 is conserved among other smut fungi showing a
range of sequence identity between 59–65% [107]. In U. maydis, a substantial number of its
effectors are core effectors; 202 of the 467 effector candidates have an ortholog in the related
smut pathogens [108].

Colletotrichum fungi represent another interesting model for effector conservation.
CgEP1 was initially identified in the maize anthracnose pathogen, Colletotrichum graminicola.
This protein is synthesized during the early stages of disease development and targets the
host’s nucleus. EP1 arose from a gene duplication event in an ancestor of Colletotrichum
sp. and has been under positive selection, resulting in CgEP1 homologs in several species
of Colletotrichum sp. [109]. A recent inventory of effectors in Colletotrichum sp. genomes
revealed 288–608 effectors per genome; cluster analysis of the effectoromes revealed that
~20% of conserved effectors were core effectors present in all Colletotrichum species [110].
Some examples of conserved effectors are NIS1, EC92, DN3, EC2-1, CEC2-2, CEC3, and
CEC6, among others [110–112]. The core effector, NIS1, is not only found throughout
the Colletotrichum genus but is broadly conserved in Ascomycota and Basidiomycota
filamentous fungi [41]. In opposition to the usual effector narrative, most effector candidates
of Colletotrichum species are conserved; only 4.1–15.6% of their effectoromes consist of
species-specific effectors [110], giving support to the concept that each effectorome is a
function of species host range and virulence.

It appears that not all shared effector homologs among species have the same functions,
rather, some have evolved to have additional or different functions to suit their organism’s
needs. Avr4 is a fungal effector and chitin-binding lectin that protects fungal cell walls
against plant chitinases [55]. It was first described in Cladosporium fulvum, the causal agent
of the leaf mold of tomato. Homologs of this protein were identified in Pseudocercospora
(previously Mycosphaerella) fijiensis, and in Cercospora beticola, C. nicotianae, C. apii, and
C. Zeina [113], Dothistroma septosporum [114], and Pseudocercospora fuligena [115], all of which
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are related Dothideomycete fungi. In addition to its role as an avirulence protein, the
Avr4 of C. flagellaris, the causal agent of Cercospora leaf blight (CLB) on soybean, was
found to be involved in cercosporin biosynthesis, since the Avr4 knockout mutant had
a dramatically reduced production of this toxin [116]. In P. fuligena it was found that a
second copy (paralog) of Avr4, called Pf Avr4-2, does not bind chitin but it binds to highly
de-esterified pectin to relax the plant cell wall structure with the help of secreted endo-
polygalacturonases to facilitate pathogen entry [117]. Another effector first described in
C. fulvum, Ecp2, has homologs in closely related fungi, like P. fijiensis and Mycospharella
graminicola [113], but the function of this effector is unknown. As more genome sequencing
and effector identification studies are performed, we are likely to see more effectors being
present across related and even unrelated species and genera. The previous effector
families are shared among phylogenetically close relatives. The next examples have larger
phylogenetic distribution.

Ecp6 is a secreted LysM-containing effector first described in C. fulvum. Ecp6 binds
chitin oligosaccharides that are released upon degradation of the fungal cell wall, avoiding
detection by the host chitin receptors [118]. Proteins with LysM domain are conserved
throughout fungal taxa and evasion of immune detection by Ecp6s may very well be a
common strategy of fungi to subvert host immunity [119]. RALPH and MAX constitute
large effector families that were more recently discovered. The former, “RNAse-Like
Proteins Associated with Haustoria” (RALPH), comprises 25% of the predicted effectors in
Blumeria graminis [120], meanwhile MAX or “Magnaporthe Avrs and ToxB like” effectors
were discovered by comparative 3D modeling of Magnaporthe oryzae effectors and effectors
of the phylogenetically distant pathogen Pyrenophora tritici-repentis [121]. To date, they
represent between 5 to 10% of the Magnaporthe oryzae and M. grisea effectoromes [122].
Functional analysis has validated that these proteins induce clear necrosis in Nicotiana
benthamiana when co-expressed with the corresponding ‘cognate’ resistant protein.

ToxA, first identified in Pyrenophora tritici-repentis, has homologs in Parastagonospora
nodorum, and Bipolaris sorokiniania, among other species, that most likely originated through
horizontal transfer of these genes [123]. Similarly, AvrLm6 first reported in Leptosphaeria mac-
ulans, has been reported in Leptosphaeria biglobosa, Fusarium oxysporum, Colletotrichum sp.,
Venturia inaequalis and V. pirina [90]. Lastly, a Crinkler effector candidate CRN13, from
the legume root pathogen Aphanomyces euteiches, is also found in the genome of the am-
phibian fungal pathogen, Batrachochytrium dendrobatidis. The effector was found to have
detrimental effects on plants through the inhibition of root growth and produced abnormal
growth in frog embryos [124]. The number of conserved effector families is still small, but
the use of common domains during effector identification and 3-D homology modeling
has undoubtedly improved our ability to predict effectoromes and will enable us to iden-
tify new effector families shared in even taxonomically distant microorganisms. Table 1
presents different levels of conservation found in effectors, from species-specific to widely
distributed conserved effectors.

Table 1. Effectors can be species-specific, genus-specific or conserved across various genera.

Distribution * Effector Type Organism Effector Name
and Uniprot ID Function Reference

Conserved:
Different classes in

Ascomycetes

Ceratoplatanin
family

Botrytis
cinerea

BcSpl1
(A0A384JBC5)

Phytotoxin, elicits
systemic resistance
(SAR) in tobacco.
Necrosis (HR) in
tobacco, tomato
and Arabidopsis

[125,126]
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Table 1. Cont.

Distribution * Effector Type Organism Effector Name
and Uniprot ID Function Reference

Conserved:
Wide distribution in

Dothideomycetes class
(Ascomycetes)

LysM domain Cladosporium
fulvum Ecp6 (B3VBK9)

Virulence factor; binds
to fungal chitin to

prevent chitin
triggered-immunity

in host

[118]

Conserved:
Colletotrichum genus

(Glomerellales order),
Fusarium, Trichoderma,
(Hypocreales order) in
Sordariomycetes class.

Few species in
Dothideomycetes class

(Ascomycetes)

Necrosis
inducing protein

Colletotrichum
orbiculare NIS1 (H7CE97)

Suppresses
PAMP-triggered

immunity, targets
kinases BAK1 and

BIK1
Recognition is

followed by a plant
cell death response
(necrosis), potential

avirulence effects

[41]

Conserved:
Few genera in

Sclerotiniaceae family
(Ascomycetes phylum)

Necrosis and
ethylene-inducing

proteins (NLPs)

Botrytis
cinerea BcNep2 (Q079H3) Induces cell death in

dicotyledonous plants [127]

Conserved:
Fusarium genus

(Hypocreales order),
Bipolaris genus

(Pleosporales order),
Verticillium genus

(Glomerellales order),
in

Sordariomycetes class
(Ascomycetes phylum)

Necrosis and
ethylene-inducing

proteins (NLPs)

Fusarium
oxysporum f. sp.

erythroxyli

NEP1
(O42737)

Induces necrosis and
ethylene

emission in
Erythroxylum coca

leaves

[128,129]

Conserved:
Many species in

Colletotrichum genus
(Glomerellales order)
and Fusarium genus
(Hypocreales order)

Necrosis
inducing
protein

Colletotrichum
higginsianum

ChNLP1
(K7N7F9)

Induces necrosis in
N. benthamiana [130]

Conserved:
Many species in

Mycosphaerellaceae
family,

Dothideomycetes class

Chitin-binding
type-2

Cladosporium
fulvum Avr4 (Q00363)

Triggers a
Cf-4-mediated
hypersensitive

response (HR) in
tomato; protects
fungal cell walls

against hydrolysis by
plant

chitinases

[55,113,131]

Conserved:
Species in

Ustilaginaceae family
Pep1 Ustilago

maydis Pep1 (G0X7E8)

Inhibitor of plant
peroxidases;
targets maize

peroxidase POX12 to
suppress plant

immunity

[106,132]
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Table 1. Cont.

Distribution * Effector Type Organism Effector Name
and Uniprot ID Function Reference

Conserved:
Few species in

Magnaporthales,
Sordariales,
Xylariales,

Hypocreales,
Glomerellales orders

MC69 Magnaporthe
oryzae

MC69
(L7JHY1)

Development of
invasive hyphae
affected in mc69
mutant; reduced

pathogenicity on host

[133]

Specific to genus Avr Phytophthora
sojae

PsAvh163
(G1FRR2)

Suppresses PTI and
ETI responses in

Arabidopsis
Activates immunity
(HR response) in the

Nicotiana genus.

[134]

Specific to genus Hop Pseudomonas
syringae HopAl1 (Q888W0)

Phosphothreonine
lyase; inactivates

MAPKs in Arabidopsis
to overcome PTI

[135]

Specific to genus
Suppressor of

necrosis 1
SNE1

Phytophthora
infestans SNE1 (A2CLL0)

Suppresses cell death
induced by NLP and

Avr effectors in
N. benthamiana and

Solanum
lycopersicum

[136]

Specific to genus Avr Melamspora
lini AvrM (Q2MV46)

Induces ETI in host;
targets

resistance protein M
[137,138]

Specific to genus Avr Magnaporthe
oryzae AvrPia (B9WZW9)

Induces ETI in host;
targets

resistance protein
RGA5

[139]

Species-specific Avr Cladosporium
fulvum Avr9 (P22287)

Induces ETI in host;
Targets resistance

protein of Cf-9
[140]

Species-specific Avr Magnaporthe
oryzae

AVR-Pik
(C4B8B8)

Induces ETI in host;
targets

resistance protein Pik
[56,141]

Species-specific
Biotrophy-

associated secreted
(BAS) proteins

Magnaporthe
oryzae

BAS1
(G5EHI7)

Triggers defense
response in host;
overexpression

increases virulence,
sporulation and

reduces
expression of host

defense-related genes

[142,143]

Species-specific Ribonuclease
family

Blumeria
graminis

BEC1054
(N1JJ94)

Ribonuclease like;
binds to host

ribosomes and inhibits
the action of plant

ribosome-inactivating
proteins (RIPs)

[144]

* Distribution was determined by Blastp at NCBI for fungi (taxid: 4751) and oomycetes (taxid: 4762).
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5. Effector Targets: Beyond the Apoplast

The effector leaves the organism’s secretory system to arrive at either its cell wall, as
in the case of those “protective effectors” (e.g., the ortholog of Avr4, PfAvr4 [145]), or is
secreted into the extracellular space where it finds its host target in the apoplast or in the
cytoplasm. Inside the cell, effectors may target various intracellular organelles (Figure 2).
The haustorium is associated with fungal effector delivery [146], though effectors have been
found to be secreted from conidia [147], as well as appressoria [130]. In pioneer investiga-
tions between 1996 and 2008 in fungal effector biology, the effectors that were identified and
characterized were mainly apoplastic, like the Avr and Ecp effectors from the biotrophic
fungus Cladosporium fulvum [5,30,48]. Regarding fungi and oomycetes, 314 protein effectors
have been characterized to date, 228 from fungi, and 86 from oomycetes (compilation
from the literature by Carreón-Anguiano et al., submitted). Recently, 176 known effectors
were classified; 64 apoplastic (50 from fungi and 14 from oomycetes), and 112 cytoplasmic
effectors (77 from fungi and 35 from oomycetes) [74].

The way in which effectors arrive at their targets is an interesting and controversial
facet of effector biology. Canonical secretion in eukaryotes occurs through the endo-
plasmic reticulum and Golgi apparatus, then across the cell membrane via exocytosis
of the secreted vesicles of the Golgi. Secreted proteins commonly have signal peptides:
protein-sorting signals that direct the protein to the cell’s protein secretion machinery [148].
Conversely, proteins that lack signal peptides are usually considered to have non-canonical
secretion and can be secreted by vesicular and non-vesicular pathways; vesicular path-
ways involve autophagy-based secretion and Golgi-bypass proteins while non-vesicular
secretion includes protein translocation across plasma membranes and secretion by ABC-
transporters [149]. It is not well known which of these pathways, if any, are used for
non-canonical secretion of effectors, only that some effectors lacking predicted N-terminal
signal peptides do exist and are secreted to the extracellular space. In the oomycete, Phy-
tophthora infestans, a cytoplasmic effector lacking a signal peptide, Pi410314, was found to
exhibit non-canonical secretion as Brefeldin A inhibition assays did not inhibit the retro-
grade secretion of the effector, compared to an apoplastic effector studied which showed
canonical ER-Golgi secretion [150]. PsIsc1 of P. sojae and VdIsch1 of Verticillium dahliae are
effectors that lack predicted N-terminal signal peptides. The effectors were mutated to
remove the entire N-terminal region and as a result, both were found to have markedly
reduced virulence in cotton seedlings indicating that putative unconventional secretion
signals located in the N-terminal region of the proteins are necessary for their secretion [86].
Probably the most well-understood non-canonical secretion occurrence is in Magnaporthe
oryzae, where cytoplasmic effectors were found to be secreted non-canonically by a form of
secretion involving the exocyst complex and t-SNAREs [151] while apoplastic effectors such
as BAS4, BAS113, and SLP1 are secreted by the conventional ER-Golgi pathway [152]. In the
case of oomycetes, motifs in their sequences like the N-terminal RxLR-(d)EER motif mediate
host cell entry by binding to phosphatidylinositol phosphates on the outer surface of plant
plasma membranes [153]; the RXLR motif has since been identified in some fungi [154].
Other sequence features allowing effector movements are chloroplast/mitochondrial tran-
sit peptides and nuclear localization signals. These sequence features are native to plant
proteins, and it is hypothesized that through mimicry, effectors would have evolved with
these transit peptides to reach organelles such as the chloroplast [155].

Large-scale effector visualization has been achieved using fluorescent tags in Col-
letotrichum higginsianum; three effectors were targeted to plant peroxisomes, three others
to plant cortical microtubules, and one to the Golgi apparatus, along with nine nuclear-
targeted effectors [156]. In Melamspora larici-populina, effectors localized to the nucleus,
chloroplast, and mitochondria [155]. In the oomycete, Plasmopara viticola, twenty-nine
effectors were found to localize to the nucleus, nine to the cell membrane, three to chloro-
plasts, and one that targeted both chloroplast and mitochondria [157]. As more localization
studies are undertaken, we will most likely see more effectors targeting all organelles in the
plant host although the most common organelles targeted appear to be the nucleus and the



Int. J. Mol. Sci. 2022, 23, 13433 11 of 30

cell membrane. Table 2 presents examples of effectors which have been proven to localize
to different plant cell organelles. In a comparative study of effector targets of bacteria,
oomycetes, and fungi, it was found that 95% of bacterial effector targets are in the cell
membrane, nucleus, and/or cytoplasm while this value decreases to 63% for oomycetes that
show more diversity in their targets (inclusive of peroxisomes and endoplasmic reticula).
With respect to fungi, it was found that 61% of effector targets are cytoplasmic and are
involved in signaling and protein processing, while signaling and transcription are more
prevalent bacterial targets. The previously mentioned targets as well as those linked to
metabolism are the main targets of oomycetes [158].

Table 2. Examples of intracellular effectors with experimentally proven locations.

Effector Cell Localization Microorganism Kingdom Lifestyle Reference

CgEP1 Nucleus Colletotrichum graminicola Fungi Hemibiotrophic [109]

ChECs (nine)
Nucleus,

peroxisomes, and
microtubules

Colletotrichum
higginsianum Fungi Hemibiotrophic [156]

MoCDIP4 Mitochondria Magnaporthe oryzae Fungi Hemibiotrophic [172]

Rab8a Golgi apparatus Phytophthora infestans Oomycete Hemibiotrophic [173]

CSEP0064/
BEC1054 Cytoplasmic Blumeria graminis Fungi Biotrophic [144]

Sntf2 Chloroplast Colletotrichum
gloeosporioides Fungi Hemibiotrophic [111]

CgNLP1 Nucleus Colletotrichum
gloeosporioides Fungi Hemibiotrophic [174]

ToxA Cytoplasm Parastagonospora nodorum Fungi Necrotrophic [175]

SsITL Chloroplast Sclerotinia sclerotiorum Fungi Necrotrophic [176]

PEF1 Peroxisomes Magnaporthe oryzae Fungi Hemibiotrophic [177]

DspA/E Peroxisomes Erwinia amylovora Bacteria Necrotrophic [178]

RsCRP1 Mitochondria and
chloroplasts Rhizoctonia solani Fungi Necrotrophic [179]

RipAA Chloroplasts Ralstonia solanacearum Bacteria Necrotrophic [180]

HopAF1 Plasma membrane
and cytoplasm Pseudomonas syringae Bacteria Hemibiotrophic [181]

PcRxLR48 Nucleus Phytophthora infestans Oomycete Hemibiotrophic [182]

PsAvh52 Cytoplasm and
nucleus Phytophthora infestans Oomycete Hemibiotrophic [183]

AvrLm1 Plasma membrane Leptosphaeria maculans Fungi Hemibiotrophic [184]

PstGSRE4 Nucleus Puccinia striiformis f. sp.
tritici Fungi Biotrophic [185]

MiSSP7 Nucleus Laccaria bicolor Fungi Ectomycorrhizal
symbiont [186]

RsCRP1 Mitochondria and
chloroplasts Rhizoctonia solani Fungi Necrotrophic [179]

PexRD54 Golgi apparatus Phytophthora infestans Oomycete Hemibiotrophic [173]
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cellular bacterial effector examples given, the effectors AvrBs3 [159], HopG1 [160,161], AvrRps4 
[86,162], and HopD1 [163] target the nucleus, mitochondria, chloroplast, and endoplasmic reticulum 
(ER), respectively. The fungal effectors displayed are AvrSr35 [164], ChEC21 [156], ToxA [165], 
VdSCP7 [166], and MoPtep1 [167] which target the ER, Golgi, chloroplast, nucleus, and peroxi-
somes, respectively. The oomycetes effectors Pi04313 [150] and PsCRN63 [168,169] target the nu-
cleus while PsAvh262 [170] targets the mitochondria and HaRxL17 [171] associates with the plant 
tonoplast (vacuolar membrane). 
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Figure 2. Examples of effectors and their intracellular targets. Secreted effectors enter the cell apoplast
before they reach the interior of the cell; some are retained in the apoplast if their targets are apoplastic
while others traverse the cell membrane to reach their targets inside the cell. In the intracellular
bacterial effector examples given, the effectors AvrBs3 [159], HopG1 [160,161], AvrRps4 [86,162], and
HopD1 [163] target the nucleus, mitochondria, chloroplast, and endoplasmic reticulum (ER), respec-
tively. The fungal effectors displayed are AvrSr35 [164], ChEC21 [156], ToxA [165], VdSCP7 [166], and
MoPtep1 [167] which target the ER, Golgi, chloroplast, nucleus, and peroxisomes, respectively. The
oomycetes effectors Pi04313 [150] and PsCRN63 [168,169] target the nucleus while PsAvh262 [170]
targets the mitochondria and HaRxL17 [171] associates with the plant tonoplast (vacuolar membrane).

With respect to effector targets, some effectors have been found to have more than
one target in an organism, like AvrLm4-7 of Leptosphaeria maculans which interacts with
multiple R genes in Brassica napus [187]. On the other hand, a target may interact with
multiple effectors of the same pathogen like the RGA4/RGA5 receptor pair in rice that is
recognized by AVR-Pia and AVR1-CO39 of Magnaporthe oryzae [139]. Furthermore, one
target may have interactions with several effectors of different organisms; the Rcr3 protease
of tomato is targeted by the Avr2 effector of Cladosporium fulvum and two other effectors,
EPIC1 and EPIC2B of Phytophthora infestans [188]. These targets in the host that attract
many effectors have been denominated ‘hubs’ and are central in plant protein-protein
interaction networks [189,190]. Common hubs include the serine/threonine protein kinase
and mitogen-activated protein kinase families which are actively involved in plant immune
signaling, transcription factors, enzymes involved in the biosynthesis or regulation of
jasmonic acid and salicylic acid pathways, and other phytoregulators involved in host
responses [191]. Similarly, common proteins or hubs in pathogens have been identified
in interaction networks, for example, ubiquitin-like activating enzymes, small GTPases
such as Rho, Ran, and Ras, SUMO-conjugating enzymes, thioredoxin reductase, among
others [192]. Table 3 highlights examples of hubs in plant hosts and pathogens. Recently,
through mining deduced proteomes and conducting interactomics analyses, multiple
targets of effectors from different kingdoms (bacteria, fungi, oomycetes, and nematodes)
were identified in Arabidopsis thaliana [193]. The existence of these common interactors
demonstrates how pathogens evolved to cleverly debilitate their hosts, and in this manner,
maintain low fitness costs as compared with the individual gene-for-gene interactions [189].
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More high-throughput interactomics network studies are necessary to elucidate effector
targets [194–196].

Table 3. Examples of hubs (core proteins commonly involved in plant-pathogen interactions) identi-
fied in hosts and pathogens.

Plants

Host Target (Hub)
(Targets in Different

Hosts Targeted by
Multiple Effectors)

Function in the Host Targeted by
(Selected Examples) Microorganisms References

Chorismate mutase
(CM)

Salicylic acid (SA)
biosynthesis

Cmu1, Mi-CM-3,
AvrPtoB

Ustilago maydis (fungus),
Meloidogyne javanica

(nematode), Pseudomonas
syringae (bacterium)

[197,198]

Isochorismatase (ICM) Salicylic acid (SA)
biosynthesis VdIsc1, PsIsc1, HopI1

Verticillium dahliae (fungus),
Phytophthora sojae

(oomycete), Pseudomonas
syringae (bacterium)

[197]

JAZ6, negative
regulator of JA

induced
transcription

Jasmonic acid (JA)
biosynthesis

MiSSP7, HopZ1a,
HopX1

Laccaria bicolor and
Golovinomyces orontii (fungi),

Hyaloperonospora
arabidopsidis (oomycete),

Pseudomonas syringae
(bacterium)

[197]

AuTophaGy (ATG)
proteins Autophagy

HrpZ1, HopF3,
AvrPtoB, HrpZ1,

HopO1-2,

Bremia lactucae,
Hyaloperonospora

arabidopsidis (oomycetes),
Uromyces fabae (fungus),

Globodera pallida (nematode),
Pseudomonas syringae

(bacterium)

[199]

Pathogen

Pathogen hub
(Multiple targets to

one effector)
Functions Targets in the host Microorganisms where that

effector has been identified References

AvrPtoB

Interferes with salicylic
acid (SA) biosynthesis

and autophagy in
plants

CM, ATG1 Pseudomonas syringae [198,199]

Zt6

Phytotoxic and
antimicrobial
ribonuclease

effector

Plant and microbial
rRNA species Zymoseptoria tritici [200,201]

VdAMP2

Soil colonization
(antibacterial
activity), and

induction of necrosis in
Nicotiana

benthamiana

Unknown Verticillium dahliae [17]

VdAMP3
Soil colonization

(antifungal
activity)

Unknown, mycobiome
manipulation Verticillium dahliae [17]
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Table 3. Cont.

VirD5 Stabilizes VirF for
Agrobacterium infection

Arabidopsis thaliana
AT1G09270.1
AT1G43700.1
AT3G06720.1
AT5G59710.1

VIP2

Agrobacterium tumefaciens [193]

Avr2 Inhibits tomato
Rcr3 protease

Arabidopsis thaliana
AT1G47128.1
AT3G19400.1
AT3G45310.1
AT4G35350.1
AT5G60360.1

Cladosporium fulvum [193]

HARXL106

Suppresses
transcriptional

activation of salicylic
acid (SA)-induced

defense genes

Arabidopsis thaliana
AT1G32230.1
AT2G35510.1

Hyaloperonospora
arabidopsidis [193]

RXLR24

Inhibitor of RABA
GTPase-mediated

vesicular secretion of
antimicrobial PR-1

and PDF1.2

Arabidopsis thaliana
AT1G06400.1
AT1G09630.1
AT1G16920.1
AT2G30950.1
AT3G18820.1
AT3G46830.1
AT3G56940.1
AT4G18800.1
AT4G39990.1
AT5G45750.1
AT5G47960.1
AT5G59150.1
AT5G60860.1
AT5G65270.1

Phytophthora brassicae [193]

6. Effector Nature: The Rise of Non-Proteinaceous Effectors

The majority of effectors reported are small (<300 aa), secreted proteins (SSPs) which
make up around 2–3% of the total proteome of fungal organisms [10]. Secondary metabo-
lites and small RNAs (sRNA) have also been reported to suppress PTI and thus act as
effectors. Here, the roles of these molecules are explored with the spotlight on plant-
pathogen interactions.

6.1. RNA Effectors

RNA effectors discovered to date belong to the class of small silencing RNAs (sRNAs).
These are short, non-coding RNAs capable of gene expression regulation through binding
to host Argonaute (AGO) proteins and directing the RNA-induced silencing complex (RISC)
to RNAs with complementary sequences [202]. In a pioneer study involving the fungal
pathogen, Botrytis cinerea, sRNAs were found to bind to the argonaute protein 1 (AGO1)
of the RNAi machinery in Arabidopsis to commandeer the host’s RNA-interference ma-
chinery and induce gene silencing of host targets. These sRNAs were able to silence
transcripts of mitogen-activated protein (MAP) kinases such as mitogen-activated protein
kinase 2 (MPK2) and MPK1 which are responsible for cell signaling to activate defense
responses against pathogens. Transgenic Arabidopsis containing these pathogen sRNA
effectors were more susceptible to the disease than the wild-type control plants, proving
that these sRNAs play a role in the suppression of host immunity [34]. A more recent study
showed that B. cinerea sRNA, Bc-siR37, targets the transcripts of multiple host proteins in
Arabidopsis to subvert plant immunity [35]. The pathogen Puccinia striiformis f. sp. tritici
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(Pst) through the microRNA-like RNA 1 (Pst-milR1) attenuates wheat immunity by silenc-
ing the pathogenicity-related protein 2 (PR2), a protein that contributes to wheat resistance
against the virulent Pst isolate [203]. This phenomenon of sRNA effectors translocating
from the invader to the plant host to induce gene silencing of one or multiple targets is
referred to as cross-kingdom RNA interference [204,205] and can be bidirectional when
plants, in turn, release RNAs in their defense [206,207]. Pathogens, in response, have
evolved effectors to suppress the RNA-mediated immunity of plants; Arabidopsis siRNAs
that silence pathogen genes are inhibited by the Phytopthora protein effector PSR2 which
interferes with host dsRNA processing [208].

RNA effectors have also been identified beyond the plant-pathogen interaction. The
entomopathogenic fungus, Beauveria bassiana, uses a microRNA-like effector called bba-
milR1 to silence the mosquito Toll receptor ligand Spätzle 4 (Spz4) upon host penetration to
facilitate infection [202] and in the same interaction, it was later discovered that mosquitoes
also use microRNAs (miRNAs) that translocate to fungal hyphae and target virulence genes
in a fascinating example of insect-fungus cross-kingdom RNAi [209]. In silico RNA effector
prediction is likely to gain popularity among researchers with the advent of bioinformatic
pipelines for RNA effector identification [210], and high-throughput small RNA sequencing
for the determination of sRNAs and their targets involved in host immunity [211–214].

6.2. Secondary Metabolite Effectors

Secondary metabolites (SM) are low molecular weight compounds that are not essen-
tial for growth but are still advantageous to the producer since they indirectly contribute
to the survival and adaptation of the organism in its ecological niche [215,216]. Many
fungal SMs are derivatives of polyketides, non-ribosomal peptides, hybrid polyketide–non-
ribosomal peptides, and terpenes [217,218]. The genes responsible for SM production are
usually found together in large genomic clusters and are coregulated [219]. Some of the
core SM biosynthetic enzymes are polyketide synthases (PKSs), non-ribosomal peptide
synthases (NRPSs), prenyltransferases (PTs)/terpene synthases (TSs), and dimethylallyl
tryptophan synthases (DMATSs) [220,221].

Effectors that are secondary metabolites have a role in disease establishment and either
induce necrotrophy [host selective toxins (HSTs) and non-HSTs] or do not induce necrosis
but contribute to pathogen virulence [221]. Necrotrophs tend to have a larger proportion
of SM biosynthesis genes in their genomes than biotrophs [222]. Necrotroph HSTs are
involved in the inverse gene-for-gene interaction: a phenomenon occurring in a susceptible
host where the HST effector is recognized by the host susceptibility gene product (S),
triggering host cell death which is beneficial to the necrotroph. The most characterized
SM effectors have been identified from Cochliobolus sp., host-specific necrotrophic fungi
that target maize and use HSTs like T-toxin, victorin, and HC-toxin to establish disease
on susceptible hosts [220]. T-toxin is a polyketide produced by Cochliobolus heterostrophus
which targets the mitochondrial protein, URF13, resulting in the formation of pores in the
mitochondrial membrane and necrosis [223,224]. A non-HST secreted by the hemibiotroph,
Pseudomonas syringae, called coronatine (COR) (a hybrid between a polyketide, coronafacic
acid (CFA), and a derivative of isoleucine, coronamic acid), suppresses salicylic acid (SA)-
dependent defense responses and is a virulence factor for disease development in A. thaliana.
In order to facilitate colonization, the toxin mimics one or more plant jasmonates involved
in jasmonate signaling which antagonizes SA-dependent defense responses [225]. Some
pathogen SMs have a positive contribution to plant health in the presence of a resistant
host, for example, the Ace1 polyketide produced by the hemibiotroph, Magnaporthe grisea,
which triggers resistance when recognized by the rice Pi33 resistance protein [226].

In silico genomics analyses of the SM gene clusters in pathogenic fungi have revealed
the proportions of these core enzymes and their homologs in other fungi [219,227] and tran-
scriptomic studies have revealed potential SM effectors that are upregulated in interaction
with the host [218,228], but the characterization of the SMs has been a challenge due to
difficulties in isolating metabolites found in small quantities, the need for suitable solvents,
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the limited availability of standards and limited mass spectra and NMR databases [229,230].
In addition, in silico reconstructed microbial SM pathways are sometimes incomplete,
either because the genome in question has not been completely sequenced or because the
microorganisms share part(s) of the pathways but have different end products [231–233]
and to investigate and clarify these possibilities is not trivial work.

7. Effectors: Not Just Plant-Pathogenic Molecules

Until recently, the effector narrative has been centered on pathogenicity; effectors com-
monly being described as pathogen proteins and small molecules [3,59]. Pathogenic inter-
actions between plants and microorganisms such as Cladosporium fulvum-tomato [234,235];
Phytophthora infestans-potato [236,237], the Pseudomonas syringae species complex with
various hosts [238,239], are prime examples of well-studied pathosystems utilized for
fungi, oomycetes, bacteria, respectively, and are also the leading pathosystems in effec-
tor biology studies. A budding area of interest centers on effectors beyond the plant-
pathogen interaction, with discoveries in non-pathogenic organisms such as mutualist
mycorrhizal species [13,186,240] and endophytes [16,241,242] in interaction with the plant
host. These organisms also modulate host immunity with the help of effectors to establish
plant-beneficial interactions.

One of the more noteworthy discoveries in effector biology has been the role of effectors
in microbial interactions. In these interactions, effectors are required to subdue microbial
competitors and dominate their respective niches [243]. Literature supporting the evidence
of effectors in microbial interactions can be found for bacteria, especially effectors from the
type VI secretion system that antagonize other bacterial and fungal competitors [244–247].
In fungal interactions, examples of effector candidates can be found in mycoparasitic
interactions involving Trichoderma sp. against Rhizoctonia solani [248], Pseudomyza flocculosa
against Blumeria graminis [147], and Pythium oligandrum against Phytophthora infestans [249].

Due to effector findings in interactions beyond the plant host, it has been postulated
that effectors can be additionally classified based on their host specificity: effectors that
target only plants, effectors that target only microbes, and effectors that target both plants
and microorganisms [43] (Figure 3). Possible broad host-range effectors were identified
in Trichoderma atroviride and T. virens, where expression of candidate effector genes (LysM
protein, Epl2, and a hydrophobin, Tvhydii1) was observed in the presence of the plant
Arabidopsis thaliana, as well as, during in vitro interaction with the fungus Rhizoctonia solani.
In the same study, a metalloprotease was found to only be induced in the interaction
with R. solani but not with the plant, a possible example of a host-specific effector [248].
Conversely, T. atroviride’s Tal6 is a broad host-range effector acting in microbe-microbe and
microbe-plant interactions [250]. Tal6 is an effector with LysM domains that allow it to
bind to chitin from the fungal cell wall, serving as protection against plant chitinases and
interfering with the perception of its chitin fragments that could trigger a host immune
response. The gene was upregulated during contact with the phytopathogen R. solani
and Tal6 deletions mutants showed a decrease in antagonism against R. solani, B. cinerea,
Sclerotium cepivorum and C. lindemuthianum, while overexpression of Tal6 results in increased
antagonistic capacity [250]. Although the exact function of the Tal6 gene in microbial
interactions was not elucidated, it may similarly act in hyphal protection against microbial
chitinases as it does with plant chitinases.

Another addition to the short list of effectors discovered in microbe-microbe interac-
tions is Zt6, a ribonuclease effector of Zymoseptoria tritici. This effector is detrimental to the
plant host Triticum aestivum, the non-host N. benthamiana, as well as the bacterium E. coli and
the yeasts Saccharomyces cerevisiae and Pichia pastoris during in vitro assay [201]. Recently,
the functions of two effectors, VdAve1 and VdAMP3 of the fungal pathogen, V. dahliae, have
been characterized in microbial interactions [251]. In plant-pathogen interaction, VdAve1
is an avirulence effector that is recognized by the receptor Ve1 in tomatoes. In microbial
interaction, this effector was shown to selectively inhibit the growth of gram-positive
bacteria in vitro. Analysis of the bacterial communities 10 days after in planta infection
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with V. dahlia wildtype and VdAve1 deletion mutant strains revealed significant differences
in the microbiomes present; for example, bacteria of the Sphingomonadaceae family were
completely absent in cotton plants infected with the wildtype fungus, meanwhile, they
were present where the mutant was used. The direct application of the purified VdAve1
protein on the bacteria produced the same result, ruling out indirect effects of the effector
on the host [251]. Conversely, VdAMP3, allows the fungus to suppress other fungi in
decomposing plant tissue, while it forms its resting structures called microsclerotia, the
ultimate phase of its disease cycle. The effector showed potent and specific antimicrobial
activity against Saccharomycete and Sordariomycete filamentous fungi and yeasts, while
bacteria are suppressed to a much lesser degree [252]. However, VdAMP3 does not appear
to contribute to infection of the plant, N. benthamiana, since the V. dahliae mutant lacking
the effector gene remained virulent, suggesting this effector is specifically employed in
microbe-microbe interactions. The identification of microbial antagonism-related effectors
opens a new avenue to produce novel antimicrobials as alternatives against recalcitrant
pathogens which display resistance against the current antimicrobials. These effectors may
prove useful not only for plants but additionally, for human health.
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8. Discussion: Coming Changes to Effectoromics

As highlighted in this review, the initial beliefs about effectors have constantly been
evolving with novel effector discoveries. This is the first time such a range of effector
characteristics has been comprehensibly presented in the context of past and present
knowledge related to effectors. It is also uncommon to witness within the effector literature,
varied types of effector classifications apart from the common classification of localization
in the plant host (apoplast or cytoplasm).

The dogmas in effectoromics seem as though they are meant to be challenged (Table 4)
and as such, the effector literature merits a change in how effectors are defined. Effectors
are often referred to as virulence-associated molecules due to their role in disease development;
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they either induce susceptibility or resistance depending on the presence of related targets
in the host and as such, can have a dual function as promoters of disease or health. The
proverbial box in which effectors were first placed is being dismantled as these molecules
have been found beyond the limits of pathogenicity and virulence, although the socioeco-
nomic impact of disease merits the attention paid to effectors in plant-pathogen interactions.
Ultimately, effectors should be referred to as interaction-associated molecules since they are
used by both pathogenic and non-pathogenic organisms.

Table 4. A summary of changes in concepts in the field of effectoromics.

PAST PRESENT

Effectors show no or limited sequence
homology or conservation but may share

structural properties

Some effectors are homologs of effectors in other
microorganisms. Some orthologs display a high level of sequence conservation

Homologs are distributed in close
phylogenetic relatives

Some effectors are distributed in phylogenetically
related and distant organisms (core effectors)

Effectors are small proteins
(<300 or 400 amino acids) Limit in length of known current effectors is ~ 850 amino acids

Effectors are secreted proteins with signal
Peptides

Many lack signal peptides and are secreted by
little-understood non-conventional processes

Effector proteins lack TMDs Some true effectors have one or two TMDs;
the current limit for TMDs in a true effector is 6

The majority of effectors initially discovered
were extracellular, apoplastic proteins

Many effectors also target cytoplasmic and organellar host proteins. Some effectors
may even target both

apoplast and cytoplasm

Effector interactions follow the
gene-for-gene model

Effector interactions encompass the gene-for-gene model, guard model, the decoy
model, integrated
decoy model etc.

Effectors are proteins
(Enzymatic or non-enzymatic)

Effectors can be proteins, RNA or secondary
metabolites

Effectors induce the hypersensitive response
(local, visible lesion) on the host leaves

Not all effectors induce HR. Biotrophic effectors can interfere with downstream
reactions triggered by effector-R cognate recognition and prevent development of

visible lesions

MTI and ETI are independent immunity
Pathways MTI and ETI are interconnected

Effectors are produced by pathogens to target
plant hosts

Produced by pathogens and non-pathogens with
targets in a wide spectrum of organisms

Effector roles are associated with conquering
the plant host

Effector roles documented in host and niche conquest; roles in shaping
microbiomes and roles in

reproduction and development of producer organism

Each effector has one target or cognate

Some effectors are multifunctional or have many
different targets in the same host or different hosts; and vice versa, some host

targets are targeted by multiple effectors from the same or
different microorganisms

The study of effectors in microbe-microbe interactions and in tripartite plant-pathogen-
mutualist interactions have revealed effectors involved in mycoparasitism and biological
control of pathogens in the host [201,248,253], as well as the induction of disease resis-
tance in plants [254,255]. Microbial effector-based screening may facilitate the selection of
elite strains of antagonists that can be applied to the field. It also forms the basis for the
development of novel bioproducts for exogenous application to plants. Effective effector-
bioproducts may be used to trigger systemic resistance or help modulate the composition of
plant microbiomes for plant health promotion. One of the biggest limitations in understand-
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ing effector molecules in microbe-microbe interactions is the technical barrier associated
with elucidating their targets and their localization in vivo.

Investigations into the host-pathogen interactomes are identifying core proteins
that are suitable targets for engineering disease resistance [104,105], and novel algo-
rithms/pipelines for identification of proteinaceous and non-proteinaceous effectors are elu-
cidating complete pathogen effectoromes providing a sound foundation for effectoromics-
based pathogen control strategies [69,72,73,81,210]. To date, the number of effector families
is still small, but the construction of novel algorithms that allow us to expand and compare
effectoromes may result in the identification of conserved effector families. The identifi-
cation and characterization of conserved effectors among pathogens (core effectors) may
provide effective solutions to disease management through their inactivation in the field.

Another necessary revolution in effectoromics involves the elucidation of the true
effectorome; the identification of non-canonical effectors will be essential for the expansion
of in silico-identified effector sets where the implementation of common effector domains
and motifs are particularly useful for this type of effector. More occurrences are likely to be
revealed of domains and motifs shared between fungi and oomycetes that were previously
described as unique to each kingdom e.g., the RXLR and CRN motifs that are associated
with oomycetes and LysM, ceratoplatanin, ribonuclease/ribotoxin, etc. domains commonly
associated with fungal effectors. Additionally, the identification of novel motifs among the
different kingdoms represents a promising tool that will promote effectorome elucidation.

9. Conclusions

Locating the resistance proteins targeted by Avr effectors in plant hosts has been a
priority in effectoromics research for effector-assisted plant breeding [256–258], but varied
possibilities for disease management exist with effector molecules [259]. This review
highlighted many changes which have occurred in the study of fungal effectors since the
gene-for-gene model. Effector research, especially in the last 30 years, has revealed the
dynamic nature of effectors in different interactions, with and beyond the plant host. There
are effectors which exist of varying molecular natures, functions, localizations in the host
cell, and interactions (with one or more hosts and targets). Investigations surrounding
effector targets beyond the R gene and how they can be utilized in plant protection should
dominate effectoromics in the coming years; whether a particular effector has the same
target in different hosts is an important line of investigation to be taken into consideration.
In addition to the changes to the field mentioned in this review, others are on the horizon
and are sure to improve our current understanding of what effectors are and how they can
be applied to our benefit. Successful times are in sight for effectors in biotechnology.
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