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Abstract: The ultimate goal of nanomedicine has always been the generation of translational tech-
nologies that can ameliorate current therapies. Cancer disease represented the primary target of
nanotechnology applied to medicine, since its clinical management is characterized by very toxic
therapeutics. In this effort, nanomedicine showed the potential to improve the targeting of different
drugs by improving their pharmacokinetics properties and to provide the means to generate new
concept of treatments based on physical treatments and biologics. In this review, we considered
different platforms that reached the clinical trial investigation, providing an objective analysis about
their physical and chemical properties and the working mechanism at the basis of their tumoritr opic
properties. With this review, we aim to help other scientists in the field in conceiving their delivering
platforms for clinical translation by providing solid examples of technologies that eventually were
tested and sometimes approved for human therapy.
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1. Introduction

Nanotechnology development for the medical field has always been focused primarily
on translational purposes [1]. Nanomedicine was conceived to increase the safety of very
toxic drugs, providing the therapeutics a means for targeting the sick tissues [2]. For this
reason, nanotherapeutics were tested extensively to improve chemotherapy performances.
Most of the investigations, in fact, were dedicated to enhance the antitumor power of drugs
that were already approved in clinics, but characterized by severe adverse effects limiting
their use [3]. Liposomal formulation of Doxorubicin (DOX) [4] and Daunorubicin [5] were
the first FDA approved nanotherapies in 1995 and 1996, respectively. First generation of
nanoparticles targeted the cancer lesions by exploiting leaky tumor vasculature and the lack
of an efficient tumor lymphatic system, a phenomenon known as enhanced permeability
and retention effect (EPR) [6]. In this case, the nanoparticles were designed with high
circulation properties to facilitate their accumulation in the tumor tissue, where they could
release their therapeutic payload. Here, surface modifications like polyethylene glycol
(PEG) could minimize particle sequestration in the elements of the mononuclear phagocytic
system (MPS), inhibiting particle opsonization and internalization [7]. Second generation
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of nanomedicine provided the carriers with more complex surface modifications [8] or
particular shapes [9] that alone or in combination with “stealthing” molecules allowed for
active targeting. Most of these modifications were based on peptides, antibodies or ligand
moieties that could be recognized by surface receptors over-expressed on cancer cells [10].
This strategy allowed for a more stable interaction of the NPs with cancer cells and fa-
vored their internalization [10]. In these technologies, cancer lesion targeting still occurs
via EPR, even though some surface modification can impart the carriers with trafficking
properties that can enhance their active accumulation in the sick tissue. A recent review by
Anselmo et al. [11], showed that in the last 3 decades, a little more 30 than nanoformula-
tions were approved and less than half of them were designed for cancer treatment. The
translation of nanomedicine to the clinic has been hindered by the formidable ability of
our body to recognize foreign bodies [12], tumor organization [13], and concerns derived
from systemic toxicity and immune system activation [3]. Further efforts in facing this
issue generated more and more complex surface modifications, as well as carriers derived
from natural sources like exosomes [14]. Unfortunately, while in preclinical settings these
technologies provided promising results, their clinical translation was hampered by their
high costs of production and sometimes by issues of generating nanoformulations in large
scale [15,16]. However, the research in the field is still very active and supported by the
exploration of alternative administration routes other than intravenous [17,18] and by
the development of other applications, including diagnosis. The goal of this review is to
summarize the nanocarriers that reached clinical trial experimentation and some exam-
ples to the readers about the characteristics that nanoformulations should have to treat
the patients, including their size and targeting mechanism. In this goal, we selected the
clinical trials on clinicaltrials.gov by searching for “cancer disease” and “nanoparticles”.
We excluded suspended, terminated and withdrawn trials. An additional filter was applied
to exclude clinical trials that did not investigate nanoformulations for their ability to treat
cancer conditions. Considering that some of these studies were performed to test the same
technology against different cancers or, in combination with different therapeutics, our
work will focus on no more than 15–20 different delivery systems.

2. Inorganic NPs
2.1. AGuIX

A promising approach to overcome current therapies limitations is the use of new
therapeutic agents (molecules or nanoparticles) that sensitize cancer cells to radiotherapy
(RT) also known as dose enhancers and radiosensitizers. This enhanced radiation local
absorption in combination with the accumulation of high Z-elements in the irradiated
cancer tissue results in a larger production of harmful diffused photons, photoelectrons,
Auger electrons, Compton electrons, and radical species [19]. AGuIX particles were firstly
synthesized in 2011 [20] to increase the radiobiological effect of high-energy radiation
in the tumor. This technology is composed of very small (average size 5 nm diameter)
polysyloxane particles with chelated cyclic gadolinium covalently grafted into the inorganic
matrix [21] (Figure 1). In preclinical experiments, AGuIX NPs showed high radiosensitizing
and anti-tumor properties [22] that combined with a solid and reproducible synthesis
process favored their evaluation in clinical settings.

AGuIX biodistribution studies have been performed on healthy animals of different
species (rodents and monkeys) and using different administration methods, doses, and
time windows of detection biodistribution and PK properties of these particles [21]. After
intravenous administration, carriers’ excretion occurred mainly through the kidneys and
only less than 0.15% of the administered dose was found in organs other than the kidneys
and bladder [20]. These data were confirmed also by another study [23], showing that
kidney accumulation already occurred 5 min after the particle administration, with the
highest accumulation observed after 4 h, while the gadolinium clearance occurred in
a week.
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AGuIX have been tested on various central nervous system tumors. These investiga-
tions demonstrated that tumor accumulation occurred via EPR, indicated as the mechanism
of particle tumor targeting [24], while retention in the sick tissue persisted up to 24 h after
intravenous administration [25]. In addition, also intraperitoneal administration was effec-
tive in targeting the tumors, without evident accumulation in off-target organs besides the
kidneys and bladder. AGuIX showed radiosensitizing efficacy in vitro on various cell lines
with typical sensitizer enhancement ratios varying from 1.1 to 2.5 for photon irradiation at
different energies ranging from keV to MeV, including the use of clinical irradiators [26–28].

The first clinical trial NANO-RAD, investigating the AGuIX benefits [29], was com-
pleted in 2019 and aimed at treating multiple brain metastases. This trial was designed to
determine the maximum tolerated dose in combination with whole brain radiation therapy
(RT). The efficiency of AGuIX in overcoming the blood—brain barrier in brain metastases,
was similar to conventional magnetic resonance imaging (MRI) contrast agents. Good toler-
ability of AGuIX intravenous injection was shown at doses ≤ 100 mg/kg in combination
with whole brain RT in patients with multiple brain metastases [30]. Most of the ongoing
clinical trials (Phase 1/2) are in the recruitment state and focusing on brain tumor metas-
tases or glioma [31–33]. Other clinical trial investigate AGuIX in combination with cisplatin,
radiotherapy and brachytherapy in treating advanced cervical cancer [34] in combination
with MRI-guided stereotactic body RT in pancreatic and lung tumor treatment [35].

2.2. NBTXR3

NBTXR3 technology is a novel radio sensitizer comprising crystalized hafnium oxide
(HfO2) nanoparticles, locally injected into tumor tissue and activated by RT. HfO2 nanopar-
ticles possess excellent x-ray absorption coefficient because of the high electron-density
elements composing the particles and acceptable safety. The particles are 50 nm in size and
negatively charged thanks to a phosphate coating applied to maintain colloidal stability [36].
NBTXR3 followed by RT could improve the treatment of advanced or borderline-resectable
cancers compared to RT alone [36]. Preclinical studies have shown that NBTXR3 work-
ing mechanism is mostly physical without targeting specific biological pathways, and its
use could be extended to many types of cancer. The system was tested in patients with
head and neck squamous cell carcinoma exploring a dose escalation setting [37]. Within
7 weeks after NBTXR3 injection, nanoparticles in the surrounding tissues disappeared,
showing that the system was well tolerated. Additionally, this study [37] showed that
one intratumor administration of NBTXR3 before radiotherapy could yield remarkable
local tolerance, homogeneous dispersion of the particles in the tumor tissue, no leakage,
and showed promising signs of anticancer activity in terms of pathological responses.
In another study [38] dose optimization and side effects were evaluated for NBTXR3 in
association with RT for recurrent and inoperable non-small cell lung cancer patients.
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The purpose of NCT04484909 [39] and NCT04615013 [40] trials (phase I) was to
determine the recommended phase 2 dose and safety profile of NBTXR3 activated by radia-
tion therapy to treat metastatic, borderline-resectable pancreatic cancers and esophageal
adenocarcinoma, respectively.

NBTXR3 nanoparticles have become the subject of many clinical trials to treat solid
tumor with metastases to lung and/or liver [41], head and neck cancer [42,43] and soft
tissue sarcoma [44]. Here, the patients underwent radiotherapy with or without a previous
local injection of the radiosensitizer. The presence NBTXR3 doubled the pathological
complete response of the patients with no occurrence of important adverse effect [45].
Promising results were collected also in a Phase 1 trial investigating the safety and efficacy
of this technology in elderly patient affected by oropharynx and oral cavity cancer [46].

2.3. Super Magnetic Iron Oxide

Superparamagnetic iron oxide nanoparticles (SPION) found their application in the
biomedical field because of their theranostic properties, since they can allow for MRI and
thermo-ablation. SPION working mechanism depends on an external alternate magnetic
field determining their action only in the sick tissue. The synthesis of these particles is
based on the nanomanipulation of magnetite and maghemite [47] and their dispersion is
obtained through surface modifications (capping) based on organic molecules [48] and
polymeric (i.e., polyethylene glycol) [49] surface functionalization. Their size ranges from
20 to 150 nm [47] and the mechanism of tumor accumulation is based on intratumoral
injection [50] or EPR [51] following IV administration. However, in preclinical studies they
were object of intense studies to engineering their surface with targeting molecules [52]
to increase their residence time and internalization in cancer cells. These manipulations
focused also on conjugating therapeutic agents on their surface comprising both small
molecules [53] and biologics [50]. Attempts at exploiting polarized magnetic fields to
increase their tumor targeting were proposed as well [54]. Finally, they were often used
to implement the properties of other delivery platforms in hybrid synthetic settings [55].
Their translational use was deeply investigated mostly for their ability to enhance the MRI
resolution, even though their toxicity related to DNA damage and reactive oxygen species
formation limited their large application [56]. FDA-approved formulations of SPION are
currently intended as iron replacement and they are secondarily used as contrast agents
for kidney imaging [57,58]. In this scenario, the only phase 3 and 4 trial focused on this
technology aimed at understanding the SPION ability to detect lymphatic metastases
in breast [59] and pancreatic cancer [60] after IV infusion. The latter trial showed, in
comparison with traditional histology, a matching of the 2 methods higher than the 80%.
Ongoing clinical trials aim to investigate the efficacy of locally injected SPION magnetic
hyperthermia against brain and prostate tumors. In a phase I clinical trial, the authors
showed the effect of thermoablation to treat prostate cancer by local injection of SPION and
further thermoablation induction under magnetic field application [61]. Untargeted SPION
(Ferumoxytol) are currently evaluated for treatment of primary and metastatic hepatic
cancers [62]. The radiotherapy with SPION supported by magnetic resonance imaging
guided linear accelerator allowed to detect and maximize avoidance of residual functionally
active hepatic parenchyma from over-the-threshold irradiation thus minimizing SBRT liver
damages because of stereotactic body radiation therapy in patients with pre-existing hepatic
conditions. The safety, efficacy and tolerability of SPION in combination with spinning
magnetic field (SMF) and neoadjuvant chemotherapy in osteosarcoma patients is currently
evaluated in a Phase I clinical trial [63]. The study comprises intra-tumor injection of
SPIONs followed by SMF and conventional neoadjuvant chemotherapy from day 1. The
authors declare a synergistic effect of SPIONs/SMF with neoadjuvant chemotherapy in
increasing cancer cell killing and improving the ratio of limb retention (amputation).
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2.4. Gold Nanoparticles

Besides their use for increasing the sensitivity of current diagnostic and prognostic
tests [64], NU-0129 gold nanoparticles were tested in a Phase 0 clinical trial against gliosar-
coma and glioblastoma [65,66]. The particles were modified covalently with a spherical
RNAi corona targeting BCL2L12 messenger. The author could detect the accumulation of
the particles in the tumor and a decrease in the BCL2L12 expression. However, the authors
of this work could not find more information of this technology in terms of size and surface
charge, speculating that the ability of this technology to overcome the blood–brain barrier
is probably due to their small size, as demonstrated in other pre-clinical studies [67]. On
the other hand, the overcoming of the blood–brain barrier could be favored by the nucleic
acid coating of the particles since spherical RNAi could be trafficked via transcytosis, with
the gold core fundamental to avoid the fast clearance of the system [66].

2.5. ELU001 (Folic-Acid Functionalized C’Dot-Drug-Conjugate)

The folate receptor alpha (FRα) represents a promising target in oncology because of
its over-expression in tumors (i.e., ovarian, breast and lung cancers), low and restricted
distribution in normal tissues [68], emerging insights about its tumor promoting functions,
and association with patient prognosis. ELU001 is a new molecular C’Dot Drug Conjugate
(CDC). ELU001 comprises a very small silica core (6 nm) functionalized with ~12 folic
acid targeting moieties and ~22 exatecan topoisomerase-1 inhibitor payloads linked to via
Cathepsin-B cleavable linkers covalently bound to the surface of the nanoparticles. Because
of their small size, ELU001 are characterized by tumor penetration ability via receptor-
mediated endocytosis and are rapidly eliminated by the kidneys. ELU001 high avidity
is believed to promote internalization into FRα over-expressing cancer cells, selectively
delivering its therapeutic payload. The first Phase I/II clinical trial [69] dedicated to
ELU-FRα-1 is under recruiting phase for advanced, recurrent or refractory FRα over-
expressing tumors, considered being topoisomerase 1 inhibitor-sensitive [70] and with no
other therapeutic options available. The study will focus on dose escalation and safety
to determine the recommended Phase 2 dose and on the expansion of the patient cohort,
where specific cancer types will be evaluated for efficacy and safety of this technology.

3. Polymeric Particles
3.1. CALAA-01

CALAA-01 is considered the first targeted polymeric carrier designed for delivering
siRNA tested in human [71]. A positively charged cyclodextrin core allows the loading the
negative nucleic acid payload. Polydispersity, stability, circulation, and targeting properties
depend on surface PEGylation and transferrin modification (Figure 2) [72].
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The use of transferrin as targeting agent is very common in nanomedicine applied to
cancer disease, since many tumors over-express the receptor for this molecule [73]. When
fully assembled, the carriers have an average size of 50–70 nm and can be trafficked in
the endosomal compartment of the cells after internalization favored by the interaction
with transferrin receptor, even though EPR is still fundamental for the particles to reach
cancer cells [71]. After sequestration in the endosomal compartment, the system can
disassemble and eventually escape from these vesicles, probably thanks to the positive
charge of the cyclodextrin structure. The system was enriched with imidazole groups to
favor the buffering properties of the system and induce particle endosomal escape via
proton sponge effect [71]. In a Phase 1 clinical trial [74], the system was tested for its
efficacy and safety against solid tumors (i.e., melanoma) by delivering siRNA against the
M2 subunit of ribonucleotide reductase. The trial was terminated before being completed,
perhaps because of toxicity issues probably related to the carrier [75], and the results
were not reported. However, a work on this trial was published showing the ability of
this technology to induce tumor regression and decreasing the expression of functional
ribonucleotide reductase [76].

3.2. Micelles

Polymeric micelles are nanocarriers composed of a core–shell structure that can be
generated via self-assembly of amphiphilic block copolymers [77]. Because of their self-
assembly and amphiphilic nature, micelles are relatively easy to synthesize compared
to other technologies and for this reason they are often studied as drug delivery vehi-
cles for poor water-soluble compounds [78]. Hydrophilic polymers including (but not
limited to) PEG, polyoxazolines, chitosan, dextran, and hyaluronic acids can wrap their
hydrophobic core, while the therapeutic payloads can be also chemically conjugated to
these structures [79]. Micelle surface can be easily modified in function of the number of
monomers used in their fabrication and conjugation of tumor-specific ligands is easy and
reproducible [79,80]. Regarding their clinical translation, one of the major limitations of
micelles is represented by their low mechanical properties and re-assembly when their
amount in aqueous solution is below the so-called critical micellar concentration [77]. Cur-
rently, there are several micellar-based nanoformulations approved for improving cancer
treatment, and others are in advanced clinical trials. The chemotherapeutic drug Pacli-
taxel (PTX) that has a very low solubility in water (less than 0.1 µg/mL) is often used in
micellar-based systems to avoid Cremophor-EL and ethanol formulations, resulting in
adverse reactions like dyspnea, hypotension, angioedema, and generalized hives (2–4%
of patients). Genexol-PM, a monomethoxy-poly (ethylene glycol)-block-poly(D,L-lactide)
with a mean size of 20–50 nm was approved in clinics in several Asian countries (South Ko-
rea, Philippines, India, and Vietnam) for breast cancer, lung cancer, and ovarian cancer [78].
In Genexol-PM, PTX is physically incorporated into the inner core of the micelles that
target the tumors via EPR effect. Currently, Genexol-PM in combination with carboplatin
is tested for its safety as an adjuvant treatment in patients with newly diagnosed ovarian
cancer that underwent cytoreductive surgery [81]. Other polymeric micelles represent a
promising vehicle for PTX delivery, and they show similarity with Genexol-PM including a
core–shell structure with physical entrapment of PTX, PEG coating, small size, and passive
targeting through the EPR mechanism. Despite there are limited evidence of superior
efficacy of polymeric-PTX compared to Cremophor-PTX, micelles allow administration
of an increased PTX dose and offer improved patient safety. Similar platforms worth to
mention are Apalea/Paclical (mean size 20–30 nm) and pm-Pac (mean size 20 nm) that
target the tumor via EPR [82,83]. Apalea/Paclical contains retinoic acid to solubilize PTX
and is approved in different countries (Russian Federation, Kazakhstan, and European
Union) against platinum-sensitive ovarian, peritoneal, and fallopian tube cancer [84,85]. Fi-
nally, pm-Pac (mean size 20 nm) successfully passed a Phase III study as first-line treatment
in combination with cisplatin for advanced non-small cell lung cancer (NSCLC) [86,87].
Trials (Phase 1–3) dedicated to investigate the benefits of micellar-based technologies are
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currently ongoing in China [88] and Japan [89] where they showed similar therapeutic
benefits compared to PTX, but less toxicity in treating metastatic or recurrent breast cancer.

Docetaxel (DTX) is another taxane with solubility issues. An analog of Genexol-PM,
called Nanoxel-PM micelles loaded with DTX [90] is currently under clinical trial for
efficacy evaluation against different cancers [91]. Additionally, it is tested as neoadjuvant
in patients with breast cancer in combination with DOX and cyclophosphamide [92] and
against salivary duct carcinoma in combination with anti-HER2 monoclonal antibody [93].
Other versions of this therapeutic formulation are tested in trials as well [93]. Micelle-based
technologies are under clinical trial also for evaluating their ability to deliver cisplatin.
NC-6004 micelles have an average size of 30 nm and are composed by PEG and poly-
glutamic acid copolymers (PGlu). NC-6004 combination with gemcitabine (GEM) has
been studied in NSCLC patients, biliary tract, and bladder cancer patients [94] resulting in
long-lasting antitumor activity and favorable safety profile. Similar data were registered
in combination with Pembrolizumab in the treatment of head and neck cancer [95] and in
combination with GEM against advanced solid tumors [96]. Similar formulations are widely
investigated [97] including the NK012 where the payload SN-38 is covalently attached to
the PGlu structure. Here, the efficacy of NK012 was tested in patients with not-resectable
colon cancer, but more data are necessary to evaluate its benefits in comparison with
the common treatment irinotecan [98,99]. A novel epirubicin drug conjugated polymeric
micelle (NC-6300; 40–80 nm in diameter) was developed by conjugating the payload to PEG
polyaspartate block copolymer through a pH-sensitive linker which enables the selective
epirubicin release in tumor. This technology exploits tumor pH as targeting, representing
a perfect example of smart technology in clinics in the treatment of cutaneous and not
cutaneous angiosarcoma [100] and advanced, metastatic, or unresectable solid tumors,
including soft-tissue sarcomas [101].

3.3. EP0057

EP0057 (formerly known as CRLX101) is a formulation of camptothecin (CPT) con-
jugated with a cyclodextrin polymer backbone and is currently being evaluated clinically
in multiple refractory solid tumors [102–106]. The micelles have a size of approximately
30–40 nm and significantly increase CPT (topoisomerase I inhibitor) solubility while pre-
serving its active lactone form [107]. EP0057 also exhibits better patient tolerance than other
CPT analogs. The nanoparticles-drug conjugate is administered via intravenous infusions,
and nanoparticles preferentially accumulate in the tumors through EPR [107]. EP0057
has been shown to inhibit significantly also hypoxia-inducible factor-1 alpha (HIF-1α)
and therefore serving as a radiosensitizer with the potential to improve the efficacy of
chemoradiation therapy [108–110].

Prior studies showed EP0057 efficacy in recurrent or persistent, epithelial ovarian,
fallopian tube or colorectal, peritoneal, and gastroesophageal cancer [111,112], where it
showed promising results [112]. Ongoing clinical trials are designed to evaluate the efficacy
and safety (Phase 1/2) of this therapeutic in lung [102], gastric [113] and ovarian [103]
cancer in combination with Olaparib, as well as to evaluate its pharmacokinetics properties
(PK) [102,114] using a population model. From the data obtained from 27 patients enrolled
on two-Phase II clinical trials, the release of CPT was characterized by an initial rapid
clearance, which decreased via first-order decay to the steady-state value by 4 h after
the infusion. A second Phase I/IIa clinical study involved 22 efficacy-evaluable patients
with metastatic renal cell carcinoma, who received increasing doses of EP0057 combined
with bevacizumab [106]. Partial response or stable disease was observed in 86% of the
patients, with a median progression free survival (mPFS) of 9.9 months. Most patients
achieved a reduction of tumor and increased the progression-free survival compared to
their previous therapy [115]. In addition, a Phase Ib/II study of EP0057 combined with PTX
in women with recurrent epithelial ovarian cancer reported a 31.6% overall response rate,
including one complete response with a 5.4 month median progression-free survival [105].
However, the analysis of trials including data highlights the need of more investigation to
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evaluate the clinical benefits of this therapeutic also because of the onset of considerable
side effects [116–119].

3.4. NanoPac

Other attempts to formulate PTX in nanostructure to avoid the use of Cremophore-EL
were performed. NanoPac (also known as, Nanotax) are pure PTX nanoparticles generated
in supercritical carbon oxide environment in the presence of organic solvents. These par-
ticles have a size of 600–800 nm inhibiting their clearance and making their use helpful
for topical and local administration (i.e., inhalation) [120], with no targeting mechanism
associated. A Phase 2 trial focused on investigating the effects of different concentration
of NanoPac against prostate cancer directly injected into the prostate. Interestingly, the
lower dose of drug showed higher benefits in terms of tumor reduction compared to
higher doses. The drug showed reasonable side effects, also at the highest dose used [121].
In similar experimental settings, other trials measured the ability of intra-cystic injected
Nanopac to contrast the progress of pancreatic cancer [122] and of intraperitoneal adminis-
tration against ovarian cancer [123]. Additionally, in these cases, lower doses of NanoPac
showed higher clinical benefits even though the occurrence of side effect was significantly
more pronounced.

4. Abraxane and Related Technologies
4.1. Abraxane

ABI 007, nanoparticle albumin-bound (Nab) PTX, Abraxane are all names used to
identify albumin nanocarriers loaded with PTX, to avoid the use of Cremophor-EL [124].
Abraxane allowed for PTX encapsulation, exploiting the natural ability of Albumin to inter-
act with hydrophobic drugs at multiple sites of its structure [124]. The interactions between
albumin and drug are solely hydrophobic without formation of covalent bounds, even
though some low-degree of crosslinking that can occur between the albumin molecules on
the surface of the nanoparticles [124]. The nanocomplexes have an average size diameter of
130 nm and the energy to generate the hydrophobic interactions is provided by the synthetic
route, based on high-pressure homogenization where drug and albumin molecules are
mixed in an aqueous solution and pushed (under high pressure) in the narrow spaces of
the homogenizer (Figure 3) [125].
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Besides the generation of a safer PTX formulation, Abraxane demonstrated also signif-
icant benefits in terms of PK, fast drug distribution and an increased distribution volume.
While the size of these particles allowed for exploiting the EPR, it is important to highlight
that the nanocomplex degradation in circulation is quick and can lead to the formation
of single molecules of albumin bound to PTX. In this scenario, the trafficking of albumin
can be also regulated by endothelial receptors like GP60 that favor caveolae-mediated
translocation of albumin from the lumen of the blood vessels to the sub-endothelial space.
In a trial focusing on NSCLC treatment [126,127], a correlation between the expression of
caveolin-1 and the drug efficacy was registered, showing this transporter as one of the
mechanism of Abraxane tumor trafficking [126].

Here, some authors show that secreted protein acid rich in cysteine (SPARC), over-
expressed on the surface of different cancer cells including pancreatic cancer [128] might
eventually favor Abraxane internalization. Additionally, SPARC [129] was object of clin-
ical investigations in pancreatic cancer. These studies confirmed a correlation between
Abraxane and SPARC expression [130–132]. However, it is worth to mention that Abrax-
ane trafficking was never proved directly and that recent evidence shows other receptors
evolved to manage the trafficking of denaturated albumin could be responsible for Abrax-
ane trafficking to the tumor [133]. Abraxane was approved by FDA and EMA for metastatic
breast cancer, locally advanced or metastatic NSCLC [124], and as the first-line treatment of
metastatic adenocarcinoma of the pancreas [134]. Phase 3 and 4 clinical trials demonstrated
Abraxane is more effective when combined with other drugs like atezolizumab [135], GEM
and carboplatin in contrasting triple negative breast cancer [136], with GEM against pan-
creatic cancer [137] and melanoma [138], and with carboplatin against NSCLC [139]. On
the other hand, with bevacizumab (and sometimes other agents) the onset of serious side
effects was registered [140–145], even though slightly beneficial effects on tumor growth
were observed like in patients with inoperable melanoma [146,147]. Abraxane was shown
also to improve the effect of biological therapy like the immune modulator TLR-7 activator
Imiquimod [148,149]. Another clinical trial showed that the best effect of Abraxane as single
agent for treating metastatic breast cancer is achieved by prolonging the administration
time of reduced doses, after a brief period at normal doses administration [150]. Abraxane
showed beneficial effects also on pancreatic cancer as secondary line therapy in patients that
progressed on GEM [129] and it was tested also to reduce tumor mass before radiotherapy
and surgery in combination with GEM [151], even though its efficacy did not peak signifi-
cantly higher compared to irinotecan/oxaliplatin/5-fluorouracyl combination [130–132].
Finally, it is worth it to mention that Abraxane was tested also against non-Hodgkin’s
lymphoma [152]. Here, the system was covalently coated with rituximab, generating a new
carrier with the toxicity of Abraxane and the targeting/toxicity of Rituximab against CD20
positive cancer cells [153].

4.2. Abi 009

The same technology at the basis of Abraxane was applied to deliver Rapamycin. Nab-
Rapamycin or Abi 009 is a colloidal albumin nanoformulation loaded with this therapeutic
that affects cancer viability via mTOR inhibition. Additionally, in this case, encapsula-
tion in albumin complexes resulted very useful to deliver very hydrophobic molecules
and it is normal to expect that the same approach could be used to deliver other drugs
with the same physical and chemical features as well as targeting mechanism. The only
completed trials by far were performed against advanced carcinomas characterized by
mTOR mutations [154] and to evaluate the effective not toxic doses (Phase 1/2) of AB009
in the treatment of bladder cancer. Here, the particles were administered directly in the
bladder at different concentrations, and retention time in the organ and with and without
GEM. All the conditions tested showed good tolerability [155]. Other active or recruiting
trials are testing the ability of ABI009 (alone or in combination with other drugs) against
sarcoma [156], and different solid pediatric tumors including the central nervous system
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cancer [157]. In this scenario also albumin nanoparticle loaded with sirolimus (mTOR
inhibitor) was tested against glioblastoma [158].

5. Lipid/Proteolipid Technologies
5.1. Doxil

Doxil (also known as Caelix) is a PEGylated liposomal formulation of DOX (average
size 70–100 nm), a molecule that intercalates into nucleic acids, inhibiting topoisomerase II
enzyme, DNA/RNA synthesis and causing oxidative damage to nucleic acids, proteins and
lipids [4]. In this multi-component system, DOX is loaded into the liposome core, providing
efficient drug targeting via EPR effect. The system is PEGylated to prolong its circulation
time and protect it from MPS sequestration. Interesting, the intellectual property of the
system is not based on the liposomal formulation, but on the drug loading mechanism
based on a transmembrane ammonium sulfate gradient. Ammonia, continuously produced
by tumor cells during glutaminolysis, allows the efficient drug release at the site of the
tumor [159]. Doxil was the first nanotherapeutic approved to treat cancer, and it is used
for treating ovarian cancer, AIDS-related Kaposi’s sarcoma, and multiple myeloma [160].
It is also the first nanotherapeutic approved in the generic version under the name of
Lipodox [161].

While Doxil has been widely used in the clinic since 1995, its efficacy was variable in dif-
ferent cancers. In some pathologies, such as metastatic breast cancer, Doxil efficacy was not
significantly different from free DOX [162]. This controversy was attributed to the limited
or insignificant role of EPR in many “cold” human cancers [163], blunting the anti-cancer
efficacy of the drug because of liposome-mediated activation of macrophages enhancing
tumor growth, and suboptimal release of the drug from liposomes in the tumor bed.

Currently, no new clinical trials of Doxil have been started. The most recent trials
include 5 Phase III/Phase IV studies between 2008 and 2019, two of them were completed,
and three terminated. These trials include the investigation of Doxil for treatment of newly
diagnosed multiple myeloma [164], advanced and/or metastatic breast cancer [165,166],
recurrent epithelial ovarian carcinoma [167], and advanced-relapsed epithelial ovarian,
primary peritoneal, or fallopian tube cancer [168].

In a Phase IV trial to study Doxil as a monotherapy for 25 patients with locally
advanced and/or metastatic breast cancer [165], Doxil was administered to elderly women
(>65 years old) every 28 days until treatment failure. As a result, 16% of patients had
to discontinue treatment because of adverse effects (cardiac events and palmar–plantar-
erythrodysestesia), 14% had a partial response, no patients had a complete response, and the
rest (60%) had stable disease by the end of the study. Overall survival of patients receiving
Doxil was 20.6 months, and time to progression was 5.7 months [163]. Based on these
results, the authors concluded Doxil is a safe and effective in elderly breast cancer patients.

The most recent trial (results posted in 2019) analyzed the combination of trabectedin
with Doxil for treating recurrent ovarian cancer [168]. The aim of the trial was to compare
the overall survival of women with platinum-sensitive, recurrent ovarian cancer treated
with Doxil as a monotherapy or in combination with third-line drug trabectedin. It was
found that none of the patients reached primary endpoints of overall survival, and the
combination therapy did not show any advantage compared to monotherapy in terms of
overall survival or safety. However, a subset of patients bearing a BRCA1/2 mutation in
the combination therapy group showed a clinically significant reduction in the risk of death
(45.8%) [169]. The effect of BRCA1/2 mutations is consistent with previous reports which
found that Doxil plus trabectedin therapy prolonged patient overall survival compared to
Doxil monotherapy [170]. In patients with advanced soft tissue sarcomas and recurrent
ovarian cancer, it was found that trabectedin and Doxil combination showed increased risk
of cardiac-related treatment-emergent adverse effects [171], and adverse effects emerged
also in other trials [166,167] where Doxil safety was lower than expected (i.e., when used in
combination with [164] thalidomide and dexamethasone in patients with newly diagnosed
multiple myeloma).
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5.2. Other Liposomal Formulations

Onivyde is the nanoformulation of irinotacan. It comprised pegylated liposomes of
110 nm and is approved to treat metastatic adenocarcinoma of the pancreas [172]. The
system showed a very high encapsulation yield because of a refined synthetic method based
on drug-stabilizing agents like polyphosphate or sucrose octasulfate [173]. Interestingly,
it was shown that the interaction between the PEG and the serum protein could increase
particle cancer cell internalization, providing a natural-occurring targeting at the level of
the cancer lesions, after liposome extravasation via EPR [174]. Besides pancreatic cancer,
Onivyde was tested in clinical trial also for lung [175], glioblastoma (administered via
convection) [176], oesophagea l [177], and other solid tumors [178].

Myocet is another liposomal formulation of DOX approved to treat breast cancer.
Similar to Doxil, the system allowed for increasing DOX efficacy and safety, particularly
for what concerns cardiotoxicity. At the basis of the generation of this technology stands
a pH gradient that favor DOX encapsulation while drug stabilization in the liposomes is
achieved through citrate complexation [179]. This phenomenon is fundamental to avoid
particle leakage that occurs preferentially at the cancer lesion because of the presence of
high concentrations of phospholipases that induce particle degradation and consequent
payload release. The particles have a size of around 150 nm and a loading yield of about
95% [179]. Even though Myocet does not contain any surface modification to prolong its
circulation time, the system had enormous benefits in terms of PK [180] increasing the
area under the curve of 20 times and targeting the tumor via EPR. Despite clinical trials to
contrast metastatic breast cancer, Myocet was tested also against glioma in children [181],
lymphomas [182,183], ovarian, fallopian and peritoneal cavity cancer [184–186], but to our
knowledge the results of these trials were not reported.

Daunoxome is the liposomal formulation of Daunorubicin and it was approved to
treat HIV-related Kaposi’s sarcoma [5]. These particles are about 45 nm in size and even
though they are not PEGylated as Doxil, they were designed with a neutral surface charge
to minimize opsonization and sequestration by the element of the mononuclear phagocytic
system [187]. The particles are intravenously administered and accumulate in the tumor
via EPR. The benefits of this formulation were shown in preclinical studies showing an
increase of tumor targeting of almost 10 times compared to free-administered drug and
a controlled released in the cancer lesion up to 36 h [188]. Daunoxom showed also to
protect the drug from biotransformation in toxic and inactive derivates [189]. Besides
Kaposi’s sarcoma [5,190], Daunoxome (in combination with other drugs like Cytarabine)
was extensively clinically tested to treat acute myeloid leukemia, where it showed higher
efficacy compared to free-administered drug and acceptable side effects [189,191].

Vyxeos is the liposomal formulation of Daunorubicin and Cytarabin and it is approved
for leukemia treatment [192]. The drugs are loaded with a ratio 1:5 (D/C) because previous
reports demonstrated the occurrence of synergistic effects in this formulation. In freeze-
dried conditions, the particles have a size of 110 [193] and they are not provided with
surface targeting properties or stealthing mechanisms [11]. However, drug encapsulation
allowed for better PK properties and when interacting with targeted cells in the bone
marrow, the delivery of both the therapeutics allowed for significant improvement in their
efficacy, compared to free-administered drugs [194]. In clinics, Vyxeos showed to increase
the overall survival of elderly patients with acute myeloid leukemia with side effects
comparable to standard treatments [195]. In this regard, a specific trial was dedicated to
evaluate kidney toxicity [196].

ATU-027 is a liposomal formulation of about 100 nm in size, designed to deliver
siRNA. The system is composed of pegylated, cationic, and fusogenic lipids to allow the
particles to load siRNA, maintain proper circulation properties, and deliver the payload in
the cell cytoplasm [197]. This liposomal formulation was designed to deliver siRNA against
PKN3 expression, a key factor in the downstream pathway of PI3K/PTEN [197]. Here, the
liposomes are supposed to target the neo-angiogenesis process, and even though with no
specific targeting for endothelial cells, they demonstrated in vitro and in vivo the ability
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to target angiogenesis and lymphoangiogenesis. The system showed good tolerability in
clinical trials against solid tumors [198,199] and in particular against pancreatic cancer in
combination with GEM [200,201].

Marqibo is a liposomal formulation of vincristine designed to improve the PK prop-
erties of this drug and increase its efficacy and safety. The system comprises sphin-
gomyelin/cholesterol liposomes [202] of about 100 nm encapsulated with the drug. The
composition of these liposomes is important because it was shown to provide a neutral
charge to the particles, decreasing their opsonization and consequent clearance by the MPS.
Enhanced PK properties, prolonged circulation and relatively small size can favor tumor tar-
geting via EPR [203]. However, Marqibo was approved to treat Philadelphia chromosome-
negative acute lymphoblastic leukemia [204]. The system showed high tolerability also in
children receiving adult doses against refractory solid tumors and leukemia [205], while
more data are needed to evaluate its efficacy against retinoblastoma [206]. Marqibo showed
promising results against metastatic uveal melanoma [207] and B-cell lymphoma in combi-
nation with other therapeutics [208].

MEPACT is the liposomal formulation of the immune modulator mifamurtide and it
is approved to treat high-grade non-metastatic osteosarcoma in young patients [209]. The
liposomes are multilamellar and their size is claimed to be below 100 nm from different
sources [172,210], even though other reports claim that this technology is about 3 um in
size [211]. Additionally, known as liposomal muramyl tripeptide phosphatidylethanolamine,
the system encapsulate a synthetic biologics that can target the macrophages of liver and
spleen that in turns can activate other leukocytes against cancer cells [211], decreasing the
importance of the size.

5.3. Exosomes

Exosomes are biological extracellular vesicles secreted from different cells with a
size of 30–120 nm and a characteristic biological protein identity providing resistance
to MPS clearance and tumor tropism (Figure 4) [212]. In the Phase I clinical trial [213]
“iExosomes” mesenchymal stem cells (MSC)-derived exosomes loaded with anti-KrasG12D
siRNA for treating metastatic pancreatic ductal adenocarcinoma (PDAC) with KrasG12D
mutation are tested for the best dose and side effects. Mutations in the GTPase KRAS drive
initiation, progression, and metastasis of PDAC. This clinical trial studies the effects of
the treatment first described in 2017 by Kamerkar et al. [214] reporting the use of targeted
exosomes (iExosomes) loaded with anti-KRAS siRNA and equipped with a CD47 “do
not eat me” signal for treating PDAC. iExosomes showed remarkably higher efficiency of
siRNA delivery into target pancreatic cells compared to liposomes and non-functionalized
exosomes, which was attributed to the functional role of CD47, a signal that helps to evade
phagocytosis, in suppressing systemic clearance of nanoparticles. CD47 expression on
the surface of iExosomes increased the half-life of nanoparticles in systemic circulation
and favored their internalization into pancreatic cells. In preclinical models, iExosomes’
administration resulted in tumor disappearance (an effect that persisted even after 200 days
post-treatment). In advanced PDAC models, treated mice responded with partial control
of tumor growth, reduced tumor burden, and improved histopathology of the pancreatic
tissue. The secondary objectives of this trial include evaluation of iExosomes PK, assessing
the disease control rate with the therapy, determining median progression-free survival
and overall survival of PDAC patients with the treatment. Overall, this is the first clinical
trial on the use of (a) functionalized exosomes; (b) exosomes loaded with siRNA and
(c) exosomes with CD47 signal protecting nanoparticles from phagocytosis. In case of
success, this study could lay a firm ground for further development of exosome-based
therapeutics and exosome nanovehicles for treating cancer and non-cancer diseases.
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In another Phase I clinical trial [215] exosomes were tested to deliver of curcumin
against colon cancer. This drug showed anti-inflammatory, antioxidant and antitumor
activity, but frustratingly low bioavailability. The strong inhibitory effects of curcumin
on many colon cancer cell lines were previously showed [216]. These effects were mainly
attributed to signal transduction pathways’ modulation, including β-catenin and NF-κB.
This trial attempts to use plant (fruit-derived) exosomes to increase curcumin bioavailability
and delivery into colon tumors. In this early clinical trial, the effects of curcumin-loaded
exosomes on the immune modulation, phospholipid profile and cellular metabolism of
colon cancer and normal colon cells will be analyzed. While the method for loading of
curcumin into exosomes is not described, it is most likely related to natural binding of
curcumin, as a hydrophobic drug, to these particles. Plant-derived exosomes from different
fruits are also well described, as well as their uptake by intestine and immune cells [217].

Grape exosomes [218] containing Lortab drug (acetaminophen and hydrocodone, a
non-opioid pain reliever) with Fentanyl patch (opioid analgesic) are studied in a trial to
evaluate the ability of powdered grape exosomes as anti-inflammatory agents to reduce the
incidence of oral mucositis, a frequent adverse effect during radiation and chemotherapy
treatment for head and neck tumors. This powder will be administered daily by mouth for
35 days during chemoradiotherapy along with orally prescribed oral mucositis standard
therapy (pain relievers and anti-fungal mouth washes). Efficacy will be estimated by pain
caused by oral mucositis and levels of immune biomarkers in blood and mucosal tissue.

Another clinical trial uses dendritic cell-derived exosomes in combination with an
immune suppressive drug cyclophosphamide. The study describing this approach was first
published in 2016 by Besse et al. [219]. Dendritic cell-derived exosomes (Dex), containing a
wide range of antigen presentation, adhesion, costimulatory and docking molecules, were
shown to trigger NK and T cell immune responses in Phase I clinical trials [220,221]. In
a Phase II trial [222], Dex loaded with MHC class I and class II-restricted cancer antigen
showed clinical benefits in patients with inoperable NSCLC including longer progression-
free survival in patients with advanced NSCLC. 32% of patients receiving Dex experienced
stabilization of cancer growth for over 4 months, but the primary endpoint (to observe 50%
of patients with progression-free survival at 4 months after cessation of chemotherapy)
was not reached. The authors discussed the obstacles that may have led to this failure,
including suboptimal use of cancer-testis antigens loaded into exosomes, the use of IFN-γ
during manufacturing of Dex that may upregulate PD-1 ligands on exosomes and potential
benefit of using Dex in combination with immune checkpoint blockers in lung cancer. Still,
this strategy demonstrated activation of antitumor immunity, feasibility of using dendritic
cell-derived exosomes for immunotherapy, and clinical benefits for patients with advanced
NSCLC. Using Dex may also be portrayed for other cancers with NKp30-specific functional
defects, such as gastrointestinal stromal tumors, neuroblastoma, and chronic lymphocytic
leukemia. The different technologies presented in this work are summarized in Table 1.
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Table 1. Characteristics and targeting mechanism of nanocarriers in clinical trials.

Particle Material Size (nm) Targeting Mechanism Killing Mechanism

AguIX Polysyloxane 5 EPR radiosensitizer

NBTXR3 Hafnium oxide 50 intratumor radiosensitizer

SPION Iron oxide 20–150 EPR, intratumor, polarized
magnetic fields

Thermoablation,
conjugated drug

NU-0129 Gold N.A. EPR, transcytosis RNAi

ELU001 Silica 6 Folic acid topoisomerase-1 inhibitor

CALAA-01 Cyclodextrin 50–70 Transferrin RNAi

Genexol-PM Polymeric micelles 20–50 EPR PTX

Apalea/ Paclical Polymeric micelles 20–30 EPR PTX

Pm-PAC Polymeric micelles ~20 EPR PTX

Nanoxel-PM Polymeric micelles 10–50 EPR DTX

NC-6004 Polymeric micelles ~30 EPR GEM

NK012 Polymeric micelles ~20 EPR SN-30

NC-6300 Polymeric micelles 40–80 EPR, acidic pH epirubicin

EP0057 Polymeric micelles 30–40 EPR Camptothecin,
radiosensitizer

Abraxane Albumin 130 Receptor mediated trafficking PTX

Abi-009 Albumin 130 Receptor mediated trafficking
local administration Rapamycin

NanoPac PTX 600–800 Local administration PTX

Doxil Lipids 70–100 EPR DOX

Myocet Lipids 150 EPR DOX

Marqibo Lipids 100 EPR Vincristine

MEPACT Lipids >100 Targeting MPS Mifamurtide

Onyvide Lipids 110 EPR Irinotecan

Daunoxome Lipids 45 EPR Daunorubicin

Vyxeos Lipids Daunorubicin/Cytarabine

ATU-027 Lipids 100 EPR RNAi

Exosomes Proteo/lipids 30–120 Natural tropism RNAi

6. Conclusions

In this work, we analyzed different nanotherapeutics that reach clinical trial evalua-
tion excluding nanotherapeutics tested for diagnostic [64,223], improvement of surgical
interventions [224,225], pain relievers [226] or cancer vaccines [227,228]. Nanomedicine
showed the potential to improve the delivery of small molecules and biologics and to
represent a means to develop treatments based on physical methods. Most of these carriers
accumulate in the tumor via EPR and a small size (below 150 nm) represents a common
factor in the clinical success of nanotherapeutics. Only a few of them were engineered
with targeting moieties compatible with high-scale production. In the considered studies
emerged that, trafficking complexity could be reached only via biology-inspired carriers like
Abraxane and exosomes and, for this reason, more investigations in this direction should be
performed [229]. It has also to be noted that most times the nanoformulations that reached
clinical trial evaluation were tested for delivering other therapeutics with similar chemical
and physical properties, developing novel combinatorial approaches and contrasting the
growth of different tumor diseases. In this context, the success obtained against one kind
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of cancer did not guarantee the same results in other oncological diseases, highlighting the
importance to characterize the trafficking properties of each oncological disease.
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